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Abstract
One of the main causes for failure in the rotor machine is the presence of internal cracks in the shaft rotating at high speed. 
The occurrence of such cracks has a dangerous and catastrophic effect on the dynamic behavior of rotating structures and can 
seriously affect rotating machinery. Due to the destructiveness of the cracks in rotor system, cracks were chosen as the subject 
of study, and the how to formulate the dynamics equation of the rotor system with and without cracks was explained. In that, 
the finite element analysis method was combined with the Lagrange method to concretely interpret the equation formula-
tion. Then, the natural frequency matrix and mode of the rotor system without crack and with one crack were determined 
by using the ANSYS program’s tetrahedral mesh and iteration strategies of Runge–Kutta. Furthermore, how the change of 
the crack position and the non-dimensional crack depth influence the natural frequencies of the rotor system were analyzed 
in detail. And, the influence of eccentricity on the rotor system and the relationship between eccentricity and nonlinearity 
were obtained. The result showed that when the eccentric distance and the eccentric mass were relatively small, i.e. 0.05 
m, 0.001 kg, the effect on the eccentric force is almost linear, but when the eccentric distance and the eccentric mass were 
relatively large, i.e. 0.1 m, 0.05 kg, the nonlinear effect of eccentric forces must be considered.

Keywords  Natural frequency · Rotor-disc-bearing · Transverse crack · Nonlinear dynamics · Simulation analysis

Introduction

Unlike ordinary machines, high-speed rotary machines work 
in harsh environments and under high stress, which results 
in cyclic fatigue, creep, and corrosion. All these physical 
phenomena lead to generation of fatigue cracks, which 
can severely damage machine components or even lead to 
catastrophic failure. In this regard, many studies have been 
made on rotator systems. In particular, many studies have 
been conducted in terms of the method of making a math-
ematical model of the Jeffcott rotor system and the vibration 
analysis method of the rotor system using the finite element 

method. Many advances have been made in the establish-
ment of the mathematical model of the Jeffcott rotor sys-
tem. Zalik [1] studied the properties of the solutions of the 
Jeffcott equations with deadband and the method making 
nonlinear rotordynamics equation. Joaquín Campos et al. [2] 
studied a simple model capable of allowing visualization of 
the parameters and problematic aspects associated with a 
Jeffecott rotor using bond graphs. Wagner et al. [3] exam-
ined how the natural frequencies and modal damping ratios 
of a shaft/rotor system are affected by changes in lubricant 
viscosity and bearing clearance. The analysis considers a 
uniform elastic shaft with a single rigid rotor mounted away 
from mid-span and supported by fully cavitated, T-film, 
short-length, plain journal bearings. Yao et al. [4] is intro-
duced a concept of micro-relative displacement to describe 
the relative motion between each part of the planetary gear 
system, thus the positive semidefinite gear system is trans-
formed into a positive definite system. By using the finite 
element method, the dynamic model of the whole ball bear-
ing-rotor system is proposed by integrating the rigid body 
motion and the elastic vibration of the rotor [5]. A math-
ematical model of a lightweight flexible rotor disk bearing 
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system with geometric eccentricity and mass imbalance was 
created. This mathematical model includes a bidirectional 
flexible shaft characterized by nonlinear curvature and gyro-
scopic effect, geometric eccentricity, a rigid disk crooked 
with unbalance mass, and nonlinear flexible bearings [6]. 
Lu et al. [7] formulated the kinematics equation of the sys-
tem, taking into account the unbalance excitations of the two 
rotors, vertical constant forces acting on the rotor system and 
the gravities. A dynamic model of a rotor-blade system has 
established considering the effect of nonlinear supports at 
both ends, and in the proposed model, the shaft is modeled 
as a rotating beam where the gyroscopic effect is considered, 
while the shear deformation is ignored [8]. Yan et al. [9] 
formulated a novel fractional-order mathematical model of 
the rotor-bearing-seal system is established from the view 
of engineering applications by using the finite element 
method. Luo et al. [10] studied an improved transfer-matrix 
method (TMM) for investigating the steady-state response 
of complex rotor-bearing systems based on the mathematical 
model of the system. The method of constructing a dynamic 
model in a rotor system with cracks was described [11, 12]. 
The general contents of the nonlinear vibration, the method 
making the motion equation of the cracked rotor and the 
method of solving the nonlinear vibration were studied and 
analysed [13]. In the spring-mass-coupled system, the vibra-
tion analysis method and the calculation method of the criti-
cal speed were specifically mentioned [14]. In this paper, a 
model for the dynamics of fast rotating, elastic beams sup-
ported in hydrodynamic bearings is derived and its vibration 
behavior analyzed. The continuous rotor is modelled using 
Euler–Bernoulli beam theory under the inclusion of rotatory 
inertia and gyroscopic effects [15]. The natural frequency 
analysis and calculation method of the rotating machinery 
considering the gyroscopic effect, and the imbalance and 
balance were studied [16]. A rotordynamic analysis of a 
large turbocompressor that models both the casing and sup-
ports along with the rotor-bearing system was performed. A 
3D finite element model of the casing captures the intricate 
details of the casing and support structure [17]. Bajpai et al. 
[18] studied of natural frequency characteristics of structural 
steel and alloy 6061 system composed of various material 
by using ANSYS program. Meshing method and modelling 
of a Simple 3D Cantilever Beam Using SOLID Elements is 
specifically mentioned [19]. In the rotary system considering 
the gyroscopic effect and whirl, the method of modelling and 
analyzing the system using the finite element method was 
mentioned [20]. Using ANSYS Workbench, the structure 
modelling, dynamic analysis, and vibration analysis method 
were analysed [21]. In the previous studies, the dynamic 
modelling and vibration analysis of the rotor system with 
cracks were widely discussed with many methods. In the 
dynamic modelling, however, no specific analysis has been 
made on the modelling methods of with and without cracks, 

and few have been made on the basis of this model to inter-
pret the natural frequency problems of the rotor system in 
the two cases of cracks and without cracks. In this paper, 
therefore, the method of creating the dynamic equation of 
the rotor system with and without cracks by using the finite 
element method and the Lagrange equation, the method of 
calculating the critical speed, and How the natural frequency 
of the rotor system changes according to the position of the 
crack and the change of the non-dimensional crack depth and 
influence of eccentricity on the rotor system was analyzed 
in detail.

Mathematical Modelling 
of the Rotor‑Disc‑Bearing System

System Equation of Motion Without Crack

Motion Equation of Element

The rotor system is generally composed of a rigid disk, a 
rotor shaft, and a bearing. Their motion equations will be 
established respectively and further assembled to form the 
entire system equation (Fig. 1).

Motion Equation of  Shaft Element  Figure  2 is an elastic 
axial segment whose local nodes are numbered as 1 and 2.

The generalized coordinate of this element is the dis-
placement of the nodes at both ends, that is:

In any section within the element, the displacement x,�y , 
y,�x is a function of position s and time t. By using the dis-
placement interpolation function and the displacement of 
the node of the element, the displacement x,�y , y,�x can be 
expressed as:

(1)

{{
u1z

}
=
[
xA, �yA, xB, �yB

]T
{
u2z

}
=
[
yA,−�xA, yB,−�xB

]T

Fig.1   Rotor-disc-bearing system
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where [N] is the undetermined displacement interpolation 
function matrix or shape function matrix.

Substituting Eq. (3) into the first term and the second 
term of Eq. (2) is as follows:

 where N ′

i
(i=1, 2, 3, 4) is the derivative of the function with 

respect to z.
The endpoint conditions of the axial segment element 

are as follows:

From Eq. (4) and (5), each interpolation function should 
be as follows:

Because each interpolation function has four endpoint 
conditions, it can be assumed to be a cubic polynomial of z.

(2)

⎧⎪⎨⎪⎩

x(s, t) = [N]
�
u1s

�
y(s, t) = [N]

�
u2s

�
�y =

�
N

���
u1s

�
−�x =

�
N

���
u2s

�

(3)[N] =
[
N1(z),N2(z),N3(z),N4(z)

]

(4)

{
x(z, t) = N1(z)xA(t) + N2(z)�yA(t) + N3(z)xB(t) + N4(z)�yB(t)

�y(z, t) =
�x

�z
= N

�

1
(z)xA(t) + N

�

2
(z)�yA(t) + N

�

3
(z)xB(t) + N

�

4
(z)�yB(t)

(5)

⎧⎪⎨⎪⎩

x(0, t) = xA(t)

x(l, t) = xB(t)

x
�

(0, t) = �yA(t)

x
�

(l, t) = �yB(t)

(6)

⎧⎪⎨⎪⎩

N1(0) = 1;N�
1
(0) = 0;N1(l) = 0;N�

1
(l) = 0

N2(0) = 0;N�
2
(0) = 1;N2(l) = 0;N�

2
(l) = 0

N3(0) = 0;N�
3
(0) = 0;N3(l) = 1;N�

3
(l) = 0

N4(0) = 0;N�
4
(0) = 0;N4(l) = 0;N�

4
(l) = 1

(7)N1z = a0 + a1z + a2z
2 + a3z

3

Substituting Eq. (7) into Eq. (6), the constant ai(i=1, 2, 3, 
4) can be determined below.

For shaft segment with axisymmetric cross-sections, 
similarly:

Based on the above results:

The kinetic energy and flexural elastic potential energy 
of the element can also be expressed as the function of node 
displacement and node velocity.

Taking the derivative of Eq. (6) with respect to time and 
substituting it into for Eq. (10) is as follows:

where z is the axial distance of nodal point A. The thickness 
of a microelement is dz, and u, jd and jp represent the mass, 
diameter, and pole moment of inertia per unit length of the 
axial segment, respectively. Ω is the rotational speed.

The elastic potential energy of the microelement is:

N1(z) = 1 − 3
(
z

l

)2

+ 2
(
z

l

)3

N2(z) = l

[
z

l
− 2

(
z

l

)2

+
(
z

l

)3
]

N3(z) = 3
(
z

l

)2

− 2
(
z

l

)3

N4(z) = l

[
−
(
z

l

)2

+
(
z

l

)3
]

(8)y(z, t) = [N]
{
u2z

}

(9)

{
x = [N]

{
u1z

}
;�y =

�x

�z
=
[
N�

]{
u1z

}
y = [N]

{
u2z

}
;−�x =

�y

�z
=
[
N�

]{
u2z

}

(10)

dTz =
1

2

{
ẋ

ẏ

}T[
𝜇 0

0 𝜇

]{
ẋ

ẏ

}
dz

+
1

2

{
𝜃y
−𝜃x

}[
jd 0

0 jd

]{
𝜃̇y
̇−𝜃x

}

+ Ω

{
ẋ

𝜃̇y

}T[
0 0

0 jp

]{
y

−𝜃x

}
dz

+
1

2
jpΩ

2dz

(11)

dTz =
1

2

{
u̇
1z

}T
(
𝜇[N]T [N] + jd

[
N�

]T[
N�

]){
u̇
1z

}
dz

+
1

2

{
u̇
2z

}T
(
𝜇[N]T [N] + jd

[
N�

]T[
N�

]){
u̇
2z

}
dz

+ jpΩ
{
u̇
1z

}T[
N�

]T[
N�

]{
U

2z

}
dz +

1

2
jpΩdz

Fig.2   Elastic axial segment
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For the circular section shaft with long l and radius r, the 
kinetic energy and potential energy of the element can be 
obtained by integrating the above two formulas along the 
full length of the element.

where

The motion equation of the axial segment element can be 
obtained from the Lagrange equation.

 where Q1z,Q2z correspond to the generalized force.
Mz is sum of

[
MzT

]
and

[
MzR

]

The Equation of  Motion of  a  Rigid Disk  Suppose the mass 
of the rigid disk, the axial area moment of inertia, and the 
polar moment of inertia are m, Jd , and Jp respectively, and 
the generalized coordinate of the rigid disk is expressed 

(12)

dVz =
1

2
EI
{

x��

y��

}T{
x��

y��

}T

dz

=
1

2

({
u
1z

}T[
N��

]T[
N��

]{
u
1z

}

+
{
u
2z

}T[
N��

]T[
N��

]{
u
2z

})

(13)

Tz =
1

2

{
u̇
1z

}T([
M

zT

]
+
[
M

zR

]){
u̇
1z

}

+
1

2

{
u̇
2z

}T([
M

zT

]
+
[
M

zR

]){
u̇
2z

}

+ Ω
{
u̇
1z

}T[
Jz
]{
u
2z

}
+

1

2
JpzΩ

2

(14)Vz =
1

2

{
u1z

}T[
Kz

]{
u1z

}
+

1

2

{
u2z

}T[
Kz

]{
u2z

}

Jpz = jpzl

[MzT] =
l∫
o

�[N]T [N]dz[MzT] ∶ element�smoving inertiamatrix

[MzR] =
l∫
0

jd[N
�]T [N�]dz [MzR] ∶ rotational inertiamatrix

[
Gz

]
= Ω

[
Jz
]
∶
[
Gz

]
∶ rotationmatrix,

[
Jz
]
= ∫

l

0

jp
[
N�

]T[
N�

]
dz

[Kz] =
l∫
0

EI[N��]T [N��]dz[Kz] ∶ stiffnessmatrix,

(15)
{ [

Mz

]{
ü1z

}
+ Ω

[
Jz
]{
u̇2z

}
+
[
Kz

]{
u1z

}
=
{
Q1z

}
[
Mz

]{
ü2z

}
− Ω

[
Jz
]{
u̇1z

}
+
[
Kz

]{
u2z

}
=
{
Q2z

}

by the displacement vectors of the axis node, which are {
u1d

}
=
[
x, �y

]T and 
{
u2d

}
=
[
y,−�x

]T , respectively.
Assuming that the disk axis coincides with the center of 

gravity, its kinetic energy is expressed as Eq. 16:

where o′

��� takes the axis node as origin,o′

� is perpendicu-
lar to the disk plane, and the moving coordinate system fixed 
on the disk is shown in Fig. 3.

For �� is equal to �x , so

 where

 where �x , 𝜃̇x and 𝜃̇y are all first-order microelement, and � is 
equal to Ω . Substitute Eq. (17) into Eq. (16), and omit micro-
element higher than the second order, and consequently, fol-
lowing equation comes out:

(16)

Td =
1

2

�
ẋ

ẏ

�T�
m 0

0 m

��
ẋ

ẏ

�
+

1

2

⎧
⎪⎨⎪⎩

𝜔𝜉

𝜔𝜂

𝜔𝜁

⎫
⎪⎬⎪⎭

T

⎡⎢⎢⎣

Jd 0 0

0 Jd 0

0 0 Jp

⎤⎥⎥⎦

⎧
⎪⎨⎪⎩

𝜔𝜉

𝜔𝜂

𝜔𝜁

⎫
⎪⎬⎪⎭

⎧
⎪⎨⎪⎩

��

��

��

⎫
⎪⎬⎪⎭
=
�
A�

�⎧⎪⎨⎪⎩

��1

��1

��1

⎫
⎪⎬⎪⎭
=

⎧
⎪⎨⎪⎩
−

��1cos� + ��1sin�

��1sin� + ��1cos�

��

⎫
⎪⎬⎪⎭

(17)

⎧⎪⎨⎪⎩

𝜔𝜉

𝜔𝜂

𝜔𝜁

⎫⎪⎬⎪⎭
=

⎡⎢⎢⎣

cos𝜑 cos𝜃xsin𝜑 0

−sin𝜑 cos𝜃xcos𝜑 0

0 −sin𝜃x 1

⎤
⎥⎥⎦

⎧⎪⎨⎪⎩

𝜃̇x
𝜃̇y
𝜑

⎫⎪⎬⎪⎭

Fig.3   Motion coordinate system fixed on the rigid disk
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 where

The motion equation of the disk element can be obtained 
from the Lagrange equation:

where 
[
Md

]
 is the mass matrix of the disk; 

[
Gd

]
= Ω[J] is the 

rotation matrix;
{
Q1d

}
and 

{
Q2d

}
 are the corresponding gen-

eralized forces.

The Equation of Motion of a Bearing  Takes a sliding bear-
ing as bearing. For example, under the condition of good 
foundation rigidity, the bearing seat can be simplified into a 
mass-spring-damper model which is an anisotropic bearing 
model as shown in Fig. 4.

The corresponding dynamic characteristic coefficient 
matrix is as below:

(18)

Td =
1

2

{
u̇
1d

}T[
Md

]{
u̇
1d

}
+

1

2

{
u̇
2d

}T[
Md

]{
u̇
2d

}

+ Ω
{
u̇
1d

}T
[J]

{
u̇
2d

}
+

1

2
JpΩ

2

[
Md

]
=

[
m 0

0 Jd

]
, [J] =

[
0 0

0 Jp

]

(19)
{ [

Md

]{
ü1d

}
+ Ω[J]

{
u̇2d

}
=
{
Q1d

}
[
Md

]{
ü2d

}
− Ω[J]

{
u̇1d

}
=
{
Q2d

}

The dynamic characteristic coefficient matrix comprehen-
sively reflects the damping and stiffness characteristics of 
the bearing pedestal and foundation. The equivalent mass 
of bearing pedestal and foundation in x and y directions is 
expressed by M_bx and M_by respectively. On the supposi-
tion that the coordinate of the bearing center is x_b, y_b and 
the number of the corresponding journal center node is z(j) 
and the coordinate of the journal center is x_z(j) and y_z(j) 
, the motion equation of the bearing is shown below: 

If the foundation rigidity is good, that is, xbandyb is 0 , 
then the generalized force of the oil film acting on the center 
of the journal is:

If damping is excluded, and the coefficient can be sim-
plified to an elastic bearing with equal stiffness where the 
rigidity coefficient is Kx and ky respectively, then

Equation of Motion of the Systems

For the rotor system connected by n nodes and n-1 axial 
segments, the displacement vector is:

By synthesizing the motion equations of the disc, shaft 
segment and bearing, the motion equation of the system can 
be obtained as follows:

where 
[
M1

]
 is the global mass matrix, Ω 

[
J1
]
 is the rotation 

matrix, and 
[
K1

]
 is the stiffness matrix.

[
Cb

]
=

[
cbxxcbxy
cbyxcbyy

][
Kb

]
=

[
KbxxKbxy

KbyxKbyy

]

(20)

[
Mbx 0

0 Mby

]{
ẍb
ÿb

}
+

[
cxx cxy
cyx cyy

]{
ẋb − ẋz(j)
ẏb − ẏz(j)

}

+

[
kxx kxy
kyx kyy

]{
xb − xz(j)
yb − yz(j)

}
+

[
cbxx cbxy
cbyx cbyy

]{
ẋb
ẏb

}

+

[
Kbxx Kbxy

Kbyx Kbyy

]{
xb
yb

}
= {0}

(21)

{
Qb

1d

Qb
2d

}
= −

[
cxx cxy
cyx cyy

]{
ẋz(j)
ẏz(j)

}
−

[
kxx kxy
kyx kyy

]{
xz(j)
yz(j)

}

(22)
{

Qb
1d

Qb
2d

}
= −

[
kx 0

0 ky

]{
xz(j)
yz(j)

}

(23)
{ {

U1

}
=
[
x1, �y1, x2, �y2,… , xn, �yn

]
{
U2

}
=
[
y1,−�x1, y2,−�x2,… , yn,−�xn

]

(24)
{ [

M1

]{
Ü1

}
+ Ω

[
J1
]{
U̇2

}
+
[
k1
]{
U1

}
=
{
Q1

}
[
M1

]{
Ü2

}
− Ω

[
J1
]{
U̇1

}
+
[
k1
]{
U2

}
=
{
Q2

}

Fig.4   Mass-spring-damper model
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System Equation of Motion Having Crack

When the rotor cracks, the opening and closing behav-
ior caused by rotor rotation and shaft selection results in 
time-varying stiffness. This is called a breathing crack. The 
dynamic equation formulation of systems with cracks must 
be further examined in the stiffness when has the crack. The 
general dynamics equation is as follows:

where M and K are the mass and stiffness matrices of the 
rotor without crack.

Q means the balance and gravitational forces.
The equations of the rotor with crack can be written as

It may be noted that the global stiffness matrix of the rotor 
consists of a constant component K and a time-dependent 
component kc = f (t)kcrack.

kcrack is the crack-related stiffness matrix. The f (t) func-
tion represents the breathing effect. The proportion of the 
crack face that is subject to tensile axial stresses will be a 
determining factor for the extent of crack opening. Based on 
assumption that the gravity force is much greater than the 
imbalance force, the breathing crack [3, 4] may be described 
as

where Ω is the rotational speed of the rotor. As shown in 
Fig. 5, for f (t) = 0 , the crack is totally closed and the rotor 
with crack stiffness is equal to the rotor stiffness without 
crack. For f (t) = 1 , the crack is full open. A transverse crack 

(25)MÜ + CU̇ + KU = Q

(26)MÜ + CU̇ + (K − Kc(t))U = Q

(27)f(t) =
1 − cos(Ωt)

2

in a rotor shaft can be represented by the reduction of the 
second moment of area ΔI of the element at the location of 
the crack. By using Rayleigh’s method, the change in ΔI can 
be represented as follows:

where I0 , ν, μ, R, l , and F(μ) represent the second moment 
of area, the Poisson’s ratio, the non-dimensional crack depth, 
the shaft radius, the length of the section, and the compli-
ance functions varied with the non-dimensional crack depth 
μ, respectively. The non-dimensional crack depth μ is given 
by μ = h/R, where h defines the crack depth of the shaft as 
shown in Fig. 5.

kcrack is given by [3, 4].

where

(28)
ΔI∕I0

1 − ΔI∕I0
=

R

l

(
1 − �2

)
F(�)

(29)

Kcrack =
E

l3

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

12IX 0 0 6lIX −12IX 0 0 6lIX
12IY −6lIY 0 0 −12IY −6lIY 0

4l2IY 0 0 6lIY 2l2IY 0

4l2IX −6lIX 0 0 2l2IX
12IX 0 0 −6lIX

12IY 6lIY 0

Sym 4l2IY 0

4l2IX

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

IX = ∬ Y2dA = ∬ Y2dXdY =
R2

4

(
δ
(
1 − 4� + 2�2

)
� +

�

2

)

Fig.5   Geometric relative posi-
tions of the shaft and transverse 
crack
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where b and A are the centroid of the cross-section and the 
uncracked area of the cross-section, respectively, and the 
distance from the axis X to the centroid of the cross-section 
b are given by:

IY =∬ X2dA − Ab2 = ∬ X2dXdY

−
[
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(
δ� +

�

2

)](
2
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==
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−
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9
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2

3A
R3�3

� = 2cos(−1)�; � ∶ the crack angle

Nonlinear Analysis in a Rotor Disc‑Bearing 
System by FEA

Geometric Modeling and Parameters

Geometric Modeling

Figure 6 shows the dynamic model of the rotor-disc-bearing 
system, which consists of a disc, a bearing and a rotating 
shaft. Figure 7 shows the geometric model of the rotor-
disc-bearing system with crack and its geometric position 
relationship.

γ =
(
2� − �2

)0.5

δ = 1 − �

Fig. 6   Dynamic model of the rotor-disc-bearing system

Fig. 7   Geometric model of the rotor-disc-bearing system

Table 1   Parameters of the rotor system

Parameters of the rotor Value

Young’s modulus of elasticity E, 1011 Pa 2.1
Density ρ, kg/m3 7800
Poisson’s ratio μ 0.3
Axis diameter d, m 0.019
Disk diameter D, m 0.153
Thickness of disc, m 0.025
Length of the shaft L, m 1.28
Position of disc L

1
 , m 0.64

Non-dimensional crack depth μ 1
Mass unbalance 0.005 g
Eccentricity of the mass m

e
 , kg 0.0025

Phase unbalance, degree 0
Location of the crack Lcrack , m 0.35

Table 2   Geometric dimensions of the bearing

Parameters of the bearing Value

External race radius r, mm 22.8
Ball diameter d, mm 13.2
Ball number Nb 7
External race mass mw, kg 0.08
Contact stiffness Kb , N/m3/2 11.67 × 109
Bearing clearance γ, mm 0
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Parameters of the Rotor System

The geometric dimension relations of rotor-disc-bearing-
system and bearing are respectively shown in Table 1 and 
Table 2.

Fig. 8   Flow chart of ANSYS 
Simulation on Rotor System

Mesh for Model

Fig. 9   Rotor System Model of without Crack

Fig.10   Rotor System Meshing of without Crack

Fig.11   Rotor System Model of with Crack

Fig.12   Rotor System Meshing of with Crack
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Modelling by ANSYS

Modelling Methodology

The simulated flow chart of the rotor system using ANSYS 
is shown in Fig. 8.

Modelling and Mesh using ANSYS

Rotor System Model and  Meshing of  Without Crack  The 
model and meshing of the rotor system without Crack using 
ANSYS are shown in Figs. 9 and 10.

Rotor System Model and Meshing of with Crack  The model 
and meshing of the rotor system with Crack using ANSYS 
are shown in Figs. 11 and 12.

Fig.13   Result of Campbell diagrams without Crack

Fig.14   Result of Campbell diagrams with Crack

Fig.15   Graph showing Critical Speed of Rotor System without Crack 
and with Crack (Present). *Δ is the difference between the two values 
with and without cracks

Table 3   Critical speed of rotor system without crack and with crack 
critical speed

Modes Without 
crack (pre-
sent)

Without crack 
(Bajpai [18])

With crack 
(Present)

With crack 
(Bajpai 
[18])

1(BW) 4948.3 4947.5 4941.5 4957.7
2(FW) 5758.8 5768.2 5746.5 5784.3
3(BW) 9818.6 9811.2 9812.5 9855.6
4 FW) 9825.6 9829 9823.7 9880.6
5(BW) 14,849 14,855 14,836 14,927
6 FW) None None None None

Fig.16   Graph showing the Natural frequencies of Rotor System with-
out Crack and with Crack (Present). *Δ is the difference between the 
two values with and without cracks
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Simulation Results

Critical Speed Analysis of Shaft Without Crack 
and with Crack

A modal—analysis was investigated the critical speed of 
shaft with crack and without crack by exploitation Campbell 
diagram (Figs. 13, 14 and 15).

The above table and graph shows the calculation results 
of the critical speed on the bearing-disc-rotor system with 
and without crack, and the result value is different from each 
other.

Considering identical material properties, disc specifica-
tions and geometrical parameters the obtained results are 
compared with those of Bajpai [18] as shown in Table 3. An 
excellent agreement could be observed in Table 3 with the 
results thus validating the critical speed analysis of the rotor 
system without crack and with crack.

Natural Frequencies Without Crack and with Crack

The above table and graph shows the calculation results of 
the natural frequency on the bearing-disc-rotor system with 
and without crack, and the result value is different from each 
other (Fig. 16).

Considering identical material properties, disc speci-
fications and geometrical parameters the obtained results 
are compared with those of Bajpai A [18] as shown in 
Table 4. An excellent agreement could be observed in 
Table 4 with the results thus validating the natural fre-
quencies analysis of the rotor system without crack and 
with crack.

Influence of non‑Dimensional Crack Depth and Position 
of the Crack on the Critical Speed

Influence of  Position of  the  Crack on  the  Natural Frequen‑
cies  Table 5 and Fig. 17 show that the value of the natural 
frequency differs from each other according to the position 
of the crack as a result of the comparison of the natural fre-
quency of the bearing-disc-rotor system that follows the 
position of the crack with the natural frequency value when 
there is no crack.

Influence of  Non‑dimensional Crack Depth on  the  Natural 
Frequencies  Table  6 and Fig.  18 show that the contrast 
analysis result with the natural frequency value when there 
was no crack differed according to the non-dimensional 
crack depth with the length of the crack fixed, the change in 

Table 4   Natural frequencies of 
rotor system without crack and 
with crack

Natural frequencies Without crack 
(present)

Without crack (Baj-
pai [18])

With crack (Pre-
sent)

With crack 
(Bajpai [18])

1st frequency (Hz) 89.882 89.672 89.732 89.845
2nd frequency (Hz) 89.892 89.678 89.842 89.907
3rd frequency (Hz) 164.213 163.630 164.162 164.340
4th frequency (Hz) 164.325 163.710 164.256 164.590
5th frequency (Hz) 307.024 306.000 306.825 307.480
6th frequency (Hz) 307.129 306.170 306.908 308.020

Table 5   Influence of position of the crack on the natural frequencies 
(the non-dimensional crack depth μ = 1)

Without 
crack

Position of the crack Lcrack

0.25 m 0.5 m 0.75 m 0.95 m

1st frequency 
(Hz)

89.882 89.745 89.323 89.726 89.821

2nd fre-
quency (Hz

89.892 89.852 89.834 89.843 89.875

3rd frequency 
(Hz)

164.213 163.512 164.192 163.897 164.182

4th frequency 
(Hz)

164.325 164.153 164.316 164.089 164.318

5th frequency 
(Hz)

307.024 306.719 306.847 306.659 306.925

6th frequency 
(Hz)

307.129 307.082 306.912 307.115 307.119

Fig.17   Graph showing the influence of the position of the crack on 
the natural frequencies when the non-dimensional crack depth(μ) is 1
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the natural frequency of the bearing-disc-rotor system fol-
lowed by the change in the non-dimensional crack depth.

Influence Analysis of Eccentricity on the Rotor 
System

The important factors affecting the eccentricity of the rotor 
system are eccentric mass and eccentric distance. Using 
ANSYS program, the relation between eccentricity and non-
linearity was analyzed concretely by changing eccentricity 
distance and eccentricity mass when the rotation number 
was 10000 rpm. The simulation was performed with the 
eccentric distance changed from 0.05 m to 0.3 m and the 
eccentric mass from 0.001 kg to 0.0025 kg (Table 7).

It can be seen from Tables 8, 9, 10 and Fig. 19 that the 
variation of the maximum amplitude when the eccentric 
mass is changed from 0.0025 kg to 0.001 kg is studied. The 
smaller the eccentric mass is, that is, the less than 0.001 kg, 
the effect of the eccentric mass on the rotor system is almost 
linear. Thus, in the eccentric rotor system, the eccentric dis-
tance and the eccentric mass are very important factors.

Discussion

As shown in the above results, the calculation results of the 
critical speed and natural frequency of the bearing-disc-rotor 
system differed with that of crack and no crack. At this time, 
the critical speed and natural frequency of the shaft for the 
crack were slightly smaller than that for no crack. Under 
fixation of the non-dimensional crack depth at μ = 1, the nat-
ural frequency of the rotor system was analyzed by varying 
the position of the crack as 0.25 m, 0.5 m, 0.75 m, and 0.95 
m. The natural frequency gradually decreased at the crack 
near 0.5 m, and then increased slightly passing 0.5 m, how-
ever, all values were smaller than the natural frequency at no 

Table 6   Influence of non-
dimensional crack depth 
on the natural frequencies 
( Lcrack = 0.35m)

Without crack Non-dimensional crack depth μ

0.25 0.5 0.75 1.0

1st frequency (Hz) 89.882 89.845 89.523 89.321 89.121
2nd frequency (Hz) 89.892 89.848 89.835 89.828 89.775
3rd frequency (Hz) 164.213 164.151 164.055 163.788 162.985
4th frequency (Hz) 164.325 164.182 164.146 164.109 164.083
5th frequency (Hz) 307.024 307.012 306.953 306.879 306.695
6th frequency (Hz) 307.129 307.101 307.094 307.065 307.042

Fig.18   Graph showing the influence of non-dimensional crack 
depth on the natural frequencies when the Position of the crack is 
Lcrack = 0.35m

Table 7   Disc center vibration amplitude under different eccentric masses ( m
e
=0.001 kg)

Eccentric Distance (m) 0.05 0.1 0.15 0.2 0.25 0.3

Maximum eccentric Distance amplitude value(× 10–5 m) 1.9851 3.6328 5.4564 6.9531 8.8629 9.8759

Fig.19   Vibration amplitudes relationship of disk core under different 
eccentric distances and eccentric masses
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crack. In addition, when the position of the crack was fixed at 
Lcrack = 0.35m , natural frequency of the shaft was analyzed 
changing the non-dimensional crack depth as 0.25, 0.5, 0.75, 
and 1.0. As the non-dimensional crack depth increased, the 
natural frequency gradually decreased. It can be seen from 
Table 8,9,10 and Fig. 19 that the variation of the maximum 
amplitude when the eccentric mass is changed from 0.0025 
kg to 0.001 kg is studied. The smaller the eccentric mass is, 
that is, the less than 0.001 kg, the effect of the eccentric mass 
on the rotor system is almost linear. Thus, in the eccentric 
rotor system, the eccentric distance and the eccentric mass 
are very important factors. If the eccentricity distance and 
the eccentricity mass are small, that is, under the condi-
tion of the eccentricity distance is less than 0.05 m and the 
eccentricity mass is 0.001 kg, the influence of the eccentric-
ity force on the subsystem is approximately linear. And the 
value of the eccentricity factor is very large, that is, in the 
eccentricity distance is greater than 0.3 m, the mass of the 
eccentricity is greater than 0.0025 kg, we should consider 
the nonlinear effect of the eccentricity force.

Conclusion

In this paper, how to write the dynamic equation of the rotor-
disc-bearing system with and without crack was mentioned 
in detail combining the finite element analysis method with 
Lagrange method. In addition, the critical speed and natural 
frequency of the rotor system with and without crack were 
calculated using the ANSYS program. After that, how the 
non-dimensional crack depth and the position of the crack 
affect the change of the natural frequency of the rotor system 
was analyzed. In the analysis, the position of the crack and 
the non-dimensional crack depth were changed for study-
ing the relationship between these factors and the natural 

frequency of the rotor system. The natural frequency of the 
rotor system involving two factors was smaller than that of 
the uncracked system. By using ANSYS software, the influ-
ence of eccentricity on the rotor system and the relation-
ship between eccentricity and nonlinearity were obtained. 
The result showed that when the eccentric distance and the 
eccentric mass were relatively small, i.e. 0.05 m, 0.001 kg, 
the effect on the eccentric force is almost linear, but when 
the eccentric distance and the eccentric mass were relatively 
large, i.e. 0.1 m, 0.05 kg,the nonlinear effect of eccentric 
forces must be considered.
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