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Abstract
Background Milling process contributes 60–70% of the finishing process in machining industries. Surface finish of the 
product is greatly influenced by the nature of chatter vibration initiated during milling due to its self-generating chatter 
phenomenon.
Purpose To ascertain the stability regimes in milling, in this work, a novel methodology based on Spline-Based Local Mean 
Decomposition (SB-LMD) and Artificial Neural Network (ANN) is proposed.
Method For this purpose, experimentally acquired audio signals in milling operation have been processed using a SB-LMD 
technique to extract tool chatter features. Furthermore, three ANN training algorithms viz. Resilient Propagation (RP), 
Conjugate Gradient Based (CGP) and Levenberg–Marquardt Algorithm (LM) and two activation functions viz. Hyperbolic 
Tangent Sigmoid Transfer Function (TANSIG) and Log Sigmoid Transfer Function (LOGSIG) has been used to train the 
data set. Among these training algorithms and activation functions, most suitable combination has been selected and further 
invoked to develop prediction model of chatter severity in terms of Chatter Index (CI).
Results Results showed that the proposed methodology is quite suitable for ascertaining the stable milling parameters that 
will result in higher productivity along with better surface finish.
Conclusion A technique to extract chatter frequency corresponding to the tool chatter has been developed and tested. 
Moreover, TANSIG with optimal neurons in hidden layer is found to be the most suitable one for the prediction of CI with 
an average deviation of 3.11%.

Keywords ANN training algorithm · Activation function · Signal processing · SB-LMD · Stability

Introduction

Regenerative chatter is a regular and complicated phenom-
enon that occurs frequently during machining operations. 
Chatter is not directly dependent on the machining param-
eters rather relies on the combination of these parameters. 
Therefore, it is quite pertinent that a proper combination 
of input parameters should be selected so that machining 
at these combinations will result in minimum chatter and 
maximum MRR.

In the last few decades, researchers are using process-
based approach to identify chatter. In this regard, first step 
is to acquire the signal to identify the machining state. To 

achieve this, researchers have used various sensors like 
dynamometers [1–3], accelerometers [4–6], microphone 
[7–11] and Motor current [12, 13] for acquiring the signal. 
Delio et al. [7] compared acceleration sensors, displacement 
sensors with microphone, and deduced that chatter detection 
using acoustic signal are more effective and less costly.

The analysis of the experimentally recorded signals is the 
next step in tool chatter recognition. To examine the signal, 
some researchers employed time–frequency analysis such 
as Short-Time Fourier Transform (STFT) [14, 15], Continu-
ous Wavelet Transform (CWT) [16, 17], Wavelet Transform 
(WT) [18, 19] and Wigner-Ville Distribution (WVD) [20]. 
However, due to the constraints of uncertainty principle, 
time–frequency methods are not so accurate. Flaws related 
to time–frequency analysis have been also reported in the 
previous literature [21].

To overcome such issues, researches have proposed 
various novel Self-Adaptive techniques such as Empirical 
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Mode Decomposition (EMD) [22] and Ensemble Empirical 
Mode Decomposition (EEMD) [5, 6], Empirical Wavelet 
Transform (EWT) [23] and Variational Mode Decomposi-
tion (VMD) [24]. However, all these Self-Adaptive signal 
processing techniques have their own limitations such as 
EMD and EEMD is known for limitations like end effect, 
mode aliasing, sensitivity to noise and sampling. In VMD 
method, mode numbers must be indicated in advance [25]. 
EWT can lead to an improper segmentation in the frequency 
domain [26, 27]. To address the difficulty of EMD, a new 
self-adaptive signal processing techniques i.e., LMD was 
proposed by smith [28]. To smooth the original local mean 
function and envelope estimate function, the LMD process 
employs the moving averaging algorithm. However, LMD 
has also some inherent defects [29]. Recently, Mishra et al. 
[11] used Spline-Based Local Mean Decomposition (SB-
LMD) technique to detect tool chatter in milling process 
using statistical indicators.

After signal processing and feature extraction, it is 
quite essential to develop a chatter severity model which 
can ensure better surface finish. In the present competitive 
and time-driven scenario, industries need a reliable cut-
ting parameter for having minimum chatter. In the recent 
years, neural network approach has been applied to monitor 
machining processes [30–32]. Lamraoui et al. [33] adopted 
neural network approaches for chatter detection in milling. 
Kumar and Singh [34] employed an Artificial Neural Net-
work (ANN) technique to forecast the safe cutting zone and 
metal removal rate in turning. Main concern in ANN model-
ling is to select the training function and optimized number 
of neurons in the hidden layer, to prevent it from overfitting 
and under fitting. However, several researchers have made an 
attempt to optimize the neurons in the hidden layer [35, 36].

Still, a clear concept is still missing regarding the selec-
tion of optimal neurons and the training function for apply-
ing ANN approach to build chatter severity model in terms 
of input milling parameters. In the present work, an attempt 
has been made to overcome these issues. Moreover, audio 
signals obtained during milling have been processed using 
SB-LMD technique. The remaining paper is organized as 
follows: Sect. 2 enumerates the outline of the presented 
work. Section 3 presents chatter signal simulation model. 
In Sect. 4, mathematical background SB-LMD is presented. 
Section 5 comprises the experimental details on extraction 
of tool chatter features. ANN modelling of chatter severity 
and details related to selection of optimized neuron in hid-
den layer and training and activation function is presented in 
Sect. 6. Result and discussion is presented in Sect. 7. At last, 
the conclusions drawn are summed up in Sect. 8.

Outline of the Presented Work

Figure 1 presents the outline of the presented work. The pre-
sented work has been divided into four stages for easy compre-
hension. The machine, tool, workpiece and cutting parameters 
have been selected in the first stage. Audio signals have been 
acquired using the microphone. In the second stage, viability 
of proposed signal processing technique i.e., SB-LMD has 
been tested on acquired audio signals. Normalized energy 
ratio (NER) and Co-relation coefficient (CC) are employed 
to choose the most prominent product function (PF) having 
higher information of tool chatter. Moreover, a new Chatter 
Indicator (CI) has been developed to differentiate the state of 
machining condition. In the third stage, An ANN model has 
been developed for CI using optimized neuron in hidden layer 
and training function.

Chatter Signal Simulation Model

In the present section, the frequency domain has been used to 
simulate real time working using Zeroth-Order Approxima-
tion (ZOA) [37] as shown in Fig. 2. ‘N’ number of teeth has 
been taken at milling cutter with a zero-helix angle at angular 
speed (Ω) (rad/s) and having cutter rotation period as ‘T’. Any 
arbitrary tooth number (let say k) has been selected for devel-
oping the model of end milling cutter displacement. In this 
context, the variation of tooth engagement angle is represented 
by �k(t) = Ωt where (Ω) (rad/s), is the angular speed of spin-
dle. Resultant chip thickness is given by

Resultant chip thickness is a combination of the static 
chip thickness (ft sin �k) and dynamic chip thickness. Where, 
feed rate per tooth is represented by ft and displacement of 
the cutter at the previous and present tooth periods is given 
by (zk,0, zk) . Because static chip thickness does not contribute 
much in regenerative phenomenon, it has been omitted from 
the calculation. Now, modified chip thickness in terms of ‘x’ 
and ‘y’ direction displacement can be written as:

The mechanistic cutting forces are directly proportional to 
the dynamic chip thickness and are defined in matrix form as:

where b, Kt and Kr are axial depth of cut and the cutting 
coefficients, respectively. Time-varying directional dynamic 
milling force coefficients are gives as

(1)h
(
�k

)
=
[
ft sin�k +

(
zk,0 − zk

)]
u
(
�k

)
.

(2)h(�k) =
[
Δx sin �k + Δy cos �k

]
u(�k).

(3)
{

Fx

Fy

}
=

1

2
bKt

[
dxx dxy
dyx dyy

]{
Δx

Δy

}
,
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dxx =

N−1∑
k=0

[
Kr(1 − cos 2�k) + sin 2�k

]
(−uk); dxy =

N−1∑
k=0

[
Kr sin 2�k + (1 + cos 2�k)

]
(−uk)

dyx =

N−1∑
k=0

[
−Kr sin 2�k + (1 + cos 2�k)

]
(uk); dyy =

N−1∑
k=0

[
−Kr(1 + cos 2�k) + sin 2�k

]
(uk).

Fig. 1  Outline of the presented 
work
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Equation  (3) can be expressed in the time domain 
matrix, given by;

Applying Fourier transform, Eq. (4) can be expanded 
into the Fourier series as follows:

where Ƒ and δ are the Fourier and Dirac delta func-
tion, respectively. Tooth engagement angle is given by 
�k = � + k�p and cutter pitch angle is �p = 2�∕N.

After substituting �T t = N� , the directional matrix is 
given by

When number of harmonics,r = 0,±1, then directional 
coefficient matrix becomes;

(4){F(t)} =
1

2
bKt[D(t)]}

(5)

[D(�)] = F[D(t)] =

+∞�
r=−∞

[Dr]�(� − r�T ) =

+∞�
r=−∞

[Dr]e
ir�T t

[Dr] =
1

T ∫
T

0

[D(t)]e−ir�T tdt

⎫
⎪⎪⎬⎪⎪⎭

,

(6)

=
1

ΩT

N−1∑
k=0

∫
(k+1)�p

k�p

[
dxx,k dxy,k
dyx,k dyy,k

]
e−irN�

=
1

�p

(
∫

�p

0

[
dxx,0 dxy,0
dyx,0 dyy,0

]
e−irN�d� + ∫

2�p

�p

[
dxx,1 dxy,1
dyx,1 dyy,1

]
e−irN�d� + ....

)

=
N

2�

2�

∫
0

[
dxx dxy
dyx dyy

]
e−irN�d�.

White Gaussian noise has been added in the simulated 
model in order to realize the real working condition signal 
as represented in Fig. 3. This real working signal has been 
developed taking N (number of teeth) = 4, cutting coeffi-
cients Kt and Kr are 796 N/mm2and 0.212, respectively.

Proposed Signal Processing Techniques

In the present work, an effort has been made to overcome the 
limitations of conventional LMD (C-LMD) by using spline 
interpolation. In this proposed signal processing technique, 
cubic spline interpolation has been used instead of moving 
average interpolation. Details of cubic spline interpolation has 
been given in ensuing section:

Cubic Spline Interpolation

Consider the problem of interpolating between the data points 
(x0, y0), (x1, y1)...(xn, yn) by means of spline fitting.

Then, the cubic spline f (x) must follow listed conditions:

 i. f (x) is a linear polynomial outside the interval 
(
x0, xn

)
,

 ii. f (x) is a cubic polynomial in each of the subintervals,
 iii. f �(x) and f ��(x) are continuous at each point.

(7)[D(t)] =

+1∑
r=−1

[
Dr

]
eir�T t

Fig. 2  Regenerative chatter in milling system

Fig. 3  Simulated signal with white Gaussian noise in time domain
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Since f (x) is cubic in each of the subintervals then f ��(x) 
shall be linear.

Taking equally spaced values of x so that xi+1 − xi = h , we 
can write

Integrating twice, we have 

The constants of integration ai, bi are determined by 
substituting the values of y = f (x) at xi and xi+1. Thus,

Substituting the values of ai, bi and writing f ��
(
xi
)
= Mi , 

Eq. 9 takes the form

To impose the condition of continuity of f �(x) , we get.
f
�

(x − �) = f
�

(x + �) as � → 0

There are only (n − 1) terms but the unknown param-
eters are (n + 1). To get the remaining terms, the first 
derivative values at endpoints has been used, which are 
known constants. Substituting the value of Mi in Eq. 10, 
gives the concerned cubic spline.

Spline‑Based Local Mean Decomposition (SB‑LMD)

The aforementioned cubic spline interpolation has been 
invoked to overcome the limitation of coventional LMD 
(C-LMD) method. Details of step followed in the SB-LMD 
are presented in Fig. 4.

(8)f
��

(x) =
1

h

[(
xi+1 − x

)
f
��

(x) +
(
x − xi

)
f
��(
xi+1

)]

(9)f (x) =
1

h

[(
xi+1 − x

)
3!

f
��

(x) +

(
x − xi

)
3!

f
��(
xi+1

)]
ai
(
xi+1 − x

)
+ bi

(
x − xi

)

ai =
1

h

[
yi −

h2

3!
f
��(
xi
)]
, bi =

1

h
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yi −

h2

3!
f
��(
xi+1

)]

(10)f (x) =
(xi+1 − x)3

6h
Mi +

(x − xi)
3

6h
Mi+1 +

xi+1 − x

h

(
yi −

h2

6
Mi

)
+

x − xi

h

(
yi+1 −

h2

6
Mi+1

)

∴ f
�

(x) = −
(xi+1 − x)2

2h
Mi +

(x − xi)
2

6h
Mi+1 −

h

6
(Mi+1 −Mi) +

1

h
(yi+1 − yi)

∴
h

6

(
2Mi +Mi−1

)
+

1

h

(
yi − yi−1

)
= −

h

6

(
2Mi +Mi+1

)
+

1

h

(
yi+1 − yi

)

Mi−1 + 4Mi +Mi+1 =
6

h2

(
yi−1 − 2yi + yi+1

)
, i = 1.....(n − 1)

Simulated Chatter Signal Processing via C‑LMD

To test the feasibility of the proposed signal processing 
technique, first, a simulated chatter signal was devel-
oped (details given in Sect. 3) and has been processed 
with conventional LMD (C-LMD). The frequencies 
of the obtained simulated signal are extracted using 
C-LMD. The simulated chatter signal is decomposed 

by C-LMD into a sequence of PFs, as shown in Fig. 5a, 
and the corresponding Fast Frequency Transform (FFT) 
of PFs is shown in Fig. 5b. It is evident from these 
figures that the original signal's frequency peaks are 
not obtained.

Simulated Chatter Signal Processing via SB‑LMD

It is evident from the above discussion that the conventional 
LMD method is not always appropriate for processing a non-
stationary and non-linear signal. To address the disadvan-
tage of conventional LMD, SB-LMD is used. The PF’s of 
the simulated chatter signal has been decomposed as shown 
in Fig. 6a and the corresponding FFT of first three PF’s is 
shown in Fig. 6b. Chatter frequencies peaks are evidently 
marked in Fig. 6b. As a result, it can be concluded that the 
SB-LMD procedure is ideal for processing a non-stationary 
and non-linear signal signals.

Experimental Setup

End milling experiments (slotted) is performed after validat-
ing the proposed signal processing technique (SB-LMD) for 
simulated chatter signal. For performing the experiments, 
four fluted HSS milling cutter and Al 6061-T6 as a work 
piece material has been selected. Experimental set-up is 
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shown in Fig. 7. Microphone (Model No: AHUJA AGN-
480) having 600 Ω impedance and 2 mV/Pa sensitivity, has 
been used for gathering the generated sound signals (real 
working signal) during machining. Total 27 experiments 
have been performed with full factorial combinations of the 

input parameters, as presented in Table 1. Figure 8 shows 
a sample audio signal generated during a milling operation 
with an axial depth of cut of 1 mm, a feed rate of 50 mm/
min, and a spindle speed of 1000 rpm.

Fig. 4  Flowchart of SB-LMD
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SB‑LMD in Real Working Signals

For extracting the valuable components and removing the 
time series and associated spatial noise components from 
sound signal, SB-LMD technique is applied. Extracted 
Product Functions (PF’s) of the signal are shown in Fig. 9. 
Two major indicators are introduced to pick the important 
PF’s, containing the principle data of processing state. 
Relative energy ratio (NER) of the foremost noticeable 
PF shows higher energy content. When cutting is steady, 
energy dispersion is uniform and relative energy ratio is 

small. However, when chatter starts, relative energy ratio 
increases. Therefore, relative energy ratio is a good indica-
tor to select the crucial PF’s. Second indicator, co-relation 
coefficients (CC) is also used.

The first three PFs have a higher relative energy ratio as 
well as higher correlation coefficient, as shown in Fig. 10. 
Therefore, first three PF’s are used to constitute the main 
signal information.

Figure 11 displays the newly developed signal's frequency 
spectrum. It is evident from Fig. 11 that SB-LMD tech-
nique is able to extract all three basic important frequency 

Fig. 5  a C-LMD processed 
simulated chatter signal, and b 
FFT of first three PF’s

Fig. 6  a SB-LMD processed 
simulated chatter signal, and b 
FFT of first three PF’s
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components, i.e., chatter frequency, tooth passing frequency 
(ωT = 66.6 Hz) and multiples of tooth passing frequency 
(ωk).

Extraction of Tool Chatter Features

For ANN modelling, tool features are required. Therefore, 
in this section, SB-LMD processed audio signals are further 
explored by employing a new statistical indicator, Chatter 
Indicator (CI). Chatter Indictor is based on coefficient of 
variation, i.e., the ratio of mean to the standard deviation 
given by following relation:

Coefficient of variation is employed, because it reflects 
the degree of variability in proportion to the mean of the 
sound data point. Therefore, the value of CI is directly pro-
portional to signal’s chatter components. CI is calculated for 
each of the 27 experimental runs and presented in Fig. 12.

For all 27 experimental runs, the variation of CI has 
been calculated and marked in Fig. 12. Upper (red) and 
lower (green) threshold limits are defined using 3σ crite-
rion to classify the three phases of chatter severity (stable, 
moderate and unstable), as demonstrated in Fig. 12. Green 
line represents the stable machining, while CI points above 
the red line represents unstable machining. The points in 
the middle (between green and red) represent a transition 
from stable to unsafe machining.

Surface topography of the machined surface was care-
fully studied at experimental runs 7 and 27, as shown in 
Fig. 13a, b, respectively, to understand the effect of feed 
rate. When looking at the surface topology of machined 
surfaces, it is obvious that clear and distinct chatter marks 
can be seen.

Artificial Neural Network

Furthermore, a suitable prediction model has been created 
to investigate the relative dependency of chatter severity in 
terms of input milling parameters. Thus, to meet this objec-
tive, ANN technique has been invoked as presented in the 
present section.

(12)CI =
Mean (x)

Standard deviation (�)
.

Fig. 7  End milling experimental 
set-up

Table 1  Experimental setting (3 parameters at 3 levels)

Parameters Level 1 Level 2 Level 3

Spindle speed (SS, rpm) 1000 2000 3000
Feed rate (F, m/min) 50 75 100
Axial depth of cut (D, mm) 1 1.5 2

Fig. 8  Sound signals for test run 1
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Fig. 9  SB-LMD processed real 
chatter signal

Fig. 10  a CC and b NER of PF’s

Fig. 11  FFT of reconstructed 
signal
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Overview and Architecture of Artificial Neural 
Network

The human brain and biological nervous system are the 
cause of motivation behind the development of artificial 
neural network. Artificial neurons in ANN are the simplified 
models of biological neurons that are used for computational 
or processing the data. In the present work, architectures of 
ANN considered consists of three layers viz. Input [having 

3 neurons, ‘Spindle Speed (SS)’, ‘Feed Rate (F)’ and ‘Axial 
Depth of Cut (D)’], hidden (having optimized number of 
neurons) and output layer [one neuron, i.e. ‘Chatter Indicator 
(CI)’] as shown in Fig. 14. Input layer receives machining 
data from the user end. Hidden layers perform most of the 
complex processing for extracting the features. An output 
layer presents the final output.

In ANN modelling, various training functions are avail-
able and can be used for training the data. Viability of 

Fig. 12  Coefficient of variation 
(CI) v/s experimental number

Fig. 13  Surface topology for (a) 
experiment 7 and (b) Experi-
ment 27

Fig. 14  ANN architecture
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training function is problem specific. In this work, differ-
ent variants of BP algorithms have been invoked for train-
ing the model to improve the efficiency of ANN for pro-
ducing better prediction models for chatter identification. 
To enhance the efficiency of back propagation in terms of 
its convergence, several algorithms have been developed 
known as variants of Back propagation. The variants of BP 
algorithms are as follows:

a) Resilient Propagation (RP).
b) Conjugate Gradient-based Algorithms (CGP).
c) Levenberg–Marquardt Algorithm (LM).

To improve the prediction capability of ANN, different 
activation function has been used. List of activation func-
tions are as follows:

a) Hyperbolic tangent sigmoid transfer function (TAN-
SIG) = 2

1+e−2z
− 1

b) Log sigmoid transfer function (LOGSIG) = 1

1+e−z

c) Linear transfer function (PURELIN) = z

In this study, PURELIN function has been discarded due 
to linear property which does not meet with the required 
condition.

To compare the above listed training (RP, CGP and LM) 
and activation function (TANSIG and LOGSIG) has been 
taken in consideration for better prediction of chatter and 
their details are given in sub sequent sections. In this study, 
an effort has been done to get the optimized neurons for the 
selected training and activation function to avoid the case 
of under or over fitting of the prediction model. Later, these 
optimized neurons for hidden layer are used to train the data. 
Details are given in subsequent section.

Selection of Number of Neurons in the Hidden Layer

Optimized Neuron in Hidden Layer for TANSIG

To get optimized neuron in the hidden layer for selected 
training function (RP, CGP and LM) and TANSIG as an 
activation function, Mean squared error (MSE) has been 
taken as a statistical indicator to select the number of neu-
rons. To achieve the optimized neurons, data have been 
trained for all selected training algorithm taking TANSIG 
as an activation function, by varying the number of neu-
rons in the hidden layer from 1 to 30. Mean squared error 
have been calculated for all these combinations. Calcu-
lated mean squared errors (MSE) have been plotted against 
number of neurons as shown in Fig. 15.

Fig. 15  MSE v/s number of neurons for selected training algorithms using TANSIG
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Form Fig. 15, it has been observed that, optimized num-
ber of neurons are different for different algorithm. Opti-
mized numbers of neurons in hidden layer for algorithms 
have been decided based on minimum difference between 
the train data and the validation data. From Fig. 15, it 
is observed that the optimum number of neurons for RP, 
CGP and LM are 8, 9 and 5 neurons, respectively.

Optimized Neuron in Hidden Layer for LOGSIG

Similarly, optimized neurons in the hidden layer have been 
evaluated for selected training function (RP, CGP and LM) 
and LOGSIG used as an activation function as presented 
in above section. Calculated mean squared errors (MSE) 
have been plotted against number of neurons as shown in 
Fig. 16.

Form Fig. 16, it has been observed that, optimized num-
ber of neurons are different for different algorithm. Opti-
mized numbers of neurons in hidden layer for algorithms 
have been decided based on minimum difference between 
the train data and the validation data. From Fig. 16, it is 
observed that the optimum number of neurons for RP, CGP 
and LM are 10, 9 and 6 neurons, respectively.

Selection of Training function

To select the best training algorithm for the prediction 
of chatter severity taking TANSIG and LOGSIG as an 
activation function, ANN model is trained individually 
using RP, CGP, LM algorithms. Three input parameters 
[i.e. Spindle speed (SS), Feed rate (F) and Axial depth of 
cut (D)] are used as the input neurons layer. To anticipate 
the chatter, the output layer has one neuron i.e., Chatter 
Indicator (CI). Optimized number of neurons has been for 
further analysis.

When compared to the depth of cut (0.5–1.5  mm) 
and feed rate (0.1–0.2 m/min), the spindle speed range 
(1000–3000 rpm) is numerically too broad. As a result, the 
available data set is standardised to facilitate training and 
testing. The normalised values are in the range of 0 to 1 in 
this case. When the disparity between each parameter data 
is too great, normalised values are employed. This allows 
us to compare the sizes on a common scale to identify 
which component has the most impact on the response. 
This also aids in the preservation of orthogonality. The 
transformation of non-normalized variables into normal-
ized form of input and output variable has been done by 
using the following relations:

Fig. 16  MSE v/s number of neurons for selected training algorithms using LOGSIG
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Finally, the final trained network weights are those that 
result in the least amount of inaccuracy. To evaluate the 
prediction capability of the algorithms, Absolute Percent-
age Deviation (APD) has been calculated and presented in 
Table 2. Later, final Average Absolute Percentage Deviation 
(AAPD) has been calculated for every algorithm.

SSn =
SS

SSmax

;Fn =
F

Fmax

;Dn =
D

Dmax

;CIn =
CI

CImax

When TANSIG is used as an activation function, the 
Average Absolute Percentage Deviation (AAPD) for RP, 
CGP and LM are 7.49, 12.66 and 3.11, respectively. In 
LOGSIG activation function, average absolute percentage 
deviations for RP, CGP and LM are 7.92, 9.69 and 3.84, 
respectively. After comparing all possible combinations of 
selected training algorithm and activation functions, LM 
with TANSIG is found to be the most suitable combination 
for predicting the output (Chatter Index).

Table 2  AAPD for TANSIG 
and LOGSIG

Abbreviated form is presented by bold

Exp. no TANSIG LOGSIG

RP–APD CGP–APD LM–APD RP–APD CGP–APD LM–APD

1 12.9621 13.5288 1.00958 5.3810 6.8615 8.9649
2 4.68413 33.6529 4.45988 6.2186 21.3631 0.4194
3 14.2919 4.82969 2.91949 8.1861 13.5741 0.1977
4 5.53062 4.84434 0.19153 2.0101 0.5293 0.7037
5 3.39977 1.71631 3.82687 8.1165 1.3467 0.6945
6 6.80972 32.4499 4.68538 9.3144 15.5898 0.1505
7 19.159 2.49737 0.11753 9.3937 16.6714 5.7847
8 0.41797 16.9794 11.3136 13.6774 2.1675 2.2021
9 20.3961 13.9739 12.8057 14.3826 0.7358 0.0345
10 3.08211 10.8766 5.23235 7.4500 5.4907 3.6930
11 7.18601 20.0466 4.81344 7.5510 14.0496 4.0927
12 5.74493 15.0235 1.47986 9.4807 8.7502 1.3323
13 6.85476 11.9293 2.0317 5.1585 16.1603 6.0447
14 8.8728 5.15317 5.61925 6.3734 9.7012 4.3897
15 6.99633 2.03933 0.61758 3.7603 15.8117 0.2539
16 7.63755 20.4439 4.67509 11.7671 22.3663 0.4784
17 5.02753 3.87751 1.26141 6.0248 2.6014 0.8463
18 1.52985 7.2358 2.10819 2.2283 19.9084 0.0625
19 10.0913 24.1096 1.14889 0.5626 14.1931 51.4285
20 7.6863 13.4731 0.02033 36.6798 3.0454 1.6154
21 12.4974 19.8428 0.85464 1.6747 9.5350 0.8495
22 0.24277 1.8717 2.64737 3.0664 5.4592 1.5315
23 3.60494 9.55663 2.17567 8.7969 22.0642 1.5823
24 9.12771 2.68165 3.91282 1.6286 2.5768 1.6477
25 4.85553 9.48168 3.67377 9.5325 7.6414 1.4502
26 8.06975 30.4059 0.26709 3.2910 2.1469 0.8186
27 5.59931 9.40351 0.27276 12.1037 1.3148 2.3161
AAPD 7.49475 12.6639 3.11636 7.9189 9.6910 3.8365

Fig. 17  ANN model
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Prediction Model for CI

After selecting best training and activation function and opti-
mized number of neurons in the previous sections, predic-
tion model has been developed for CI (Chatter indicator). 
Proposed ANN model for CI is shown in Fig. 17. Three 
neurons (SSn, Fn, Dn) in the input layer, five neurons in the 
hidden layer, and one neuron (CIn) in the output layer are 
used to create a CI prediction model. For ANN modelling, 
LM algorithm as a training function along with TANSIG 
activation function (between the input and hidden layer) and 
TANSIG (between the hidden and output layer) has been 
used. Table 3 shows the optimal weight and bias for the 
hidden layer from the input layer. Table 4 shows the optimal 
weight and bias for the output layer from the hidden layer. 
For better understanding, superscript is used to represent 
the number of layer and subscript is used to represent the 
position of neuron in that layer.

Development of Mathematical Expression

To develop the mathematical expression for ANN model, θ 
expression has been used to represent the weight, whereas 
0 is used to present the position of bias in the mathematical 
expression.

Mathematical expression for hidden layer is expressed as:

where θ (Tables 3 and 4) is the weight, θ superscript rep-
resents the connection between the layers (input to hidden 
layer), first number in θ subscript is representing the position 
of neuron in the second layer. Second number in θ subscript 

z2
1
= �

1
11
× a1

1
+ �

1
12
× a1

2
+ �

1
13
× a1

3
+ �

1
10

z2
2
= �

1
21
× a1

1
+ �

1
22
× a1

2
+ �

1
23
× a1

3
+ �

1
20

z2
3
= �

1
31
× a1

1
+ �

1
32
× a1

2
+ �

1
33
× a1

3
+ �

1
30

z2
4
= �

1
41
× a1

1
+ �

1
42
× a1

2
+ �

1
43
× a1

3
+ �

1
40

z2
5
= �

1
51
× a1

1
+ �

1
52
× a1

2
+ �

1
53
× a1

3
+ �

1
50

is the position of neuron in the first layer. To get the value 
of neurons in the hidden layer, z values need to be fed in to 
the activation function (TANSIG).

Now, neurons in the hidden layer are calculated using the 
expressions;

Mathematical expression for output layer is expressed as

To get the value of neuron at the output layer, TANSIG 
function is used. Therefore, neuron value in the output is deter-
mined using the following expression

This developed mathematical expression for CI has been 
used to explore the effect of individual parameter on chatter 
severity. Outcome of this study has been presented in the sub-
sequent section, i.e., result and discussion.

Result and Discussion

Effect of Individual Parameters on CI

Effect of individual input milling parameters on Chatter Indi-
cator (CI) has been studied by plotting the outputs with respect 
to the input parameters viz. Spindle Speed (SS), Feed Rate 
(F) and Axial Depth of Cut (D) as shown in Fig. 18. On ana-
lyzing Fig. 18a, it can be interpreted that Chatter Indicator 
(CI) increases with the increase in spindle speed. By critically 
analyzing blue, red and green line in Fig. 18a, it is observed 
that the percentage change in Chatter Indicator (CI) is 81.91%, 
49.35% and 30.47%, respectively. Percentage change in blue 
line which is drawn at low feed and depth of cut (F = 50 mm/
min and D = 1 mm) is higher as compared to other lines. Thus, 
it can be concluded that the relative effect of Spindle Speed 
(SS) is dominating at lower values of Feed rate (F) and Axial 
Depth of Cut (D).

From Fig. 18b, it can be inferred that Chatter Indicator 
(CI) is not so much affected by the variation in Feed Rate 
(F) as already discussed in Fig. 12. Moreover, the percentage 
change in CI with Feed Rate (F) at respective Spindle Speed; 
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Table 3  Weight to hidden layer from input layer

Neurons a
1

1
(ss

n
) a

1

2
(F

n
) a

1

3
(D

n
) bias

1

a
2

1
0.96957  − 3.1665 0.53242  − 2.9347

a
2

2
 − 1.6207 0.14413 3.243  − 1.0427

a
2

3
 − 2.6834 0.041645 2.333  − 0.80378

a
2

4
1.3065 0.81295 1.1194 0.85065

a
2

5
0.93809 1.9373 0.96782 1.111

Table 4  Weight to output layer 
from hidden layer

Neurons a
2

1
a
2

2
a
2

3
a
2

4
a
2

5
bias

2

a
3

1
(CI

n
)  − 0.84787 1.8025  − 1.7219 2.0199  − 1.8609  − 0.7327
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SS (1000, 2000 and 3000 rpm) and Axial Depth of Cut; D (1, 
1.5 and 2 mm) are 33.16%, 5.46% and 7.65%, respectively. 
However, percentage change in CI w.r.t feed rate at low spindle 
speed and axial depth of cut (SS = 1000 rpm and D = 1 mm) is 
higher as compared to the rest two states.

In Fig. 18c, effect of Axial Depth of Cut (D) at constant 
Spindle Speed (SS) (1000, 2000 and 3000 rpm) and Feed 
Rate (F) (50, 75 and 100 mm/min) on Chatter Indicator (CI) 
has been shown in three colours viz. blue, red and green. By 
observing Fig. 18c, it can be deduced that Chatter Indicator 
(CI) increases with the increase in Axial Depth of Cut (D). 
Percentage variations Chatter Indicator (CI) for blue, red and 
green lines are 76.36%, 51.67% and 41.77%, respectively. The 
net differences in the value of Chatter Indicator (CI) for blue, 
red and green lines are 1.129, 0.9705 and 0.962, respectively. 
Thus, on comparing Fig. 18a–c, it is obvious that the effects 
of Spindle Speed (SS) and Axial Depth of Cut (D) on Chatter 
Indicator (CI) are more severe as compared to Feed Rate (F). 

A similar result has also been presented earlier by analyzing 
Fig. 12.

Effect of interaction parameters on CI and MRR

Occurrence of chatter in milling results in poor surface finish 
and degraded tool life. Therefore, to maximize productivity 
along with better surface finish and longer tool life, it is nec-
essary to minimize Chatter Indicator (CI), which ultimately 
depends on the interaction of input milling parameters. There-
fore, the effects of interaction parameters on Chatter Index 
have been discussed in the present section with the help of 
contour and surface plots as presented in Fig. 19.

Figure 19a represents the variation of Chatter Indicator 
(CI) with respect to spindle speed and axial depth of cut 
at constant feed rate (75 mm/min). Figure 19b represents 
the variation of Chatter Index with respect to feed rate and 
axial depth of cut at constant spindle speed (2000 rpm). 

Fig. 18  Effect of milling param-
eters on CI 
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Figure 19c represents the variation of Chatter Index with 
respect to spindle speed and feed rate at constant axial depth 
of cut (1.5 mm). These variations in Chatter Index have been 
presented with different colours (green, dark green, blue, 
yellow, tangerine and red). As colour level changes from 
green to red, chatter level increases. Minimum and maxi-
mum chatter within the considered range of parameters is 
represented by green and red colours, respectively. From 
these figures, it is evident that combined range of axial depth 
of cut, spindle speed and feed rate should be selected in such 

a way that it will result in minimum chatter (represented by 
green colour).

Finally, on collectively analyzing all these figures, favour-
able output range of CI (green colour) has been evaluated as 
shown in Table 5.

Safe Milling Zone

After analyzing the severity of individual parameters on 
chatter severity, range of parameters pertaining to stable 

Fig. 19  Contour and surface 
plots for CI 

Table 5  Chatter severity 
regimes

Chatter severity Chatter index

Unstable CI ≥ 2.5
Moderate 2.5 > CI > 1.5
Stable CI ≤ 1.5

Table 6  Stability range

Axial depth of 
cut (mm)

Feed rate (m/
min)

Spindle Speed 
(rpm)

Optimal range 1.6–1.78 81–100 2380–2900
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milling have been ascertained by extracting common range 
of values from Fig. 19 and are presented in Table 6.

To validate the obtained range, further experiment has 
been performed. This experiment has been performed 
considering the developed stable range and is presented 
in Table 7. Result of validation experiment shows that at 
this milling range CI value is below the threshold stabil-
ity value as shown in Fig. 12. Moreover, surface texture 
of the machined surface is also presented in Table 7. On 
examining this surface texture, it is also evident that the 
developed range is correct. Thus, the proposed methodol-
ogy is quite suitable for ascertaining the stable milling 
parameters that will result in higher productivity along 
with better surface finish.

Conclusion

In the present work, a methodology has been proposed to 
ascertain tool chatter severity regimes in milling opera-
tion. A new modified LMD approach based on cubic spline 
interpolation and ANN modelling has been used to achieve 
the aforementioned objective. Moreover, to explore the 
influence of input milling parameters on chatter sever-
ity, ANN modelling has been invoked. Modelling has 
been done using various training functions (RP, CGP and 
LM), activation functions (LOGSIG and TANSIG) and 
also optimal number of neurons in the hidden layer. Mean 
squared errors have been evaluated to estimate the opti-
mized number of neurons in the hidden layer. LM training 
function with optimal five neurons in hidden layer and 
TANSIG activation function is found to be the most suit-
able one for the prediction of CI with an average devia-
tion of 3.11%. Finally, developed mathematical expression 
has been studied critically to explore the effect of milling 
parameters on chatter severity. It has been inferred that 
effects of spindle speed and axial depth of cut on chatter 
severity is more pronounced as compared to feed rate.
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