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Abstract
Thermoelastic damping is a significant energy dissipation mechanism in nano-resonator, and exploring its feature would 
lay a foundation for designing high-quality nano-resonators. Due to the size-dependent effect and the non-Fourier heat 
conduction effect arising in structures in nanoscales, the traditional models may fail to characterize thermoelastic damping 
in nano-resonators. To further develop the thermoelastic damping model in small scales, a novel thermoelastic damping 
model is established in the present work based on the modified couple stress theory and the non-Fourier heat conduction law. 
Based on the novel model, the exact expression of thermoelastic damping is obtained by the complex frequency method. In 
calculation, the results are validated by degrading the present model to the classical model, and the effects of length scale 
parameters, boundary conditions, reference temperature, and vibration modes on thermoelastic damping are examined and 
discussed in detail. The obtained results show that the influence of the present model on the amount of thermoelastic damp-
ing and the critical thickness is significant in small scales.

Keywords Modified couple stress theory · Nano-resonators · Memory-dependent derivative · Thermoelastic damping · 
Non-Fourier heat conduction

Introduction

With the emergence of nanotechnology, its application in 
micro/nano-electromechanical systems (MEMS/NEMS) 
is also developing rapidly. For MEMS/NEMS, due to their 
unprecedented advantages, they are widely used in high-
tech fields such as automobiles, communications, aerospace, 
energy and national defense areas [1, 2]. The micro-beam 
resonator is one of the core components in NEMS/MEMS 
devices, which suffers different energy dissipation modes 
such as support damping [3, 4], surface damping [5, 6], air 
damping [7, 8] and thermoelastic damping (TED) [9].

Thermoelastic damping is the main source of energy dis-
sipation [10]. During the micro-beam vibrating process, the 

tension area first cools down and then the compression area 
heats up, which induces a temperature gradient inside the 
structure. Consequently, the temperature transferring from 
the high-temperature area to the low-temperature area causes 
energy dissipation, which is accompanied by the produc-
tion of thermoelastic damping. As early as the middle of 
the twentieth century, the TED study was first carried out 
by Zener [11], which triggered a large number of investiga-
tions on TED. Then, Lifshitz and Roukes [12] developed 
a more accurate TED model (L–R model) for rectangular 
beams using the Fourier’s law. As far as we know, the Zener 
model and the L–R model are two classical thermoelastic 
damping models. After that, Prabhakar and Vengallatore 
[13] conducted a study on the TED model concerning two-
dimensional heat conduction along the length and thickness 
direction of the beam. Then, Chandorkar et al. [14] devel-
oped a TED analytical model considering three-dimensional 
thermal conduction. Many contributions have been devoted 
to investigating TED in multi-layer beams [15, 16], plates 
[17, 18], rings [19], non-uniform functionally graded beams 
[20, 21], continuously graded beams [22, 23] and open-hole 
resonators for uniform resonant devices [24]. In addition, 
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some typical calculation methods were used to aid the theo-
retical analysis, for instance, the complex frequency method 
[11], the finite element method [25], and the thermal energy 
method [26]. Thermoelastic damping is always present in 
devices and is unavoidable. The adverse impact on devices 
can be reduced by optimizing the structural design. Now, 
due to the pursuit of high-performance NEMS/MEMS, the 
research on TED of nano-structures and micro-structures has 
attracted much attention.

It was evidenced that there exists a scale effect in the 
mechanical behavior of the nano-structures and micro-
structures, which can cause significant changes in the per-
formance of the system, such as the stress–strain relation-
ship and TED [27]. Because the classical theory ignores the 
interactions between the internal units of the structure, the 
classical theory is incapable of accurately explaining the 
mechanical behavior of the micro/nano-structures. In gen-
eral, small-scale effects can be considered by three different 
theories from different perspectives, namely, the strain gradi-
ent theory [28], the nonlocal elasticity theory [29] and the 
couple stress theory [30]. The classical couple stress theory 
involves two material length scale parameters. Because it is 
challenging to obtain the length scale parameters for micro-
structures through experiments, Yang et al. [31] proposed a 
modified couple stress theory (MCST), which only requires 
one material length scale parameter. The MCST brings con-
venience to scholars to conduct experimental and theoretical 
researches. In terms of MCST, Rezazadeh et al. [32] derived 
an analytical expression of the quality factor for TED in a 
micro-beam resonator, and Zhong et al. [33] established the 
TED expression for the micro-plate resonators.

The classic Fourier’s law for heat conduction predicts an 
infinite heat transfer speed in media. But for heat transfer 
processes in micro-scale, this law is no longer applicable. 
To amend such defect, several non-Fourier heat conduc-
tion models were proposed, e.g., the Cattaneo–Vernott 
(C–V) heat wave model [34, 35], the dual-phase-lag (DPL) 
model [36], the three-phase-lag (TPL) model [37], and the 
memory-dependent derivative (MDD) model [38]. Accord-
ingly, the generalized thermoelastic theories such as the 
Lord–Shulman (L–S) theory [39] and the Green–Lindsay 
(G–L) theory [40] were developed. Based on the L–S theory, 
Guo et al. [25] derived the TED expression of micro-beams 
and presented a useful tool in optimization design of micro-
beam resonators against thermoelastic damping. Moreover, 
by employing the MDD heat conduction model, Wang et al. 
[41] obtained the TED expression for the micro-beam and 
compared the results with the classical model.

In recent years, only a few literatures considered both 
the size effect and the heat conduction process to conduct 
TED research, which hinders the development of high-per-
formance micro/nano-mechanical resonators. Fortunately, 
scholars are making efforts to forward such researches, e.g., 

based on the DPL model, Borjalilou et al. [42] established 
a TED model in the context of the modified couple stress 
theory and determined the critical thickness in small scales. 
Shi et al. [43] derived the TED expression of micro-beams 
based on the surface effect and the DPL model and found 
that the surface effect has stronger effect than non-Fourier 
heat conduction on improving TED of nano-resonators. In 
addition, Kumar et al. [44] created a new type of micro-plate 
TED model based on the MCST and TPL model and found 
that the MCST with small values of phase-lag parameters 
can increase the quality factors of micro-plate resonators.

From the above literature review, it can be realized that 
the study of scale effect on TED in micro/nano resonators 
is still insufficient, especially, lacking studies of scale effect 
on TED based on the combination of MCST and MDD heat 
conduction model. Thus, the main contribution in present 
study is to combine MCST and MDD for the first time to lay 
a foundation for analyzing TED in micro/nano-resonators 
and then it is used to deal with the TED in Euler–Bernoulli 
nano-beam resonators by complex frequency method. In 
calculation, the effects of the nano-beam characteristics on 
TED, such as aspect ratio, boundary conditions, length scale 
parameters, temperature, thermal relaxation time etc., are 
studied and discussed in detail.

Theoretical Backgrounds

The Modified Couple Stress Theory

In accordance with MCST [31], the variation of strain 
energy �Π in isotropic linear elastic material takes the form

where V  denotes the volume of an elastic medium, �ij rep-
resents the component of the symmetric part of the stress 
tensor � , �ij is the component of the strain tensor � . mij and 
�ij denotes the deviatoric part of the couple stress tensor m 
and the symmetric part of the rotation gradient tensor � , 
respectively. These components can be written as

(1)�Π = ∭V

(
�ij��ij + mij��ij

)
dV ,

(2)�ij =
1

2

(
�ui
�xj

+
�uj

�xi

)
,

(3)�ij =
1

2

(
��i
�xj

+
��j

�xi

)
,

(4)�i =
1

2
(curl(u))i,
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where ui and �i are the components of the displacement vec-
tor field u and the components of the infinitesimal rotation 
vector � , respectively. The constitutive relationship of linear 
elastic materials can be defined as

where � and � are Lame’s constants, which can be rep-
resented by Young's modulus E and Poisson's ratio � as 
� = E∕2(1 + �) and � = Ev∕[(1 + �)(1 − 2�)] . �ij is the Kro-
necker delta, � is the linear thermal expansion coefficient, 
� = T − T0 is the temperature increment and l denotes the 
material length-scale parameter, which is used to reflect 
the effect of MCST and seize the size dependency of the 
Euler–Bernoulli beam model in micro-resonators. Similarly, 
according to Eq. (5), the component of the strain tensor also 
can be represented by

where �kk denotes volume stress.

The Memory‑dependent (MDD) Heat Conduction 
Model

According to the MDD heat conduction model, the heat con-
duction equation proposed by Yu et al. can be written as [38]

where q represents the heat flux vector, � and � denote 
the thermal relaxation time and the memory time period, 
respectively, � denotes the thermal conductivity. The mem-
ory-dependent derivative of q can be expressed as D�q , the 
kernel function is represented as K(t − �) and j represents 
a real number.

For the isotropic case, the equation of energy conservation 
can be given by

where Q represents the heat supply term. In this work, we 
consider that Q = 0 which indicates no inner heat source is 
involved. � , Ce and �kk denote the mass density, specific heat 

(5)�ij = ��kk�ij + 2��ij − (3� + 2�)���ij,

(6)mij = 2�l2�ij,

(7)�ij =
1

E

[
(1 + �)�ij − ��kk�ij

]
+ ���ij,

(8)q + �D�q = −�∇�,

(9)D𝜔q
(
r⃗, t

)
=

1

𝜔 ∫
t

t−𝜔

K(t − 𝜉)
𝜕q

(
r⃗, 𝜉

)
𝜕𝜉

d𝜉,

(10)K(t − �) =

(
1 −

t − �

�

)j

,

(11)−∇ ⋅ q + Q = �Ce

��

�t
+ T0�

��kk
�t

,

and cubic dilation, respectively. Moreover, � = E�∕(1 − 2�) 
represents the thermal modulus.

By substituting from Eq. (11) into (8), the heat conduc-
tion equation based on the MDD can be yielded as

Derivation of the Basic Governing Equations

As shown in Fig.  1, an isotropic and homogeneous 
Euler–Bernoulli beam with length L(0 ≤ x ≤ L) , width 
b(−b∕2 ≤ y ≤ b∕2) and thickness h(−h∕2 ≤ z ≤ h∕2) is 
considered. For the beam, the displacement components are

where ux , uy and uz denote the displacements along the axis 
x , y and z , respectively.

By substituting from Eq. (13) into Eqs. (2), (3) and (4), 
the strain component in the x-axis and the components of � 
can be obtained as

Substituting from Eq. (15) into Eq. (6) gets

Based on plane stress condition, we can obtain

Substituting from Eq. (14) into Eq. (7), we get

(12)(1 + �D�)

(
�Ce

��

�t
+ �T0

��kk
�t

)
= �∇2�.

(13)ux = −z
�w(x, t)

�x
, uy = 0, uz = w(x, t),

(14)�11 = −z
�2w

�x2
,

(15)�12 = �21 = −
1

2

�2w

�x2
.

(16)m12 = m21 = −�l2
�2w

�x2
.

(17)�22 = �12 = �32 = 0, �33 = �13 = �23 = 0.

Fig. 1  Schematic diagram of a rectangular nano-beam
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From Eqs. (1) and (14)–(18), we obtain

where

By utilizing integration by parts, Eq.  (19) can be 
expressed as

Then, the expression of the strain energy can be written as

Furthermore, the variation of the kinetic energy is 
denoted as

(18)�11 = −E�� − Ez
�2w

�x2
.

(19)

�Π=∫
L

0
∬A

[(
−Ez

�2w

�x2
− E��

)(
−z�

(
�2w

�x2

))
+

(
−�l2

�2w

�x2

)(
−�

(
�2w

�x2

))]
dAdx

=∫
L

0
∬A

(
Ez2

�2w

�x2
+ E�z�

)
dAd�

(
�w

�x

)
+ ∫

L

0
∬A

(
�l2

�2w

�x2

)
dAd�

(
�w

�x

)

=∫
L

0

(
EI

�2w

�x2
+MT

)
d�

(
�w

�x

)
+ ∫

L

0

(
�Al2

�2w

�x2

)
d�

(
�w

�x

)
,

(20)I =
bh3

12
,

(21)MT = E�b∫
h∕2

−h∕2

�zdz.

(22)

�Π=

[(
EI

�2w

�x2
+M

T

)
�
(
�w

�x

)]x=L
x=0

− ∫
L

0

(
EI

�3w

�x3
+

�M
T

�x

)
�
(
�w

�x

)
dx

+

[(
�Al2

�2w

�x2

)
�
(
�w

�x

)]x=L
x=0

− ∫
L

0

(
�Al2

�3w

�x3

)
�
(
�w

�x

)
dx,

(23)

�Π=

[(
EI

�2w

�x2
+MT

)
�
(
�w

�x

)]x=L
x=0

−

[(
EI

�3w

�x3
+

�MT

�x

)
�w

]x=L
x=0

+ ∫
L

0

(
EI

�4w

�x4
+

�2MT

�x2

)
�wdx + ∫

L

0

(
�Al2

�4w

�x4

)
�wdx

+

[(
�Al2

�2w

�x2

)
�
(
�w

�x

)]x=L
x=0

−

[(
�Al2

�3w

�x3

)
�w

]x=L
x=0

.

(24)
�Π =

[((
EI + �Al2

)�2w
�x2

+MT

)
�
(
�w

�x

)
−

((
EI + �Al2

)�3w
�x3

+
�MT

�x

)
�w

]x=L
x=0

+ ∫
L

0

[(
EI + �Al2

)�4w
�x4

+
�2MT

�x2

]
�wdx.

Given Hamilton’s principle [43], the equation of motion 
in the time interval 

[
t1, t2

]
 is written as

Conbining Eqs. (24), (25) and (26), the motion equation 
is obtained as

According to Eqs. (7), (14), and (17), the strain compo-
nents can be obtained as

By substituting from (29) into (12), we obtain

where ΔE = E�2T0∕�Ce and � = �∕�Ce are called as relaxa-
tion strength coefficient and thermal diffusion coefficient, 
respectively. Since the thermal gradient along the z-direction 
is much larger than that in other direction [12], ∇2� can be 

changed into �2�
/
�z2 . Due to ΔE ≪ 1 , the Eq. (30) can be 

reduced to

(25)�T = �A∫
L

0

�w

�t
�
(
�w

�t

)
dx.

(26)∫
t2

t1

(�Π − �T)dt = 0.

(27)
(
EI + �Al2

)�4w
�x4

+ E�b∫
+h∕2

−h∕2

�2�

�x2
zdz + �A

�2w

�t2
= 0.

(28)�22 = �33 = �z
�2w

�x2
+ (1 + �)��,

(29)�kk = �11 + �22 + �33 = (2� − 1)z
�2w

�x2
+ 2(1 + �)��.

(30)

(1 + �D�)

[(
1 + 2ΔE

1 + �

1 − 2�

)
��

�t
− z

ΔE

�

�3w

�x2�t

]
= �∇2�,



719Journal of Vibration Engineering & Technologies (2022) 10:715–726 

1 3

Therefore, Eqs. (27) and (31) compose the governing 
equations of the nano-beam resonator based on the size-
dependent and the memory-dependent influence.

Thermoelastic Damping

The expressions of w and � are assumed as

where Ω denotes the vibration frequency of the beam. 
Applying the above expressions to Eq. (31), we obtain

For simplification, the following non-dimensional quanti-
ties are introduced [41]

By applying the above variables, Eq. (33) turns into

where

By solving Eq. (35), we obtain the general solution

(31)(1 + �D�)

(
��

�t
− z

ΔE

�

�3w

�x2�t

)
= �

�2�

�z2
.

(32)w(x, t) = w(x)eiΩ t, �(x, z, t) = �(x, z)eiΩ t,

(33)Ω

[
−
�Ω

� ∫
�

0

K(s) cos (Ωs)ds + i

(
1 +

�Ω

� ∫
�

0

K(s) sin (Ωs)ds

)](
� − z

ΔE

�

�2w

�x2

)
= �

�2�

�z2
.

(34)

x =
x

L
, z =

z

h
,Θ =

�

T0
,W =

w

h
,

(
�,�, s

)
=

1

L

√
E

�
(�,�, s),

(
Ω,Ω0

)
= L2

√
�A

EI

(
Ω,Ω0

)
.

(35)
�2Θ

�z
2
+ k2Θ − k2az

�2W

�x
2

= 0,

(36)k = �

(
� − i

1

�

)
,

(37)� =

√
Ωh2c

2�LH

(
1 +

�Ω

H ∫
1

0

K
(
s
)
sin

(
Ω�s

H

)
ds

)
,

(38)
� =

���������
�Ω

H
∫ 1

0
K
�
s
�
cos

�
Ω�s

H

�
ds

1 +
�Ω

H
∫ 1

0
K
�
s
�
sin

�
Ω�s

H

�
ds

+

��������
⎛⎜⎜⎜⎝

�Ω

H
∫ 1

0
K
�
s
�
cos

�
Ω�s

H

�
ds

1 +
�Ω

H
∫ 1

0
K
�
s
�
sin

�
Ω�s

H

�
ds

⎞⎟⎟⎟⎠

2

+ 1,

(39)K
(
s
)
=
(
1 − s

)j
, a =

�Eh2

�CeL
2
, c =

√
E

�
,H = L

√
A

I
.

where the two unknown constants A1 and A2 can be deter-
mined from the boundary conditions of the top and bot-
tom surfaces. In this paper, the upper and lower surfaces 
of the beam are adiabatic, which can be expressed as 
��∕�z = 0(z = ±h∕2) [41]. Therefore, we obtain

Thus, Eq. (40) is written as

By combining Eqs. (27) and (32), the motion equation 
can be denoted as

According to the non-dimensional quantities, Eq. (43) is 
written as

with

Substituting Eq. (42) into Eq. (44), we obtain

where

(40)Θ = A1 sin(kz) + A2 cos(kz) + az
�2W

�x
2
,

(41)A1 = −
a

k cos (k∕2)

�2W

�x
2
, A2 = 0.

(42)Θ = a

(
z −

sin(kz)

k cos (k∕2)

)
�2W

�x
2
.

(43)
(
EI + �Al2

)�4w
�x4

+ E�b∫
+h∕2

−h∕2

�2�

�x2
zdz = �AΩ2w.

(44)(1 + B)
�4W

�x
4
− Ω

2

W + �T0H
2 ∫

1∕2

−1∕2

�2Θ

�x
2
zdz = 0.

(45)B =
�Al2

EI
.

(46)
[
1 + B + ΔE

(
1 + f

(
Ω
))]

�4W

�x
4
− Ω

2

W = 0,

(47)f
(
Ω
)
=

12

k2

(
1 −

2

k
tan

k

2

)
.



720 Journal of Vibration Engineering & Technologies (2022) 10:715–726

1 3

The vibration frequency of the classic Euler–Bernoulli 
beam can be calculated by

where Ω 0 denotes non-dimensional frequency without 
thermoelastic damping. For two clamped ends, we know 
the first three non-dimensional natural frequencies are 
Ω 0 = {22.4, 61.7, 121} . The first non-dimensional natural 
frequency Ω 0 =

{
15.4, �2, 3.52

}
 are for clamped and simply 

supported ends, two simply supported ends and clamped and 
free ends, respectively [41].

By combining Eqs. (46) and (48), the non-dimensional 
natural frequency is represented as

Due to ΔE ≪ 1 and the value of TED is very weak, f
(
Ω
)
 

can be replaced by f
(
Ω 0

)
 , the above equation is written as

Now, we can write the real and imaginary parts of Ω as

The thermoelastic damping is denoted in the light of the 
inverse of the quality factor as [12]

(48)
�4W

�x
4

= Ω
2

0
W,

(49)Ω = Ω 0

√
1+B+ΔE

(
1+f

(
Ω
))

.

(50)Ω = Ω 0

⎡⎢⎢⎢⎣

√
1+B +

ΔE
�
1 + f

�
Ω 0

��

2
√
1 + B

⎤⎥⎥⎥⎦
.

(51)ReΩ = Ω 0

⎧⎪⎨⎪⎩

√
1+B +

ΔE

2
√
1+B

⎡⎢⎢⎢⎣
1 +

12

�2
�
�2 +

1

�2

�2

⎛⎜⎜⎜⎝
�2 −

1

�2
− 2

�
�3 −

3

�

�
sin (��) −

�
3� −

1

�3

�
sinh

�
�

�

�

�
�
�2 +

1

�2

��
cos (��) + cosh

�
�

�

��
⎞⎟⎟⎟⎠

⎤⎥⎥⎥⎦

⎫⎪⎬⎪⎭
,

(52)ImΩ =
12Ω 0√
1+B

ΔE

�2
�
�2 +

1

�2

�2

⎧⎪⎨⎪⎩
1 −

�
3� −

1

�3

�
sin (��) −

�
�3 −

3

�

�
sinh

�
�

�

�

�
�
�2 +

1

�2

��
cos (��) + cosh

�
�

�

��
⎫⎪⎬⎪⎭
.

(53)Q−1 = 2

|||||
ImΩ

ReΩ

|||||
.

By combining Eqs. (51), (52) and (53), the final expres-
sion is obtained by simplifying the result in line with 
ΔE ≪ 1 , which is written as

Moreover, when the size-dependent effect and the mem-
ory-dependent (MDD) heat conduction model are neglected 
( l = 0, � = 0 ), the current model of Q−1 can be simplified as

where the TED model is the L–R model under the Fourier 
heat conduction.

Results and Discussions

In this section, based on the MCST and MDD heat conduc-
tion model, we study how the reference temperature, height, 
boundary conditions and aspect ratios influence the TED 

in nano-beams. The material constants of silicon are listed 
in Table 1. Unless otherwise specified, the physical param-
eter used in the following calculation is T0 = 300 K , b = h , 
L∕b = 10 , � = 0.5 and � = 0.5 . For brevity, the reciprocal 
of the quality factor Q−1 is scaled by the relaxation strength 
coefficient ΔE.

(54)
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.

Table 1  Material parameters of 
silicon [43]

T0(K) E(GPa) v �(kg∕m) C
e

(
J kg−1 K−1

)
�(W∕mK) �

(
K−1

⋅ 10−6
)

80 169.2 0.22 2330 188 1360 − 0.472
200 166.9 0.22 2330 557 266 1.406
300 160 0.22 2300 695 150 2.6
400 163.1 0.22 2300 785 105 3.253
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To validate the results obtained from the current model, 
a comparison is made in Fig. 2. In current TED model, 
when the length scale parameter l = 0 , it will degenerate 
into the model proposed by Wang et al. [41] that only 
considers the effect of the memory-dependent heat con-
duction model. It can be seen from Fig. 2 that the first two 
curves overlap, which demonstrates the validation of our 
results. When l = 10 nm , the value of Q−1

/
ΔE decreases 

as h is less than 400 nm , which denotes that the influence 
of the couple stress theory will weaken TED. These can 
efficiently prove the validation of the current TED model.

Figure 3a, b indicate the impact of the length scale 
parameter l and thermal relaxation time �  on TED, respec-
tively. �  reflects the influence of memory-dependent heat 
conduction on TED. The effect of modified couple stress 
on TED is represented by the length scale parameter l  . 
When l and �  tend to zero, the case corresponds to that of 
L–R model [12] as illustrated in Fig. 3a, b, respectively. As 
shown in Fig. 3a, b, similar to the existing investigation, it 
can be observed that the peak value of TED decreases with 
the increase of l  as well as �  . Departing from the peak 
value, the value of TED on both sides gradually decreases 
until it disappears. When the height of the nanobeam is 
about 10 ∼ 103nm , the value of TED decreases with the 
increase of the length scale parameter l in Fig. 3a. Moreo-
ver, in Fig. 3b, it shows that the maximum value of the 
TED increases with the increase of the thermal relaxation 
time for nano-beams of thickness of 102 ∼ 104nm . How-
ever, the critical thickness corresponding to the maximum 
TED is not affected by the change of the thermal relaxa-
tion time.

For the variation Q−1
/
ΔE associated with the reference 

temperature T0 , the corresponding variations are shown in 
Fig. 4. It can be noticed that the reference temperature T0 has 
no impact on the peak value of TED based on the current 
model, while, with the increase of the reference temperature 
T0 , the position of the TED peak value changes obviously.

Figure 5a, b demonstrate the effect of length-to-width 
ratio L∕b and modes on TED for various nano-beam thick-
nesses, respectively. Apparently, with the increase of the 
length-to-width ratio, the TED peak of the nano-beam 
decreases. Figure 5a reveals that the lower length-to-width 
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ratio leads to greater value of TED, meanwhile, the nano-
beam thickness corresponding to the maximum value of 
TED also changes with the variation of the length-to-width 
ratio. It is clear that the TED has a great effect for different 
modes. It is obvious that the variation of TED with respect 
to height exists a peak value for each mode. Moreover, based 
on the first-order mode, it can be observed that the peak 
value of TED increases significantly compared with the 
higher order modes.

Figure 6a–c analyze the impact of length scale parameters 
on TED in nano-resonators with the thickness h = 100 nm . 
In the calculation, three different situations, i.e., different 
reference temperature, length-to-width ratio and modes, and 
the effect of modified couple stress theory and MDD, are 
considered. Obviously, when the length scale parameter is 
less than the thickness, the value of TED increases quickly. 
These results denote that these factors are significant for 
high-performance resonator design.

Figure 7a, b display the influence of the MDD heat con-
duction model for a nano-resonator with l = 10 nm . Appar-
ently, for h = 102 ∼ 104 nm , Fig. 7a, b represent that the 
maximum value of Q−1

/
ΔE increases with the increase of 

the thermal relaxation time and decreases of memory time 
period for nano-resonator. In addition, for nano-resonators of 
larger or smaller heights, the thermoelastic damping remains 
unchanged for any thermal relaxation time and memory time 
period. Moreover, the critical thickness corresponding to the 
maximum thermoelastic damping is not affected by changes 
of the thermal relaxation time and memory time period.

To research the influence of kernel functions on TED, 
Fig. 8 denotes that the variation of the Q−1

/
ΔE for nano-

resonators thickness under different kernel functions, which 
are ideal kernel with j = 0 , linear kernel with j = 1 and 

nonlinear kernel with j = 2 . Obviously, the variation of 
TED (scaled by ΔE ) under the ideal kernel is much larger 
than the nonlinear kernel. When j = 2 , the increase of 
the length scale parameter will weaken the TED of the 
nano-resonator.

Figure 9a, b denote the effect of four types of bound-
ary conditions on TED in nano-resonators. As the restraint 
stiffness of the nano-resonator increases, the peak value of 
Q−1

/
ΔE will increase slightly and the critical thickness at 

the peak position increases with the increase of the length 
scale parameter. In addition, increasing the length scale 
parameter also reduces the peak value of Q−1

/
ΔE . There-

fore, these results provide a basis for the design of high-
performance nano-resonators.
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Conclusion

By applying the modified couple stress theory and the mem-
ory-dependent derivative heat conduction model, a novel 
thermoelastic damping model of the nano-beam is estab-
lished. The exact expression of TED is obtained by means 
of the complex frequency method. Based on the present 
model, the effects of the length scale parameter, the thermal 
relaxation time, reference temperature, aspect ratio, differ-
ent boundary conditions, etc. on TED of nano-resonators 
are examined and the results are validated by degrading the 
current model into L–R model. From the obtained results, it 
can be concluded that

Fig. 6  Influence of length scale parameter l on variation Q−1
/
ΔE of nano-

resonators: a different reference temperature T
0
 , b different length-to-width 

ratio L∕b , c different modes

Fig. 7  Influence of a thermal relaxation time � , b memory time 
period � on TED
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1. In the present TED model, MCST predicts a smaller 
value for TED compared to the classical theory. How-
ever, when the length scale parameter is smaller than 
the thickness of the nano-beams, the growth of the 
thermoelastic damping is very obvious. Moreover, the 
length scale parameter plays a more significant role in 
improving the thermoelastic damping of nano-resonators 
when the thickness of resonators is less than the critical 
thickness, which indicates that the small size effect has 
a great influence on the thermoelastic damping of the 
nano-resonators. It is a phenomenon that the classical 
L–R model can’t possess. This novel model provides 
a scientific reference for the design of nano-resonators 
with high-quality factors.

2. For the nano-resonator, reference temperature has obvi-
ous influence on the location of the peak value of the 
thermoelastic damping. The results denote that high 
temperature is disadvantageous to high-quality nano-
resonators. In addition, the thermoelastic damping 
decreases with the increase of the memory time period 
and the exponent of the kernel function.

3. The thermoelastic damping increases with the increase 
of vibration mode order and end restraint stiffness, or the 
decrease of aspect ratio for the nano-beam. Therefore, 
the thermoelastic damping of the nano-resonator can be 
changed by adjusting the aspect ratio and boundary con-
ditions. Due to the thermal relaxation time, the choice 
of materials is also an important factor in the design of 
high-quality nano-resonators.

Acknowledgements This study was supported by the National Natural 
Science Foundation of China (11972176, 12062011).

References

 1. Ekinci KL, Roukes ML (2005) Nanoelectromechanical systems. 
Science 76(6):25–30. https:// doi. org/ 10. 1063/1. 19273 27

 2. Beek JV, Puers R (2012) A review of MEMS oscillators for fre-
quency reference and timing applications. J Micromech Microeng 
22(1):013001. https:// doi. org/ 10. 1088/ 0960- 1317/ 22/1/ 013001

Fig. 8  Influence of Q−1
/
ΔE with the beam thickness for different 

kernel functions

Fig. 9  Influence of Q−1
/
ΔE with the thickness for different boundary 

conditions

https://doi.org/10.1063/1.1927327
https://doi.org/10.1088/0960-1317/22/1/013001


725Journal of Vibration Engineering & Technologies (2022) 10:715–726 

1 3

 3. Hao Z, Erbil A, Ayazi F (2003) An analytical model for support 
loss in micromachined beam resonators with in-plane flexural 
vibrations. Sens Actuators A Phys 109(1–2):156–164. https:// 
doi. org/ 10. 1016/j. sna. 2003. 09. 037

 4. Hao Z, Ayazi F (2007) Support loss in the radial bulk-mode vibra-
tions of center-supported micromechanical disk resonators. Sens 
Actuators A Phys 134(2):582–593. https:// doi. org/ 10. 1016/j. sna. 
2006. 05. 020

 5. Yasumura KY, Stowe TD, Chow EM, Pfafman T, Kenny TW, 
Stipe BC, Rugar D (2000) Quality factors in micron- and submi-
cron-thick cantilevers. J Micro-electromech Syst 9(1):117–125. 
https:// doi. org/ 10. 1109/ 84. 825786

 6. Yang J, Ono T, Esashi M (2002) Energy dissipation in sub-
micrometer thick single-crystal silicon cantilevers. J Microelec-
tromech Syst 11(6):775–783. https:// doi. org/ 10. 1109/ JMEMS. 
2002. 805208

 7. Bao M, Yang H, Yin H, Sun Y (2002) Energy transfer model for 
squeeze-film air damping in low vacuum. J Micromech Micro-
eng 12(3):341–341. https:// doi. org/ 10. 1088/ 0960- 1317/ 12/3/ 
322

 8. Bao M, Yang H (2007) Squeeze film air damping in MEMS. 
Sens Actuators A Phys 136(1):3–27. https:// doi. org/ 10. 1016/j. 
sna. 2007. 01. 008

 9. Duwel A, Candler RN, Kenny TW (2006) Engineering MEMS 
resonators with low thermoelastic damping. J Microelectromech 
Syst 15(6):1437–1445. https:// doi. org/ 10. 1109/ JMEMS. 2006. 
883573

 10. Duwel A, Gorman J, Weinstein M, Borenstein J, Ward P (2003) 
Experimental study of thermoelastic damping in MEMS gyros. 
Sens Actuators A Phys 15(1–2):70–75. https:// doi. org/ 10. 1016/ 
S0924- 4247(02) 00318-7

 11. Zener C (1938) Internal friction in solids II: general theory 
of thermoelastic internal friction. Phys Today 47(2):117–118. 
https:// doi. org/ 10. 1063/1. 28084 18

 12. Lifshitz R, Roukes ML (2000) Thermoelastic damping in micro- 
and nanomechanical systems. Phys Rev B 61(8):5600–5609. 
https:// doi. org/ 10. 1103/ PhysR evB. 61. 5600

 13. Prabhakar S, Paidoussis MP, Vengallatore S (2009) Analysis of 
frequency shifts due to thermoelastic coupling in flexural-mode 
micromechanical and nanomechanical resonators. J Sound Vib 
323(1–2):385–396. https:// doi. org/ 10. 1016/j. jsv. 2008. 12. 010

 14. Chandorkar SA, Candler RN, Duwel A (2009) Multimode ther-
moelastic dissipation. J Appl Phys 105(4):043505. https:// doi. 
org/ 10. 1063/1. 30726 82

 15. Vengallatore S (2005) Analysis of thermoelastic damping in 
laminated composite micro-mechanical beam resonators. J 
Micromech Microeng 15(12):2398–2404. https:// doi. org/ 10. 
1088/ 0960- 1317/ 15/ 12/ 023

 16. Prabhakar S, Vengallatore S (2007) Thermoelastic damping 
in bilayered micromechanical beam resonators. J Micromech 
Microeng 17(3):532–538. https:// doi. org/ 10. 1088/ 0960- 1317/ 
17/3/ 016

 17. Nayfeh AH, Younis MI (2004) Modeling and simulations of 
thermoelastic damping in microplates. J Micromech Microeng 
14(12):1711–1717. https:// doi. org/ 10. 1088/ 0960- 1317/ 14/ 12/ 
016

 18. Sun YX, Tohmyoh H (2009) Thermoelastic damping of the 
axisymmetric vibration of circular plate resonators. J Sound 
Vib 319(1–2):392–405. https:// doi. org/ 10. 4028/ www. scien tific. 
net/ AMM. 313- 314. 600

 19. Wong SJ, Fox CHJ, Mc William S (2004) A preliminary investi-
gation of thermo-elastic damping in silicon rings. J Micromech 
Microeng 14(9):S108–S113. https:// doi. org/ 10. 1088/ 0960- 1317/ 
14/9/ 019

 20. Khanchehgardan A, Rezazadeh G, Shabani R (2013) Effect of 
mass diffusion on the damping ratio in a functionally graded 

micro-beam. Compos Struct 106:15–29. https:// doi. org/ 10. 
1016/j. comps truct. 2013. 05. 021

 21. Azizi S, Ghazavi MR, Rezazadeh G (2015) Thermoelastic 
damping in a functionally graded piezoelectric micro-resonator. 
Int J Mech Mater Des 11(4):357–369. https:// doi. org/ 10. 1007/ 
s10999- 014- 9285-7

 22. Dai GZ, Zhang YY, Liu RB (2011) Visible whispering-gallery 
modes in ZnO microwires with varied cross sections. J Appl 
Phys 110(3):033101. https:// doi. org/ 10. 1063/1. 36105 21

 23. Yeo I, Assis PL, Gloppe A (2014) Strain-mediated coupling in 
a quantum dot-mechanical oscillator hybrid system. Nat Nano-
technol 9(2):106–110. https:// doi. org/ 10. 1038/ nnano. 2013. 274

 24. Abdolvand R, Johari H, Ho GK (2006) Quality factor in trench-
refilled polysilicon beam resonators. J Microelectromech Syst 
15(3):471–478. https:// doi. org/ 10. 1109/ JMEMS. 2006. 876662

 25. Guo X, Yi YB, Pourkamali S (2013) A fifinite element analysis 
of thermoelastic damping in vented MEMS beam resonators. Int 
J Mech Sci 74:73–82. https:// doi. org/ 10. 1016/j. ijmec sci. 2013. 
04. 013

 26. Hao ZL (2008) Thermoelastic damping in the contour mode 
vibrations of micro-and nano-electromechanical circular thin-
plate resonators. J Sound Vib 313(1–2):77–96. https:// doi. org/ 
10. 1016/j. jsv. 2007. 11. 035

 27. Zhang HL, Kim T, Choi T, Cho HH (2016) Thermoelastic 
damping in micro-and nano-mechanical beam resonators con-
sidering size effects. Int J Heat Mass Transf 103:783–790. 
https:// doi. org/ 10. 1016/j. ijhea tmass trans fer. 2016. 07. 044

 28. Aifantis EC (1999) Gradient deformation models at nano, micro, 
and macro scales. J Eng Mater Technol 121(2):189–202. https:// 
doi. org/ 10. 1115/1. 28123 66

 29. Eringen AC (2002) Nonlocal continuum field theories. Springer, 
New York

 30. Hadjesfandiari AR, Dargush GF (2011) Couple stress theory for 
solids. Int J Solids Struct 48(18):2496–2510. https:// doi. org/ 10. 
1016/j. ijsol str. 2011. 05. 002

 31. Yang F, Chong ACM, Lam DCC, Tong P (2002) Couple stress 
based strain gradient theory for elasticity. Int J Solids Struct 
39(10):2731–2743. https:// doi. org/ 10. 1016/ S0020- 7683(02) 
00152-X

 32. Rezazadeh G, Vahdat AS, Tayefeh-Rezaei S (2012) Thermoe-
lastic damping in a micro-beam resonator using modified couple 
stress theory. Acta Mech 223(6):1137–1152. https:// doi. org/ 10. 
1007/ s00707- 012- 0622-3

 33. Zhong ZY, Zhang WM, Meng G, Wang MY (2015) Thermoelas-
tic damping in the size-dependent microplate resonators based 
on modified couple stress theory. J Microelectromech Syst 
24(2):431–445. https:// doi. org/ 10. 1109/ JMEMS. 2014. 23327 57

 34. Cattaneo C (1958) A form of heat conduction equation which 
eliminates the paradox of instantaneous propagation. C R Phys 
247:431–433

 35. Vernotte PM, Hebd CR (1958) Paradoxes in the continuous 
theory of the heat conduction. C R Phys 246:3154–3155

 36. Tzou DY (1995) A unified field approach for heat conduction 
from macro-to-micro-scales. J Heat Transf 117:8–16. https:// 
doi. org/ 10. 1115/1. 28223 29

 37. Choudhuri SK (2007) On a thermoelastic three-phase-lag 
model. J Therm Stress 30(3):231–238

 38. Yu YJ, Hu W, Tian XG (2014) A novel generalized thermoelas-
ticity model based on memory-dependent derivative. Int J Eng 
Sci 81:123–134. https:// doi. org/ 10. 1016/j. ijeng sci. 2014. 04. 014

 39. Lord HW, Shulman YA (2007) A generalized dynamical theory 
of thermoelasticity. J Mech Phys Solids 15(5):299–309. https:// 
doi. org/ 10. 1016/ 0022- 5096(67) 90024-5

 40. Green AE, Lindsay KA (1972) Thermoelasticity. J Elast 2(1):1–
7. https:// doi. org/ 10. 1007/ BF000 45689

https://doi.org/10.1016/j.sna.2003.09.037
https://doi.org/10.1016/j.sna.2003.09.037
https://doi.org/10.1016/j.sna.2006.05.020
https://doi.org/10.1016/j.sna.2006.05.020
https://doi.org/10.1109/84.825786
https://doi.org/10.1109/JMEMS.2002.805208
https://doi.org/10.1109/JMEMS.2002.805208
https://doi.org/10.1088/0960-1317/12/3/322
https://doi.org/10.1088/0960-1317/12/3/322
https://doi.org/10.1016/j.sna.2007.01.008
https://doi.org/10.1016/j.sna.2007.01.008
https://doi.org/10.1109/JMEMS.2006.883573
https://doi.org/10.1109/JMEMS.2006.883573
https://doi.org/10.1016/S0924-4247(02)00318-7
https://doi.org/10.1016/S0924-4247(02)00318-7
https://doi.org/10.1063/1.2808418
https://doi.org/10.1103/PhysRevB.61.5600
https://doi.org/10.1016/j.jsv.2008.12.010
https://doi.org/10.1063/1.3072682
https://doi.org/10.1063/1.3072682
https://doi.org/10.1088/0960-1317/15/12/023
https://doi.org/10.1088/0960-1317/15/12/023
https://doi.org/10.1088/0960-1317/17/3/016
https://doi.org/10.1088/0960-1317/17/3/016
https://doi.org/10.1088/0960-1317/14/12/016
https://doi.org/10.1088/0960-1317/14/12/016
https://doi.org/10.4028/www.scientific.net/AMM.313-314.600
https://doi.org/10.4028/www.scientific.net/AMM.313-314.600
https://doi.org/10.1088/0960-1317/14/9/019
https://doi.org/10.1088/0960-1317/14/9/019
https://doi.org/10.1016/j.compstruct.2013.05.021
https://doi.org/10.1016/j.compstruct.2013.05.021
https://doi.org/10.1007/s10999-014-9285-7
https://doi.org/10.1007/s10999-014-9285-7
https://doi.org/10.1063/1.3610521
https://doi.org/10.1038/nnano.2013.274
https://doi.org/10.1109/JMEMS.2006.876662
https://doi.org/10.1016/j.ijmecsci.2013.04.013
https://doi.org/10.1016/j.ijmecsci.2013.04.013
https://doi.org/10.1016/j.jsv.2007.11.035
https://doi.org/10.1016/j.jsv.2007.11.035
https://doi.org/10.1016/j.ijheatmasstransfer.2016.07.044
https://doi.org/10.1115/1.2812366
https://doi.org/10.1115/1.2812366
https://doi.org/10.1016/j.ijsolstr.2011.05.002
https://doi.org/10.1016/j.ijsolstr.2011.05.002
https://doi.org/10.1016/S0020-7683(02)00152-X
https://doi.org/10.1016/S0020-7683(02)00152-X
https://doi.org/10.1007/s00707-012-0622-3
https://doi.org/10.1007/s00707-012-0622-3
https://doi.org/10.1109/JMEMS.2014.2332757
https://doi.org/10.1115/1.2822329
https://doi.org/10.1115/1.2822329
https://doi.org/10.1016/j.ijengsci.2014.04.014
https://doi.org/10.1016/0022-5096(67)90024-5
https://doi.org/10.1016/0022-5096(67)90024-5
https://doi.org/10.1007/BF00045689


726 Journal of Vibration Engineering & Technologies (2022) 10:715–726

1 3

 41. Wang YW, Zhang XY, Li XF (2020) Thermoelastic damping 
in a micro-beam based on the memory-dependent generalized 
thermoelasticity. Waves Random Complex Media. https:// doi. 
org/ 10. 1080/ 17455 030. 2020. 18655 90

 42. Borjalilou V, Asghari M, Bagheri E (2019) Small-scale ther-
moelastic damping in micro-beams utilizing the modified cou-
ple stress theory and the dual-phase-lag model. J Therm Stress 
42:1–14. https:// doi. org/ 10. 1080/ 01495 739. 2019. 15901 68

 43. Shi SH, He TH, Jin F (2021) Thermoelastic damping analysis of 
size-dependent nano-resonators considering dual-phase-lag heat 
conduction model and surface effect. Int J Heat Mass Transf 
170(6):120977. https:// doi. org/ 10. 1016/j. ijhea tmass trans fer. 
2021. 120977

 44. Kumar H, Mukhopadhyay S (2020) Thermoelastic damping 
analysis for size-dependent microplate resonators utilizing the 
modified couple stress theory and the three-phase-lag heat con-
duction model. Int J Heat Mass Transf 48:118997. https:// doi. 
org/ 10. 1016/j. ijhea tmass trans fer. 2019. 118997

 45. Dym CL, Shames IH (1973) Solid mechanics: a variational 
approach. Acta Mech Solida Sin. https:// doi. org/ 10. 1007/ 
978-1- 4614- 6034-3

Publisher's Note Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1080/17455030.2020.1865590
https://doi.org/10.1080/17455030.2020.1865590
https://doi.org/10.1080/01495739.2019.1590168
https://doi.org/10.1016/j.ijheatmasstransfer.2021.120977
https://doi.org/10.1016/j.ijheatmasstransfer.2021.120977
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118997
https://doi.org/10.1016/j.ijheatmasstransfer.2019.118997
https://doi.org/10.1007/978-1-4614-6034-3
https://doi.org/10.1007/978-1-4614-6034-3

	Thermoelastic Damping Analysis to Nano-resonators Utilizing the Modified Couple Stress Theory and the Memory-Dependent Heat Conduction Model
	Abstract
	Introduction
	Theoretical Backgrounds
	The Modified Couple Stress Theory
	The Memory-dependent (MDD) Heat Conduction Model

	Derivation of the Basic Governing Equations
	Thermoelastic Damping
	Results and Discussions
	Conclusion
	Acknowledgements 
	References




