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Abstract
Purpose  In this research work, the nonlinear damped transient response of functionally graded carbon nanotube (CNT)-
reinforced magneto-electro-elastic (FG-CNTMEE) shells are investigated using finite element methods.
Method  The controlled response is obtained through active constrained layer damping (ACLD) treatment composed of a 
1–3 piezoelectric (PZC) patch and the viscoelastic layer. The FG-CNTMEE shell subjected to different forms of load cases 
including mechanical and electro-magnetic loads are considered for evaluation. In addition, the influence of open circuit 
and closed circuit electro-magnetic boundary conditions on the damped transient response of the FG-CNTMEE shell is 
investigated for the first time in the literature. The equations of motion are derived using the principle of virtual work. The 
solutions are obtained through the condensation approach and the direct-iterative method. 
Results  Several numerical examples are presented to assess the influence of parameters such as shell geometries, CNT dis-
tribution pattern, CNT volume fraction, and boundary conditions. Special attention has been paid to understand the effect 
of coupling fields on the damped response of the FG-CNTMEE shell.

Keywords  Carbon nanotubes · Coupling · Electromagnetic circuits · Finite element methods · Functionally graded · 
Magneto-electro-elastic · Shell geometry

Abbreviations
a, b and h	� Length, width and thickness 

of the host structure/FG-
CNTMEE shell

R1 and R2	� Radius of curvature along 
x- and y-directions from the 
mid-surface of FG-CNTMEE 
shell

hp and hv	� Thicknesses of the 1–3 PZC 
piezoelectric layer and vis-
coelastic layer of the ACLD 
patch

h1, h2, h3 and h4	� Coordinates of the bottom 
surface of FG-CNTMEE 
shell, top surface of FG-
CNTMEE shell, top surface 
of viscoelastic layer, top 
surface of the 1–3 PZC layer, 
respectively

E11,E22 andG12	� Effective longitudinal elastic, 
transverse elastic and shear 
modulus of CNT reinforced 
composite

�1, �2 and �3	� Efficiency parameters related 
to CNTs

ECNT
11

, ECNT
22

, GCNT
12

	� Longitudinal elastic, trans-
verse elastic and shear modu-
lus of CNTs

VCNT, Vm	� CNT and matrix volume 
fraction, respectively

�12, �
CNT
12

, and �m	� Poisson’s ratio of overall 
composite, CNTs and matrix, 
respectively
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�CNT and �m	� Densities of CNT and 
matrix, respectively

�h, �p, �v	� Density of FG-CNTMEE, 
piezoelectric and viscoelastic 
materials, respectively

[C],
[
CCNT

]
, [Cm]	� Elastic stiffness coefficients 

of the FG-CNTMEE com-
posite, CNT fiber, matrix, 
respectively

[e],
[
eCNT

]
, [em]	� Piezoelectric coefficients of 

the FG-CNTMEE com-
posite, CNT fiber, matrix, 
respectively

[q],
[
qCNT

]
,
[
qm

]
	� Magnetostrictive coefficients 

of the FG-CNTMEE com-
posite, CNT fiber, matrix, 
respectively

[m],
[
mCNT

]
, [mm]	� Electromagnetic coefficients 

of the FG-CNTMEE com-
posite, CNT fiber, matrix, 
respectively

[�],
[
�CNT

]
, [�m]	� Dielectric coefficients of 

the FG-CNTMEE com-
posite, CNT fiber, matrix, 
respectively

[�],
[
�CNT

]
, [�m]	� Magnetic permeability coef-

ficients of the FG-CNTMEE 
composite, CNT fiber, 
matrix, respectively

[M∗],
[
C∗
d

]
, [K∗]	� Equivalent mass, damp-

ing and stiffness matrices, 
respectively

{�}	� Strain tensor
{E}, {H}	� Electric and magnetic field 

vector, respectively
{F}	� Applied harmonic force 

component vector{
Ftp1

}
,
{
Ftpn1

}
,
{
Frp1

}
,
{
Frp2

}
	� Rotational and transla-

tional force component 
vectors{

�
p

b

}
,
{
�
p
s

}
	� Bending and shear stress 

vectors of the piezoelectric 
layer of the ACLD patch

{�}	� Stress tensor{
�Xt

}
,
{
�Xr

}
and

{
F̃
}
	� Laplace transforms of 

translational displacement, 
rotational displacement and 
applied force vectors, 
respectively

{D}	� Electric displacement vector
{B}	� Magnetic flux vector

G(t)	� Relaxation functions of the 
viscoelastic material

G∞	� Final value of the relaxation 
G(t)

sG̃(s)	� Material modulus function of 
the viscoelastic material in 
the Laplace domain

L	� Laplace operator
V	� Applied control voltage
Z and Zr	� Auxiliary dissipation 

coordinates
u0, v0, and w0	� Midplane displacement 

along x-, y- and z-axes
qx, kx and gx	� Rotations of the normal 

to mid-plane of the sub-
strate, viscoelastic layer and 
piezoelectric patch about the 
y-axis

qy, ky and gy	� Rotations of the normal 
to mid-plane of the sub-
strate, viscoelastic layer and 
piezoelectric patch about the 
x-axis{

dt
}
	� Translational displacement{

dr
}
	� Rotational displacement

�	� Magnetic potential
�	� Electric potential
Ez, Hz	� Transverse electromagnetic 

fields

Introduction

The discovery of CNTs by Iijima in the year 1991 revolu-
tionised the approach of designing engineering structures 
[1]. The superior material properties along with the mul-
tifunctionality exhibited by CNTs made them the potential 
candidates for aerospace, automotive, energy harvesters, 
marine, medical, power plant applications. At the early 
stages, due to a lack of knowledge on fabricating CNT-based 
composites, the accurate distribution of CNTs reinforce-
ments could not be achieved. Hence, the required superior 
properties were not met. However, with the tremendous 
improvement in manufacturing technologies, it is now pos-
sible to achieve any desired pattern of CNT distribution. 
One such category of CNTs based composites is function-
ally graded CNT-reinforced composites (FG-CNTRC). It 
ensures smooth and continuous material properties across 
the thickness of the structures which in turn reduces the 
problem of delamination, which is commonly noticed in lay-
ered structures. Among the many prominent works on struc-
tural analysis of FG-CNTRC, few are discussed here. Van 
Do et al. [2] evaluated the static behaviour of FG-CNTRC 
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plates in the framework of higher-order shear deformation 
theory (HSDT) and isogeometric finite element (FE) analy-
sis. Ritz element free method was adopted by Xiang et al. 
[3] to probe the free vibration characteristics of FG-CNTRC 
conical shell panels. Qin et al. [4] proposed a Fourier series 
solution to investigate the natural frequencies of FG-CNTRC 
structures subjected to arbitrary conditions. Yang et al. [5] 
examined the effect of temperature on the nonlinear vibra-
tions of FG-CNTRC auxetic plates and extended their study 
for the nonlinear flexural response of auxetic beams [6]. 
Similarly, Foroutan et al. [7] investigated the effect of tem-
perature associated with the external pressure on the non-
linear frequencies of FG-CNTRC panels. Mellouli et al. [8] 
adopted mesh-free radial interpolation method and improved 
first-order shear deformation theory (FSDT) to assess the 
free vibration response of FG-CNTRC shells. Making use 
of FSDT, Fu et al. [9] studied the effect of elastic founda-
tions on the dynamic instability behaviour of FG-CNTRC 
shells. Ansari et al. [10] proposed a novel solution technique 
through FE methods and variational differential quadrature 
method to understand the effect of temperature on the post-
buckling characteristics of arbitrary shaped FG-CNTRC 
plates. To this end, they made use of HSDT in their analysis. 
Jiao et al. [11] implemented a differential quadrature method 
(DQM) to study the influence of edge compression loads on 
the stability response of FG-CNTRC plates. Analogously, 
Nguyen et al. [12] exploited the benefits of the isogeometric 
analysis approach to understand the post-buckling behav-
iour of imperfect FG-CNTRC shells. Through an analyti-
cal approach within the framework of FSDT, Sofiyev et al. 
[13] examined the stability response of FG-CNTRC conical 
shells subjected to external pressure.

Meanwhile, the transient and damped vibration study of FG-
CNTRC structures becomes prominent as it depends on the time 
factor as well. Yadav et al. [14] developed semi-analytical solu-
tions to investigate the large damped vibrations of FG-CNTRC 
cylindrical shells. Through the FE method, Patnaik and Roy 
[15] assessed the influence of the hygrothermal environment 
on the damped response of FG-CNTRC shells with geometri-
cal skewness. Lee and Hwang [16] developed a FE formula-
tion and studied the effect of cut-outs on the nonlinear tran-
sient behaviour of FG-CNTRC shells. Considering internal and 
external damping, the transient response of CNTs was exam-
ined by Malikan et al. [17]. They applied refined Timoshenko 
beam theory in their study. Based on the isogeometric analysis, 
Phung-van [18] probed the effect of thermal fields on the non-
linear transient response of FG-CNTRC nanoplates. Thanh et al. 
[19] researched the nonlinear damped response of FG-CNTRC 
microplates. Thomas and Roy [20] worked on addressing the 
damped problem of FG-CNTRC shells using FE methods.

The triple energy interaction displayed by the magneto-
electro-elastic (MEE) materials has grasped the attention 
of the engineers to implement it for various smart structure 
applications. Different numerical approaches have been pro-
posed by various researchers to investigate the variety of 
structural responses such as free vibration [21–27], static 
[28–32], and buckling [33–38] analysis. In addition to this, 
very recently mathematical models of smart structures with 
CNTs embedded as reinforcements in the MEE matrix have 
been discussed by a few researchers. Mohammadimehr et al. 
[39] made use of FSDT and proposed an analytical solu-
tion to investigate the natural frequencies of FG-CNTMEE 
shells. Vinyas [40] exploited the benefits of HSDT along 
with FE methods and probed on the natural frequency 

Fig. 1   Schematic representa-
tion of FG-CNTMEE shell with 
ACLD patch
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response of FG-CNTMEE plates. It was further extended to 
investigate the influence of electromagnetic boundary condi-
tions and geometrical skewness on the coupled frequency of 
FG-CNTMEE plates by Vinyas et al. [41]. Very recently, the 
nonlinear free vibration [42, 43] and deflection analysis [44] 
of FG-CNTMEE shells and plates were studied by Mahesh 
and Harursampath. Meanwhile, the effect of pyrocoupling 
on the nonlinear deflection of multiphase MEE plates was 
probed by Mahesh [45] through the FE approach. Using 
layer-wise shear deformation theory (LSDT), Kattimani 
[46] evaluated the influence of interphase thickness on the 
nonlinear characteristics of multiphase MEE plate.

On the other hand, the control strategies [47–49] for haz-
ardous vibrations are considered to be one of the hot topics 
in structural analysis. In this regard, two prominent strate-
gies such as passive control and active control have emerged. 
The damped transient response of actively controlled, blast 
impacted sandwich beams was studied by Damanpack et al. 
[50] using FSDT. Gao and Shen [51] proposed a mathemati-
cal model and investigated the damped nonlinear transient 
response of composite plates embedded with piezoelectric 
actuators. Baz [52] proposed a unique way of associating 
the inherent vibration control capabilities of piezoelectric 
(PE) material and viscoelastic (VE) material in the form of 
active constrained layer damping (ACLD). Here, PE and VE 
layers play the role of constraining and constrained layer, 
respectively. Several works incorporated this technique and 
assessed the damping characteristics of different host struc-
tures. Sarangi and Ray [53, 54] developed a FE formulation 
to interpret the damped nonlinear vibrations of laminated 
composite plates and beams subjected to ACLD treatment, 
which was later extended to laminated cylindrical panels by 
Shivakumar et al. [55]. Panda and Ray [56] examined the 
controllability of FG composite plates through ACLD treat-
ment. Based on layerwise shear deformation theory, Kattim-
ani and Ray [57] investigated the effect of ACLD treatment 

on the nonlinear vibrations of MEE plates. Mahesh and co-
researchers [58–61] investigated the influence of geometri-
cal skewness on the vibration attenuation of ACLD treated 
laminated, fiber reinforced and three-phase MEE plates.

From the exhaustive literature survey carried out, it was 
revealed that there has been no work reported on assessing 
the influence of ACLD treatment on the nonlinear damped 
transient response of FG-CNTMEE structures. Also, since 
the external electro-magnetic (EM) constraints applied on 
the smart structures varies its vibration response, it is much 
necessary to understand the influence of EM boundary con-
dition on the damped characteristics of ACLD-treated FG-
CNTMEE shells. Hence, this work makes the first attempt 
through the FE method, to investigate the effect of active 
controlling on the attenuated transient response of FG-
CNTMEE shells subjected to open and closed EM circuits. 
Alongside, parametric studies dealing with the shell geom-
etries, load cases, CNT distribution, CNT volume fraction 
has been discussed in detail. In addition, a special empha-
sis is placed on examining the influence of coupled fields 
and EM loads associated with EM circuit condition on the 
damped transient response of FG-CNTMEE shells which 
will be discussed in the subsequent sections.

Problem Statement

The influence of ACLD treatment on the controlled nonlinear 
transient response of FG-CNTMEE shells has been studied 
using the framework of FE methods. The geometric represen-
tation of the shell considered for evaluation is shown in Fig. 1). 
The length, width and thickness of the shell has been denoted 
through the notations a, b and h, respectively. The radius of cur-
vature from the mid surface along x- and y-directions is denoted 
by R1 and R2, respectively. Meanwhile, the thicknesses of the 
constraining piezoelectric layer and constrained viscoelastic 

Table 1   CNT distribution with 
a corresponding mathematical 
expression
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layer of the ACLD patch is represented by hp and hv, respec-
tively. The FG-CNTMEE shell is assumed to be subjected to 
different loads including mechanical and electromagnetic loads.

Materials and Constitutive Relations

The effective material properties of CNTMEE material is 
estimated with the aid of extended mixture rule as follows 
[62]:

in which, ECNT
11

 , ECNT
22

 , GCNT
12

 and VCNT are the longitudinal 
and transverse elastic modulus, shear modulus and CNT vol-
ume fraction, respectively. Meanwhile, Em , Gm and Vm repre-
sent the matrix material properties.�CNT

12
 and �m corresponds 

to the CNT and matrix Poisson’s ratio, respectively. Further, 
�1, �2 and �3 are CNT/matrix efficiency parameters which are 
determined by molecular dynamics simulation [62].

The present work considers FG-CNTMEE material 
whose material properties can be expressed through consti-
tutive relations as follows [41]:

in which

The detailed explanation of the terminologies appearing 
in Eqs. (2.a) and (2.b) and subsequent equations are shown 
in the nomenclature at the very beginning of this article. 
The different FG patterns of CNTs adopted in this work are 
mathematically expressed in Table 1).

The constraining 1–3 PZC piezoelectric layer of the 
ACLD patch can be represented through the constitutive 
equation as follows [57]:

(1)

E11 = �11VCNTE
CNT
11

+ VmE
m

�2

E22

=
VCNT

ECNT
22

+
Vm

Em

�3

G12

=
VCNT

GCNT
12

+
Vm

Gm

�12 = VCNT�
CNT
12

+ Vm�m,

(2.a)

{�} = [C]{�} − [e]{E} −
[
q
]
{H}

{D} = [e]T{�} + [�]{E} + [m]{H}

{B} =
[
q
]T
{�} + [m]{E} + [�]{H},

(2.b)

[C] = VCNT

[
CCNT

]
+ Vm

[
Cm

]
;

[e] = VCNT

[
eCNT

]
+ Vm

[
em

]
;[

q
]
= VCNT

[
qCNT

]
+ Vm

[
qm

]
;

[m] = VCNT

[
mCNT

]
+ Vm

[
mm

]
;

[�] = VCNT

[
�CNT

]
+ Vm

[
�m

]
;

[�] = VCNT

[
�CNT

]
+ Vm

[
�m

]
;

� = VCNT�
CNT + Vm�

m

here the superscript ‘p’ denoted piezoelectric layer of ACLD 
patch. The expanded form of the material property matrices of 
Eqs. (2) and (3) are illustrated in Appendix-A (Eqs. (27)–(28)) .

The visco-elastic layer of the ACLD patch is modelled in 
the time domain via Golla–Hughes–McTavish (GHM) method 
whose constitutive equation can be denoted as follows [57]:

The electric and magnetic potentials are assumed to vary 
linearly across the thickness of the shell according to

In addition, as per Maxwell's law, the electromagnetic 
equations that depict the variation of transverse electric and 
magnetic field can be represented in relation with the poten-
tials as follows [22]:

Kinematics of Shell Deformation

To assess the nonlinear transient response of FG-CNTMEE 
shells, the kinematics are assumed to follow layerwise shear 
deformation theory (LSDT), in which the displacement com-
ponents are represented as follows [57]:

Meanwhile, several higher order terms are implemented 
in the equation of transverse displacement to facilitate accu-
rate vertical actuation of ACLD treatment. It can be shown 
as follows:

Based on the Eqs. (7) and (8), the bending and shear 
strains can be expressed as follows:

(3)

{
�
p

b

}
=
[
C
p

b

]{
�
p

b

}
−
[
C
p

bs

]{
�p
s

}
−
{
e
p

b

}
Ez

{
�p
s

}
=
[
C
p

bs

]T{
�
p

b

}
+
[
C
p

s

]{
�p
s

}
−
{
e
p

b

}
Ez

Dp
z
=
{
e
p

b

}T{
�
p

b

}
+
{
e
p

s

}T{
�p
s

}
+ ∈

p

33
Ep
z
,

(4)
(
�s
)
v
=

t

∫
0

G(t − �)
�
(
�k
s

)
��

��.

(5)� =
z − h1

h
�; � =

z − h1

h
� .

(6)Ez = −
��

�z
; Hz = −

��

�z
.

(7)

u = u0 +
(
z −

⟨
z −

h

2

⟩)
�x

+
(⟨

z −
h

2

⟩
−
⟨
z − hN + 2

⟩)
�x +

⟨
z − hN + 2

⟩
�x,

v = v0 +
(
z −

⟨
z −

h

2

⟩)
�y

+
(⟨

z −
h

2

⟩
−
⟨
z − hN + 2

⟩)
�y +

⟨
z − hN + 2

⟩
�y.

(8)w = w0 + z�z + z2�z.



356	 Journal of Vibration Engineering & Technologies (2022) 10:351–374

1 3

where the different strain components can be shown as 
follows:

The different transformation matrices [Z1]–[Z5] can be 
elaborated and expressed as follows:

(9)

{
�
b

}
=
{
�bt

}
+
[
Z1
]{
�rb

}
+
{
�bt_NL

}
,{

�P
b

}
=
{
�bt

}
+
[
Z2
]{
�rb

}
+
{
�bt_NL

}
,{

�
s

}
=
{
�ts

}
+
[
Z3
]{
�rs

}
,{

�Vis
s

}
=
{
�ts

}
+
[
Z4
]{
�rs

}
,{

�P
s

}
=
{
�ts

}
+
[
Z5
]{
�rs

}
,

(10)

�
�bt

�
=

⎧
⎪⎪⎨⎪⎪⎩

�u0
�
�x +

w∕R1
�v0

�
�y +

w∕R2

0
�u0

�
�y +

�v0
�
�x

⎫
⎪⎪⎬⎪⎪⎭

;
�
�ts

�
=

�
�w0

�
�x −

u0
�
R1

�w0
�
�y −

v0
�
R2

�
;
�
�bt_NL

�
=

1

2

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

�
dw0

dx

�2

�
dw0

dy

�2

0

2
�

dw0

dx

��
dw0

dy

�

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

;

�
�rs

�
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

�x
�y
�x
�y
�x
�y

��z
�
�x

��z
�
�y

��z
�
�x

��z
�
�y

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

;
�
�rb

�
=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

��x
�
�x

��y
�
�y

��x
�
�y + ��y

�
�x

�z
�z

��x
�
�x

��y
�
�y

��x
�
�y + ��y

�
�x

��x
�
�x

��y
�
�y

��x
�
�y + ��y

�
�x

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

.

Finite Element Formulation

The FG-CNTMEE shell is modelled through eight-noded 
isoparametric element whose nodal displacement degrees of 
freedom can be explicitly represented as follows:

Further, the generalised displacement vectors of an ele-
ment can be represented using the nodal d.o.f and shape 
functions as follows:

(12)

{
dti
}
=
[
u0i v0i w0i

]T
;
{
dri

}

=

[
�xi �yi �zi �zi �xi �yi �xi � yi

]T
(i = 1, 2… 8).

(11)

�
Z1
�
=

⎡⎢⎢⎢⎣

z 0 0 z∕R1 z2
�
R1 0 0 0 0 0 0

0 z 0 z∕R1 z2
�
R1 0 0 0 0 0 0

0 0 0 1 2z 0 0 0 0 0 0

0 0 z 0 0 0 0 0 0 0 0

⎤⎥⎥⎥⎦

�
Z2
�
=

⎡⎢⎢⎢⎣

h∕2 0 0 z∕R1 z2
�
R1 hv 0 0

�
z − hv − h∕2

�
0 0

0 h∕2 0 z∕R1 z2
�
R1 0 hv 0 0

�
z − hv − h∕2

�
0

0 0 0 1 2z 0 0 0 0 0 0

0 0 h∕2 0 0 0 0 hv 0 0
�
z − hv − h∕2

�

⎤⎥⎥⎥⎦
�
Z3
�
=

�
(1 − z∕R1) 0 0 0 0 0 z 0 z2 0

0 (1 − z∕R1) 0 0 0 0 0 z 0 z2

�
;

�
Z4
�
=
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−h∕2R1 0 1 −

�
(z − h∕2)∕R1

�
0 0 0 z 0 z2 0

0 −h∕2R2 0 1 −
�
(z − h∕2)∕R2

�
0 0 0 z 0 z2

⎤⎥⎥⎦
�
Z5
�
=

⎡⎢⎢⎣
−h∕2R1 0 −hv

�
2R1 0

�
1 −

�
z − hv − h∕2

��
R1

�
0 z 0 z2 0

0 −h∕2R2 0 −hv
�
2R2 0

�
1 −

�
z − hv − h∕2

��
R2

�
0 z 0 z

⎤⎥⎥⎦
.
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Also, the electromagnetic fields can be rewritten in terms 
of FE quantities as follows:

The strains represented by Eq. (9) can be expressed in 
terms of FE parameters in the following manner:

(13)

{
dt
}
=
[
Nt

]{
de
t

}
;
{
dr
}
=
[
Nr

]{
de
r

}
; � =

[
N�

]
{�e};� =

[
N�

]
{�e}.

(14)E
z
= −

1

h

[
N�

]
{�e};Hz = −

1

h

[
N�

]
{�e}.

where the strain displacement matrices can be expressed as 
follows:

(15)
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Btb
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Table 2   Material properties 
corresponding to CNTMEE and 
1–3 PZC patch [39, 62, 63]

Material property Material constants CNT Piezoelectric
(B)

1–3 PZC

Elastic constants (GPa) C11 5825 166 9.29
C22 7304 166 9.29
C12 1019 77 6.18
C13 1019 78 6.05
C23 1223 78 6.05
C33 1223 162 35.44
C44 = C55 1945 43 1.58
C66 1945 44.5 1.54

Piezoelectric constants (C/m2) e31 = e32 0 − 4.4 − 0.1902
e33 0 18.6 18.4107
e36 0 11.6 0.004

Dielectric constant (10–9 C2/Nm2) ε11 = ε22 0 11.2 –
ε33 0 12.6 –

Magnetic permeability (10–4 Ns2/C2) μ11 = μ22 0 0.05 –
μ33 0.25 0.1 –

Piezomagnetic constants (N/Am) q31 = q32 22 0 –
q33 27 0 –
q66 0 0

Density (kg/m3) ρ 1400 5800 5090
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Governing Equations

The equations of motion of the FG-CNTMEE shell embed-
ded with the ACLD patch can be derived through the princi-
ple of virtual work, which can be expressed as follows [57]:

The superscripts ‘h’, ‘p’ and ‘v’ denote host structure 
(FG-CNTMEE shell), the piezoelectric layer of ACLD 
treatment and the viscoelastic layer of ACLD treatment, 
respectively. By substituting the constitutive equations (Eqs. 
(1)–(6)) and other FE equations (Eqs. (12)–(16)) in Eq. (17), 
followed by a grouping of the matrices in a straight forward 
manner, it can be re-written as follows:

The various stiffness matrices, rigidity matrices and force 
vectors appearing in Eq. (18) are explicitly denoted in the 
Appendix. Further, Eq. (18) is applied with the boundary 
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conditions and globalised in a straight-forward manner. The 
resulting equation is enforced with the Laplace transform 
to get

In the time domain, by expressing the material modulus 
function as a single mini oscillator term using the GHM 
model for viscoelastic material, it can be shown that

By introducing Z and Zr as the auxiliary dissipation coor-
dinates and taking its Laplace transform, several equations 
can be obtained as

Meanwhile, by incorporating inverse Laplace transforma-
tions and closed-loop model as depicted in the Ref. [57], the 
final equations of motion can be expressed after condensa-
tion as follows:

The proposed model is computationally effective in a man-
ner that the structural variables are independent of the num-
ber of layers. Hence, a proper coupling between three fields 
can be established with ease. Also, unlike the other LSDT, 
the proposed kinematic model ensures the continuity of the 
transverse displacement field and its derivative with respect 
to the thickness coordinate by implementing the higher order 
terms. However, the major limitation is that the computa-
tional cost may slightly improve with more number of layers.

Results and Discussion

This section deals with the numerical examples to demon-
strate the effectiveness of the proposed FE formulation to 
predict the nonlinear transient response of ACLD-treated 
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Ṽ

× L
([
K
C17

]{
X
t

}
+
[
K
C18

]{
X
r

})

+
[
Ktrsv

]T
sG̃(s)

{
X̃
t

}
+
[
Krrsv

]
sG̃(s)

{
X̃
r

}
= −

{
Frp

}
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Ẋt

}[
K∗

]{
Xt

}
= {F∗}



359Journal of Vibration Engineering & Technologies (2022) 10:351–374	

1 3

Fig. 2   Validation of the FE formulation with Sladek et al. [31] for the 
case of layered MEE flat panels

FG-CNTMEE shell. The geometrical dimensions considered 
in this study are a = b = 1.0 m; and a/h = 100. Further, the 
hv and hp are chosen to be 50.8 μm and 250 μm, respec-
tively. The material properties depicted in Table 2 are used 
for the current study. A converged mesh size of 10 × 10 is 
used in the current study. Also, from the outcomes of the 
authors’ previous work [61], the optimum values of ACLD 
parameters are selected for this entire study which can be 
mentioned as follows:

At first, the formulated mathematical model is verified 
against the published results. To this end, the deflection 
problem of the MEE flat panel as considered by Sladek et al. 
[31] is resolved using the current method, by nullifying the 
effect of the ACLD patch. From Fig. 2a, b it is clear that 
the proposed formulation yields accurate results for both 

(23)
Control gain Kd = 600; piezoelectric fiber angle = 0o, centre patch

clamped and simply supported conditions. In addition, the 
validation is extended for the free vibration characteristics 
of CNT reinforced plates, to verify proper incorporation of 
material and stiffness properties. From Table 3), it can be 
clearly seen that the results are matching with those reported 
by Kiani [62]. Therefore, it can be extended to assess the 
nonlinear transient response as well.

Based on the preliminary studies performed, the pulse 
load q0 = 2 kN∕m2 is considered in order to ensure non-
linearity in the response. The present study considers three 
different transient load cases which can be mathematically 
expressed as follows:

Load Case-I: Finite duration step load

Load Case-II: Infinite duration step load

Load Case-III: Finite duration half-sine load

The mechanical boundary conditions enforced on the 
structure can be represented as follows:

Simply supported:

Clamped:

The electromagnetic boundary conditions adopted in this 
work can be shown as

The influence of various shell geometries on the damped 
transient response of FG-CNTMEE shells subjected to the 
mechanical loading is depicted in Fig. 3. As noticed from 
this plot, the efficiency of ACLD treatment in reducing 
the amplitude of vibration and damping characteristics are 
more on spherical shells, followed by cylindrical, ellipsoid 
and hyperboloid shells. The anticlastic behaviour of FG-
CNTMEE hyperboloid shells makes it difficult to attenuate 
the geometrically nonlinear vibrations quickly in contrast to 
other shell geometries.
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The investigation is extended to assess the effect of differ-
ent load cases on the damped nonlinear transient response of 
FG-CNTMEE shells. The results plotted in Fig. 4a, b suggest 
that the damping characteristics are predominantly influ-
enced by the load cases for both CCCC and SSSS bound-
ary conditions. A higher damped response can be noticed 
for Load Case-III while the ACLD treatment has a minimal 
effect on the FG-CNTMEE shells when subjected to the load 
case-II. Meanwhile, Fig. 5 shows the effect of CNTs func-
tional gradation pattern on the coupled nonlinear transient 
response of sandwich shells, Due to superior flexural rigidity 
offered by the FG-X pattern, quick control of vibration is 
possible in this case. Also, the lower controllability is wit-
nessed for the FG-O pattern of CNTs in the shell structure.

The control voltage required to attenuate the amplitude 
to 50% of the maximum amplitude is shown in Table 4 for 
all the shell geometries and load cases considered for evalu-
ation. For a given load case, the required control voltage is 
the maximum for the hyperboloid shells compared to other 
shell geometries. This holds good for all three load cases. 
Analogously, for a given geometry, Load case-II requires a 
higher control voltage to bring the amplitude of vibration 
to 50% of the original amplitude. In comparison with the 
CCCC condition, a higher magnitude of control voltage is 
needed for the SSSS condition to attenuate the vibrations 
of the shells.

The volume fraction of CNTs plays a prominent role in 
damped transient response. To this end, Fig. 6 makes an 
attempt to investigate the damped characteristics of FG-
CNTMEE spherical shell with different CNTs volume frac-
tion. For the specified control voltage, the higher volume 
fraction of CNTs makes it easier to control the amplitude 
of vibrations. This may be due to the fact that the stiffness 
of the shell enhances with more volume fraction of CNTs.

The CNTs are very much responsive to both electric and 
magnetic forces. The sensing and actuating behaviour of 

Table 3   Validation for FG-CNT plate ( V∗
CNT

= 0.17 ; CCCC boundary condition; a/b = 1; a/h = 100)

CNT Pattern 1st mode 2nd mode 3rd mode

Kiani [62] Present Kiani [62] Present Kiani [62] Present

UD 15.6206 15.7328 17.6535 17.7098 22.6646 22.7112
FG-X 18.7294 18.9212 20.6357 20.7842 25.5149 25.6067

Fig. 4   Effect of load cases on the damped transient response of CNT-
MEE spherical shells

Fig. 3   Effect of shell geometry on the damped transient response of 
CNTMEE shells
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CNT structures vary uniquely when operated with EM loads. 
In this regard, the study also makes an attempt to evaluate 
the damped transient response of FG-CNTMEE shells sub-
jected to the different magnitude of EM loads. From Fig. 7, 
it is evident that with higher values of positive EM loads the 
shell becomes more vulnerable for deflections and the con-
trollability of vibrations reduces as the stiffness of the shell 
reduces. On the other hand, with the application of negative 
EM loads, it can be seen that the damping characteristics 
magnifies and the ease of attenuation improves. The reason 
may be due to the fact that the application of negative EM 
loads adds up to the stiffness and makes the structure more 
rigid against the deflections. In addition, the control voltage 
required to attenuate the vibrations of different FG-CNT-
MEE shells from the original amplitude to 50% of its value 
is shown in Table 5. A higher control voltage is necessary 
for positive EM loads whereas the required voltage reduces 
with the increase in the negative values of EM loads.

The effect of various coupling fields on the nonlinear 
damped transient response of CNTMEE spherical shell 
with FG-X type of CNTs distribution is shown in Fig. 8. 
It can be witnessed that the complete coupling between 
magnetic, electric and elastic fields makes the attenuation 
easier through ACLD treatment. Further, the pure elastic 
field results in a higher amplitude of vibration, at a given 
point of time. The variation in the required control voltage 

of the completely coupled and elastic FG-CNTMEE shell to 
attenuate the original amplitude to 50% of its value is shown 
in Table 6. The effect of coupling is noticed to be significant 
for FG-X distribution.

The application of different electro-magnetic (EM) 
circuits such as open circuit and closed circuits alters the 

Fig. 5   Effect of CNT distributions on the damped transient response 
of CNTMEE spherical shell

Table 4   Maximum control 
voltage for various CNTMEE 
shell geometries subjected 
to different load cases and 
boundary conditions (FG-X; 
closed-circuit)

Shell geometry CCCC​ SSSS

Load case-I Load case-II Load case-III Load case-I Load case-II Load case-III

Spherical 39.52 44.22 34.27 46.63 50.52 42.14
Cylindrical 49.59 55.48 42.99 58.50 63.38 52.86
Ellipsoid 59.53 66.61 51.62 70.24 76.10 63.47
Hyperboloid 76.84 85.99 66.63 90.69 98.24 81.93

Fig. 6   Effect of CNT volume fraction on the damped transient 
response of CNTMEE spherical shell

Fig. 7   Effect of electro-magnetic loads on the damped transient 
response of CNTMEE spherical shell
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overall stiffness of the structure, which in turn drastically 
affects the coupled response of smart structures. Therefore, 
it is very much crucial to assess the influence of EM circuits 
on the damped transient response of FG-CNTMEE shells. 
Figure 9a–d shows the variation of the non-dimensional 
damped transient response of various shell geometries sub-
jected to different EM circuits. For all the shell geometries, a 
higher vibration controlling capability is witnessed for open 
circuit condition as opposed to closed-circuit condition. In 
addition, at any point of time, higher discrepancies between 
the non-dimensional transient deflection corresponding 
to open and closed circuit are seen for the spherical shell, 
whereas hyperboloid shells exhibit minimum EM circuit 
effect.

Similarly, the effect of CNT distributions associated 
with the EM circuits on the damped transient response of 

FG-CNTMEE spherical shell is shown in Fig. 10a–d. The 
predominant influence of EM circuits is noticed on the FG-X 
distribution whereas the minimum effect is witnessed for 
FG-O distribution. The control voltage required to attenuate 
the damped vibration amplitude to 50% of its original ampli-
tude for various CNT distribution and EM circuits is shown 
in Table 7. It can be seen from the encapsulated results that 
when the FG-CNTMEE shell is subjected to closed-circuit 
EM condition, it demands a higher control voltage to achieve 
efficient damping. Also, the effect of EM circuits associ-
ated with the control voltage is predominant on spherical 
shell geometry and FG-X distribution, similar to the trend 
of non-dimensional deflection. From Table 8, an attempt 
has been made to assess the influence of CNTs volume frac-
tion on the % difference between the vibration amplitude of 
FG-CNTMEE spherical shell with open and closed circuit 
conditions. The results reveal that with the increase in the 
volume fraction of CNTs, the EM circuits’ effect enlarges.

The effect of EM circuits associated with different 
mechanical load cases on the transient behaviour of FG-
CNTMEE spherical shell is studied in Fig. 11 and extended 
for other shell geometries in Table 9. It can be witnessed 
from the figure that the influence of EM circuits is predomi-
nant on the mechanical load case-II while the minimal effect 
is noticed when the FG-CNTMEE shell is subjected to load 
case-III. Alongside, from Table 9, it is evident that the dis-
crepancies between the vibration amplitude corresponding 
to open and closed circuit is minimum for hyperboloid shell. 
Meanwhile, FG-O distribution exhibits a negligible effect of 
EM circuit conditions. Similarly, from Fig. 12, it can be seen 
that when FG-CNTMEE spherical shell with FG-X distribu-
tion is subjected to positive EM loads the reduced effect of 
EM circuits prevails as opposed to pure mechanical loading. 
However, the EM circuits’ effect has a significant influence 
when the sign of the EM loads changes from positive to 

Table 5   Effect of electro-
magnetic loads on the control 
voltage for various CNTMEE 
shell geometries (Load case-II; 
CCCC; FG-X; closed circuit)

Shell geometry Q
� = −0.5T

Q
� = −10 C∕m2

Q
� = −0.25T

Q
� = −5 C∕m2

Pure mechanical Q
� = 0.25T

Q
� = 5 C∕m2

Q
� = 0.5T

Q
� = 10 C∕m2

Spherical 31.40 36.56 44.22 52.50 56.73
Cylindrical 39.39 45.87 55.48 65.87 71.18
Ellipsoid 47.29 55.07 66.61 79.09 85.46
Hyperboloid 61.05 71.09 85.99 102.10 110.33

Fig. 8   Effect of coupling on the damped transient response of CNT-
MEE spherical shell

Table 6   Effect of coupling on 
the control voltage for various 
CNTMEE shell geometries

Shell geometry FG-X UD FG-V FG-O

Coupled Elastic Coupled Elastic Coupled Elastic Coupled Elastic

Spherical 44.22 48.64 51.13 54.87 58.37 61.17 65.00 67.15
Cylindrical 55.48 61.03 64.15 68.85 73.23 76.75 81.56 84.25
Ellipsoid 66.61 73.27 77.02 82.66 87.93 92.15 97.92 101.15
Hyperboloid 85.99 94.59 99.43 106.71 113.51 118.96 126.41 130.58
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negative. For the rest of the shell geometries and CNTs dis-
tribution, the effect of EM circuits can be seen in Table 10.

The effect of coupling on the nonlinear transient response 
of the various FG-CNTMEE shells with different EM cir-
cuits is shown in Table 11. All three forms of load cases are 
considered. It can be seen from the results that the coupling 
fields play a significant role for spherical shell geometry 
with FG-X distribution. Further, the coupling effects are 
higher for the open circuit condition. Meanwhile, among all 
the load cases considered, the predominant coupling effect is 
seen when the shell is loaded with the load case-III. On the 
same ground, the study is extended to assess the influence 
of coupling on FG-CNTMEE shells subjected to EM loads 
(Table 12). In contrast to the coupling effect noticed when 
FG-CNTMEE shells are subjected to mechanical loading 
alone, a reduced effect is seen for positive EM loads. On the 
other hand, the negative EM loads show a magnified effect 
of coupling.

Conclusions

This article mainly focuses on evaluating the damped tran-
sient response of FG-CNTMEE shells embedded with the 
ACLD patch through a finite element approach. A special 
emphasis has been made on investigating the influence of 
different electromagnetic circuits and load cases on the 
damped response of the FG-CNTMEE shell. Also, the effect 
of coupling associated with these parameters is evaluated for 
accurate design and operation of these structures for sen-
sors and actuators application. The equations of motion are 
derived using the principle of minimum potential energy 
through the condensation approach and solved via the direct 
iterative method. The outcomes of various numerical exam-
ples considered in this study can be encapsulated as follows:

Fig. 9   Effect of electro-magnetic circuits associated with different shell geometries on the damped transient response of CNTMEE shells
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Fig. 10   Effect of electro-magnetic circuits associated with different CNT distributions on the damped transient response of CNTMEE spherical 
shells

Table 7   Effect of CNT distribution and electro-magnetic circuits on the control voltage for various CNTMEE shell geometries (Load case-II; 
CCCC)

Shell geometry FG-X UD FG-V FG-O

Open circuit Closed circuit Open circuit Closed circuit Open circuit Closed circuit Open circuit Closed circuit

Spherical 41.92 44.22 48.93 51.13 56.46 58.37 63.25 65.00
Cylindrical 52.60 55.48 61.39 64.15 70.84 73.23 79.35 81.56
Ellipsoid 63.15 66.61 73.71 77.02 85.05 87.93 95.27 97.92
Hyperboloid 81.52 85.99 95.15 99.43 109.80 113.51 122.99 126.41
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1.	 Among the various shell geometries considered, damp-
ing can be effectively achieved for spherical shell geom-
etry

2.	 The controlling ability of the ACLD patch enhances 
when the FG-CNTMEE is subjected to load case-III.

3.	 Hyperboloid shells and load case-II require a higher con-
trol voltage in contrast to the other shell geometries and 
load cases, respectively.

4.	 The improved volume fraction of CNTs and FG-X dis-
tribution help to dampen the vibrations with a minimal 
time.

5.	 The amplitude of vibrations of FG-CNTMEE shells sub-
jected to negative electromagnetic loads reduces drasti-
cally over a period of time when compared with that of 
positive electromagnetic loads.

6.	 The effect of open circuit condition is predominant on 
the damped response of FG-CNTMEE shells as opposed 
to the closed circuits

7.	 The coupling between the fields has a significant role 
to play in the damped response of FG-CNTMEE shells. 
Further, the effect of coupling enhances with the open 
circuit electromagnetic condition and negative electro-
magnetic load.

Appendix A

The expanded representation of various material property 
matrices of Eq. (2.a) can be shown as follows:

Table 8   Effect of CNT volume 
fractions associated with the 
electro-magnetic circuits on the 
percentage difference in w* of 
various shell geometries with 
different CNT distributions 
(Load case-II)

Shell geometry CNT distribution V
∗
CNT

= 0.28 V
∗
CNT

= 0.17 V
∗
CNT

= 0.12

Spherical FG-X 18.26 15.01 13.85
UD 13.90 11.42 10.54
FG-V 10.80 8.88 8.19
FG-O 8.41 6.91 6.38

Cylindrical FG-X 17.03 14.00 12.92
UD 12.96 10.65 9.83
FG-V 10.07 8.28 7.64
FG-O 7.84 6.45 5.95

Ellipsoid FG-X 15.33 12.60 11.63
UD 11.67 9.59 8.85
FG-V 9.06 7.45 6.87
FG-O 7.07 5.81 5.36

Hyperboloid FG-X 12.93 10.63 9.81
UD 9.84 8.08 7.46
FG-V 7.65 6.29 5.80
FG-O 5.96 4.90 4.52

Fig. 11   Effect of electro-magnetic circuits associated with different 
load cases on the damped transient response of CNTMEE spherical 
shell
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Fig. 12   Effect of electro-magnetic circuits on the damped transient 
response of CNTMEE spherical shell subjected to different electro-
magnetic loads

Table 9   Effect of electro-
magnetic circuits on the 
percentage difference in w* of 
various shell geometries with 
different CNT distributions and 
load cases ( V∗

CNT
= 0.12)

Shell geometry CNT distribution Load case-I Load case-II Load case-III

Spherical FG-X 12.50 13.85 10.22
UD 9.51 10.54 7.78
FG-V 7.39 8.19 6.04
FG-O 5.76 6.38 4.71

Cylindrical FG-X 11.45 12.92 9.83
UD 8.45 9.83 6.35
FG-V 6.77 7.64 5.14
FG-O 4.64 5.95 3.88

Ellipsoid FG-X 10.16 11.63 8.42
UD 7.23 8.85 5.53
FG-V 5.55 6.87 4.72
FG-O 3.13 5.36 2.76

Hyperboloid FG-X 8.82 9.81 7.60
UD 6.18 7.46 4.14
FG-V 4.72 5.80 3.78
FG-O 2.85 4.52 2.12

Also, the elastic stiffness coefficient matrices, piezoelec-
tric coefficient matrices of 1–3 PZC (Eq. 3) can be given as 
follows:

Appendix B

Equation (17) can be expanded using the FE parameters and 
can be re-written as follows:
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Table 10   Effect of electro-magnetic circuits on the percentage difference in w* of various shell geometries with different CNT distributions and 
electro-magnetic loads ( V∗

CNT
= 0.28 ; load case-II)

Shell geometry CNT distribution Q
� = −0.5T

Q
� = −10 C∕m2

Q
� = −0.25T

Q
� = −5 C∕m2

Q
� = 0T

Q
� = 0 C∕m2

Q
� = 0.25T

Q
� = 5 C∕m2

Q
� = 0.5T

Q
� = 10 C∕m2

Spherical FG-X 19.72 18.81 18.26 17.89 16.91
UD 15.01 14.32 13.9 13.62 12.87
FG-V 11.66 11.12 10.8 10.58 10.00
FG-O 9.08 8.66 8.41 8.24 7.79

Cylindrical FG-X 18.39 17.54 17.03 16.69 15.77
UD 14.00 13.35 12.96 12.70 12.00
FG-V 10.88 10.37 10.07 9.87 9.32
FG-O 8.47 8.08 7.84 7.68 7.26

Ellipsoid FG-X 16.56 15.79 15.33 15.02 14.20
UD 12.60 12.02 11.67 11.44 10.81
FG-V 9.78 9.33 9.06 8.88 8.39
FG-O 7.64 7.28 7.07 6.93 6.55

Hyperboloid FG-X 13.96 13.32 12.93 12.67 11.97
UD 10.63 10.14 9.84 9.64 9.11
FG-V 8.26 7.88 7.65 7.50 7.08
FG-O 6.44 6.14 5.96 5.84 5.52

Table 11   Comparison of the coupling effect in terms of % difference of w* for various CNTMEE shell geometries

Shell geometry CNT distribution Load case-I Load case-II Load case-III

Open-circuit Closed-circuit Open-circuit Closed-circuit Open-circuit Closed-circuit

Spherical FG-X 10.29 9.57 8.42 7.57 11.40 9.86
UD 7.83 7.28 6.41 5.77 8.68 7.50
FG-V 6.09 5.66 4.97 4.48 6.74 5.83
FG-O 4.74 4.41 3.88 3.49 5.25 4.54

Cylindrical FG-X 9.43 8.77 8.09 7.28 10.64 9.20
UD 6.96 6.47 5.23 4.71 8.09 7.00
FG-V 5.57 5.18 4.23 3.81 6.29 5.44
FG-O 3.82 3.55 3.19 2.88 4.90 4.24

Ellipsoid FG-X 8.37 7.78 6.93 6.24 9.58 8.28
UD 5.95 5.54 4.55 4.10 7.29 6.30
FG-V 4.57 4.25 3.89 3.50 5.66 4.89
FG-O 2.58 2.40 2.27 2.05 4.41 3.82

Hyperboloid FG-X 7.26 6.75 6.26 5.63 8.08 6.98
UD 5.09 4.73 3.41 3.07 6.14 5.31
FG-V 3.89 3.61 3.11 2.80 4.78 4.13
FG-O 2.35 2.18 1.75 1.57 3.72 3.22
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Table 12   Comparison of the coupling effect in terms of % difference of w* for various CNTMEE shell geometries

Shell geometry CNT distribution Q
� = −0.5T

Q
� = −10 C∕m2

Pure mechanical load Q
� = 0.25T

Q
� = 5C∕m2

Open-circuit Closed-circuit Open-circuit Closed-circuit Open-circuit Closed-circuit

Spherical FG-X 13.26 10.85 11.40 9.86 10.50 9.45
UD 10.09 8.26 8.68 7.50 8.00 7.20
FG-V 7.84 6.41 6.74 5.83 6.21 5.59
FG-O 6.11 4.99 5.25 4.54 4.84 4.35

Cylindrical FG-X 12.37 10.12 10.64 9.20 9.80 8.82
UD 9.41 7.70 8.09 7.00 7.45 6.71
FG-V 7.32 5.98 6.29 5.44 5.79 5.22
FG-O 5.70 4.66 4.90 4.24 4.51 4.06

Ellipsoid FG-X 11.14 9.11 9.58 8.28 8.83 7.94
UD 8.48 6.94 7.29 6.30 6.72 6.04
FG-V 6.58 5.38 5.66 4.89 5.21 4.69
FG-O 5.13 4.20 4.41 3.82 4.06 3.66

Hyperboloid FG-X 9.40 7.69 8.08 6.98 7.44 6.70
UD 7.14 5.84 6.14 5.31 5.66 5.09
FG-V 5.56 4.55 4.78 4.13 4.40 3.96
FG-O 4.33 3.54 3.72 3.22 3.43 3.08
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The different nonlinear and linear stiffness matrices, force 
vectors leading to Eq. (22) can be represented as follows:
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∫
0

be

∫
0

[
N�

]T[
D36

][
Brb

]
dxdy;

[
Ke
35

]
=

ae

∫
0

be

∫
0

[
N�

]T[
D37

][
N�

]
dxdy;

[
Ke
36

]
=

ae

∫
0

be

∫
0

[
N�

]T[
D38

][
N�

]
dxdy;

[
Ke
37

]
=

ae

∫
0

be

∫
0

[
N�

]T[
D39

][
Btb

]
dxdy;

[
Ke
38

]
=

ae

∫
0

be

∫
0

[
N�

]T[
D40

][
Brb

]
dxdy;

[
Ke
39

]
=

ae

∫
0

be

∫
0

[
N�

]T[
D41

][
N�

]
dxdy;

[
Ke
40

]
=

ae

∫
0

be

∫
0

[
N�

]T [
D42

][
N�

]
dxdy;

[
Fe
tpN1

]
=

ae

∫
0

be

∫
0

[
B1

]T[
B2

][
D16

]
dxdy;

[
Fe
tp1

]
=

ae

∫
0

be

∫
0

[
Btb

]T[
D23

]
dxdy;

[
Fe
tp2

]
=

ae

∫
0

be

∫
0

[
Bts

]T[
D27

]
dxdy;

[
Fe
rp1

]
=

ae

∫
0

be

∫
0

[
Brb

]T[
D20

]
dxdy;

[
Fe
rp2

]
=

ae

∫
0

be

∫
0

[
Brs

]T[
D27

]
dxdy;



371Journal of Vibration Engineering & Technologies (2022) 10:351–374	

1 3

The various rigidity matrices contributing to the stiffness 
matrices and force vectors of Eq. (30) are shown as follows:

(30)

[
Ke
T1

]
=
[
KNL1

]
+
[
KNL3

]
+
[
K5

]
+
[
KNL17

]
+
[
K11

]
;
[
Ke
T2

]
=
[
KNL2

]
+
[
K6

]
+
[
K12

]
;[

Ke
T3

]
=
[
KNL14

]
+
[
K7

]
;
[
Ke
T4

]
=
[
KNL15

]
+
[
K8

]
;
[
Ke
T5

]
=
[
KNL6

]
+
[
K1

]
+
[
K9

]
;[

Ke
T6

]
=
[
K2

]
+
[
K10

]
;
[
Ke
T7

]
=
[
KNL8

]
+
[
KNL10

]
+
[
K17

]
+
[
KNL11

]
+
[
K19

]
+
[
KNL14

]
;[

Ke
T8

]
=
[
KNL19

]
+
[
KNL12

]
+
[
K18

]
+
[
K20

]
;[

Ke
T9

]
=
[
KNL13

]
+
[
K13

]
+
[
K15

]
;[

Ke
T10

]
=
[
K14

]
+
[
K16

]
;[

Ke
T11

]
=
[
KNL15

]
+
[
K21

]
+
[
K23

]
;[

Ke
T12

]
=
[
K22

]
+
[
K24

]
;[

Ke
T13

]
=
[
KNL16

]
+
[
K25

]
+
[
K27

]
;[

Ke
T14

]
=
[
K26

]
+
[
K28

]
+
[
K32

]
;[

Ke
T15

]
=
[
KT1

]
+
[
KT7

]
+
[
KT13

]
;[

Ke
T16

]
=
[
KT2

]
+
[
KT8

]
+
[
KT14

]
;[

Ke
T17

]
=
[
KT5

]
+
[
KT9

]
+
[
KT11

]
+
[
KT29

]
;[

Ke
T18

]
=
[
KT6

]
+
[
KT10

]
+
[
KT12

]
+
[
K30

]
;

[
K
C1

]
= −

[
K40

]−1[
K37

]
;
[
K
C2

]
= −

[
K40

]−1[
K38

]
;

[
K
C3

]
= −

[
K40

]−1[
K39

]
;[

K
C4

]
=
[
K33

]
−
[
K36

][
KC1

]
;[

K
C5

]
=
[
K34

]
−
[
K36

][
KC2

]
;[

K
C6

]
=
[
K35

]
−
[
K36

][
KC3

]
;

[
K
C7

]
= −

[
KC6

]−1[
KC4

]
;

[
K
C8

]
= −

[
KC6

]−1[
KC5

]
;[

K
C9

]
=
[
KT17

]
−
[
K4

][
KC1

]
;[

K
C10

]
=
[
KT18

]
−
[
K4

][
KC2

]
;
[
K
C11

]
=
[
K3

]
−
[
K4

][
KC3

]
;[

K
C12

]
=
[
KC9

]
−
[
KC11

][
KC7

]
;
[
K
C13

]
=
[
KC10

]
−
[
KC11

][
KC8

]
;[

K
C14

]
=
[
KT15

]
−
[
KT4

][
KC1

]
;
[
K
C15

]
=
[
KT16

]
−
[
KT4

][
KC2

]
;
[
K
C16

]
=
[
KT3

]
−
[
KT4

][
KC3

]
;[

K
C17

]
=
[
KC14

]
−
[
KC16

][
KC7

]
;
[
K
C18

]
=
[
KC15

]
−
[
KC16

][
KC8

]
;

[
K∗

]
=
[
KC17

]
−
[
KC18

][
KC13

]−1[
KC12

]
;{

F∗
}
= {F} −

({
Ftp1

}
+
{
Ftp2

}
+
{
FtpN1

})
V +

[
KC18

][
KC13

]({
Frp1

}
+
{
Frp2

})
V .
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(31)

[
D1

]
=

h2

∫
h1

[
C̄h
b

]
dz;

[
D2

]
=

h2

∫
h1

[
C̄h
b

][
Z1
]
dz;

[
D3

]
=

h2

∫
h1

{
e
h

b

}
1

h
dz;

[
D4

]
=

h2

∫
h1

{
q
h

b

}
1

h
dz;

[
D5

]
=

h2

∫
h1

[
Z1
]T[

C̄h
b

]
dz;

[
D6

]
=

h2

∫
h1

[
Z1
]T[

C̄h
b

][
Z1
]
dz;

[
D7

]
=

h2

∫
h1

[
z1
]T{

e
h

b

}
1

h
dz;

[
D8

]
=

h2

∫
h1

[
Z1
]T{

q
h

b

}
1

h
dz;

[
D9

]
=

h2

∫
h1

[
Z3
]T[

C̄h
s

]
dz;

[
D10

]
=

h2

∫
h1

[
Z3
]T[

C̄h
s

][
Z3
]
dz;

[
D11

]
=

h2

∫
h1

[
C̄h
s

]
dz;

[
D12

]
=

h2

∫
h1

[
C̄h
s

][
Z3
]
dz;

[
D13

]
=

h4

∫
h3

[
C̄
p

b

]
dz;

[
D14

]
=

h4

∫
h3

[
C̄
p

b

][
Z2
]
dz;

[
D14

]
=

h4

∫
h3

[
C̄
p

bs

]
dz;

[
D15

]
=

h4

∫
h3

[
C̄
p

bs

][
Z5
]
dz;

[
D16

]
=

h4

∫
h3

{
e
p

b

} 1

hp
dz;

[
D17

]
=

h4

∫
h3

[
Z2
]T [

C̄
p

b

]
dz;

[
D17

]
=

h4

∫
h3

[
Z2
]T [

C̄
p

bs

]
dz;

[
D18

]
=

h4

∫
h3

[
Z2
]T [

C̄
p

b

][
Z2
]
dz;

[
D19

]
=

h4

∫
h3

[
Z2
]T [

C̄
p

bs

][
Z5
]
dz;

[
D20

]
=

h4

∫
h3

[
Z2
]T{

e
p

b

} 1

hp
dz;

[
D21

]
=

h4

∫
h3

[
C̄
p

bs

]
dz;

[
D22

]
=

h4

∫
h3

[
C̄
p

bs

][
Z5
]
dz;

[
D23

]
=
[
D16

]
;

[
D24

]
=

h4

∫
h3

[
Z5
]T[

C̄
p

bs

]T
dz;

[
D25

]
=

h4

∫
h3

[
Z5
]T[

C̄
p

bs

]T[
Z2
]
dz;

[
D25_s

]
=

h4

∫
h3

[
Z5
]T[

C̄p
s

]
dz;

[
D26

]
=

h4

∫
h3

[
Z5
]T[

C̄p
s

]T[
Z5
]
dz;

[
D27

]
=

h4

∫
h3

[
z5
]T{

ep
s

} 1

hp
dz;

[
D28

]
=

h4

∫
h3

[
C̄
p

bs

]T[
Z2
]
dz;

[
D29

]
=

h4

∫
h3

[
C̄p
s

]
dz;

[
D30

]
=

h4

∫
h3

[
C̄p
s

][
Z5
]
dz;

[
D31

]
=

h3

∫
h2

[
Z4
]T[

C̄v
s

]
dz;

[
D32

]
=

h3

∫
h2

[
Z4
]T[

C̄v
s

][
Z4
]
dz;

[
D33

]
=

h3

∫
h2

[
C̄v
s

]
dz;

[
D34

]
=

h3

∫
h2

[
C̄v
s

][
Z4
]
dz;

[
D35

]
=
[
D3

]T
;
[
D36

]
=

h2

∫
h1

{
eh
b

}1
h

[
Z1
]
dz;

[
D37

]
=

h2

∫
h1

∈
h

33

h
dz;

[
D38

]
=

h2

∫
h1

d
h

33

h
dz;

[
D39

]
=
[
D4

]T
;
[
D40

]
=

h2

∫
h1

{
qh
b

}1
h

[
Z1
]
dz;

[
D41

]
=
[
D38

]
;

[
D42

]
=

h2

∫
h1

𝜇
h

33

h
dz.
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