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Abstract
Most of the dynamic systems are inherently nonlinear either with stiffness nonlinearity or with damping nonlinearity. Pres-
ence of nonlinearity often leads to characteristic behaviours in response such as jump phenomenon, limit cycle and super-
harmonic resonances. Such behviours can be accurately predicted only if the nonlinearity structure and related parameters 
are properly known. A majority of identification works is based on a-priori knowledge of nonlinearity structure and most 
of them consider only stiffness nonlinearities. Not much work has been reported on identification and parameter estimation 
in the area of damping nonlinearities. This paper presents a systematic classification of asymmetric damping nonlinearity 
and develops a parameter estimation algorithm using harmonic excitation and response amplitudes in terms of higher order 
Frequency Response Functions. The asymmetry in damping nonlinearity is modeled as a polynomial function containing 
square and cubic nonlinear terms and then Volterra series is employed to derive the response amplitude formulation for 
different harmonics using synthesied higher order Frequency Response Functions. Detailed numerical study is carried out 
with different combinations of square and cubic nonlinearity parameters to investigate appropriate excitation level and 
frequency so as to get measurable signal strength of second and third harmonics and at the same time keeping the Volterra 
series approximation error low. The estimation algorithm is first presented for nonlinear parameters and then it is extended 
for estimation of linear parameters including damping ratio. It is demonstrated through numerical simulation that nonlinear 
damping parameters can be accurately estimated with proper selection of excitation level and frequency.

Keywords  System identification · Parameter estimation · Volterra series · Nonlinear damping · Higher order frequency 
response functions

Introduction

Identification of dynamic systems from input–output data 
has gained considerable importance in the recent past. 
Dynamic responses can be predicted accurately only if the 
system model is known in terms of its mathematical struc-
ture and physical parameters. Identification procedures of a 
linear dynamic system are, by now, well established. How-
ever, identification problem is more involved for a non-linear 
system, where it requires both; identification of the non-
linearity structure as well as estimation of the parameters 

associated with the model. Presence of nonlinearity leads 
to certain response characteristics such as limit cycle, jump 
phenomenon, super-harmonic resonances etc. and such 
behaviours can be predicted only if the nonlinearity struc-
ture and related parameters are properly known. Most of the 
nonlinear system identification research works is based on 
a-priori knowledge of nonlinearity structure and the most 
common example is Duffing’s oscillator with cubic stiffness 
nonlinearity. Recently, other types of nonlinearities also 
such as bilinear stiffness nonlinearity due to crack initiation, 
damping nonlinearity in a vibration absorber or p-th power 
stiffness nonlinearity exhibited by rolling element bearing, 
have been discussed by researchers highlighting specific 
response characteristics.

In mechanical and structural systems, nonlinearities are 
generally modeled through polynomial form, though non-
polynomial forms such as quadratic damping, hysteretic 
damping, coulomb damping, bilinear stiffness etc. (Nayfeh 
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[1]) are also observed in the physical systems. Nayfeh [2] 
proposed a method to identify nonlinear character of a 
system, investigating presence of self-oscillatory terms 
or hysteresis in a free vibration test; perturbing the sys-
tem about equilibrium positions. Bendat et al. [3] devel-
oped a general identification technique from measured 
input–output stochastic data for a wide range of nonlin-
earities including Duffing’s oscillator, Van-der Pol oscil-
lator, dead band and clearance nonlinearity. Tiwari and 
Vyas [4] discussed procedures for estimation of nonlinear 
elastic parameters of rolling element bearing based on the 
analysis of random response signals measured from bear-
ing housing vibration. Rice and Fitzpatrick [5] presented 
a spectral density approach, based on ‘reverse path analy-
sis’, for measurement of nonlinear damping in a single-
degree-of-freedom system. Balachandran et al. [6] studied 
free oscillation of a pair of quadratically and cubically 
coupled oscillators with nonlinear damping and investi-
gated nonlinear interactions between the structural modes. 
The study was further extended using bispectral analy-
sis and higher order spectra by Khan and Balachandran 
[7]. Bikdash et al. [8] analysed nonlinear roll dynamics 
of ships using Melnikov equivalent damping coefficients 
for linear plus quadratic damping and linear plus cubic 
damping. Balachandran [9] obtained analytical approxi-
mations for higher order spectra and coherence functions 
using Method of Multiple Scales for quadratically coupled 
oscillators having stiffness nonlinearity. Numerical stud-
ies were carried out to validate the analytical predictions.

Above methods belong to the class of parametric iden-
tification techniques, where sufficient a-priori information 
about the nonlinearity class or structure is available. The 
identification in such cases reduces to estimation of system 
parameters through a search in parametric space. Non-
parametric identification concerns modeling in function 
space by input–output mapping, for systems where suf-
ficient information on the mathematical structure or non-
linearity class is not known. Volterra series [10, 11], which 
is a functional series, has recently come up as an efficient 
mathematical tool for non-parametric modeling and iden-
tification of nonlinear systems. Using Volterra series, 
response of a general nonlinear system under harmonic 
excitation can be expressed in terms of first and higher 
order frequency response functions (FRFs). Chatterjee and 
Vyas [12, 13] developed a parameter estimation algorithm 
based on recursive iteration of first and third order Volt-
erra kernel transforms and used it for nonlinear stiffness 
identification of rotor bearing system. Similarly Volterra 
series based nonlinear output frequency response functions 
(NORFRs) have been employed for response analysis and 
kernel identification in [14–17]. Volterra series has been 
also used for parameter estimation in oscillators with bilin-
ear stiffness asymmetry [18].

Some other methods used by researchers for analysis and 
characterisation of response under harmonic excitation are 
perturbation technique [19] and Harmonic Balance Method 
[20]. Harmonic balance method gives the harmonic ampli-
tudes in an implicit equation form, where as Volterra series 
formulates the harmonic amplitudes in an explicit series 
form, which is easy to compute but due to error resulting 
from series truncation, excitation frequency and excitation 
level are to be selected carefully [21]. A comprehensive sur-
vey on nonlinear system identification can be found in the 
review paper [22] by Noel and Kerschen.

Recently, researchers have focussed in the applictions 
involving symmetric and asymmetric nonlinear damping. 
Elliot et al. [23] studied n-th power nonlinear damping using 
harmonic balance method and estimated the equivalent 
damping that can fairly represent the nonlinear attenuation 
in the response amplitude. Shum [24] introduced a quadrati-
cally nonlinear viscous damping in parallel to a tuned mass 
damper for vibration absorber application and observed that 
a small nonlinear damping can significantly enhance the role 
of viscous damping in TMD. Habib et al. [25] considered 
single-degree-of-freedom system with polynomial form of 
nonlinear damping consisting cubic and fifth power terms 
and studied generation of isolated resonance curves (IRC) in 
the frequency response spectrum. Adhikari and Woodhouse 
[26] studied identification of non-viscously damped system 
parameters, where damping force is formulated through an 
integral operator. They found that the system gives nonlin-
ear Eigen value problem with additional Eigen modes. All 
these works mainly considered symmetric form of damp-
ing nonlinearity. Similarly, studies on asymmetric damping 
nonlinearity can be found in applications involving shock 
absorbers, energy harvestors [27–29].

Thus, extensive research has been done in the area of 
analysis and characterisation of nonlinear systems, particu-
larly for systems involving stiffness nonlinearity. However, 
very few research works are available in the area of identi-
fication and parameter estimation in systems with damping 
nonlinearity. A recent study discussing identification and 
parameter estimation of symmetric cubic damping nonlin-
earity can be found in [30].

The proposed work in this presentation attempts to 
develop a well structured methodology for identification and 
parameter estimation in systems with asymmetric damping 
nonlinearity. Here, we first present identification between 
symmetric and asymmetric nonlinearity structures and then 
asymmetric damping nonlinearity is classified from asym-
metric stiffness nonlinearity (Sect. 2). In Sect. 3, nonlinear 
response is formulated using Volterra series and higher order 
FRFs, which are then synthesised for the specific case of 
asymmetric damping nonlinearity. In Sect. 4, dependance 
of signal strength and measurability of second and third 
harmonics on excitation frequency selection and excitation 
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level is investigated. Simultaneously, error in Volterra series 
approximation of these harmonic amplitudes is also stud-
ied to find most suitable excitation frequency and excita-
tion level. In Sect. 5, parameter estimation algorithm based 
on single term Volterra series is developed and procedures 
are presented step by step. Through numerical simulation, 
parameter estimation errors in both linear and nonlinear 
damping are studied for different excitation frequency and 
varying excitation level. In Sect. 6, robustness of the esti-
mation algorithm is investigated against random error and 
bias error in response measurement and signature analysis 
in practical situations.

Mathematical Models and Harmonic 
Response Analysis of Nonlinear Systems

A single degree of freedom system with a general form of 
nonlinearity can be represented by the equation of motion,

Here FD is the dissipative or damping force, FR is the elas-
tic restoring force, x(t) is the system response and f(t) is the 
excitation force. The nonlinearity can be present in either 
damping force or in restoring force or in both. It can be clas-
sified as symmetric or asymmetric nonlinearity; further as a 
polynomial function model (such as Duffing oscillator) or a 
transcendental function model (i.e., quadratic damping) or a 
piecewise continuous function model (such as bilinear stiffness 
oscillator). Thus, there exists wide variety of nonlinearities, 
each with its own characteristic response behaviour. Identi-
fication of the particular nonlinearity type and estimation of 
associated linear and nonlinear parameters are important for 
reliable and accurate prediction of the dynamic response. In 
the following presentation in this section, we first define sym-
metric and asymmetric nonlinearity with examples and explain 
how one can be distinguished from the other type. We, then 
study response behaviour of assymetric stiffness nonlinerity 
and assymetric damping nonlinearity to note the distinctions 
which can be used to identify an assymetric damping case.

(a)	 Symmetric nonlinearity
	   A system with symmetric nonlinearity will satisfy 

the condition,

	   Common examples are,

1.	

(1)mẍ(t) + FD[ẋ(t)] + FR[x(t)] = f (t).

(2)
FD[ẋ(t)] = −FD[−ẋ(t)] and FR[x(t)] = −FR[−x(t)].

(3a)
Duffing’s oscillator with FR[x(t)] = k1x(t) + k3x

3(t).

2.	

3.	

4.	

(b)	 Asymmetric nonlinearity
	   A system with asymmetric nonlinearity will satisfy 

the condition,

Common examples are,

1.	

2.	

3.	 Bi-linear oscillator with restoring force given by,

4.	
5.	 Piecewise linear stiffness or Piecewise linear damping 

such as clearance nonlinearity, backlash or dead zone 
and saturation nonlinearity etc.

Nonlinearity structures in both symmetric and asym-
metric groups can further be of two types. First type is 
nonlinearity of pure polynomial form such as given in 
Eqs. 3a, 4a, 6 and 7. Second type includes those which 
are of non-polynomial forms such as given in Eqs. 3b, 4b, 
9, 10 and that of piecewise linear forms as given in type 
v) under asymmetric group. As long as these non-polyno-
mial functions are continuous within the range of response 
amplitude and it is a case of weak nonlinearity, such non-
polynomial form of nonlinearity can be approximated by 
a polynomial form [18]. In our present discussion we will 
consider nonlinearities in polynomial forms only. This 
consideration will provide easy sysnthesis of higher order 
frequency response functions using Volterra series.

Under harmonic excitation, a linear system response 
will have only the harmonic at excitation frequency in its 
response spectrum, whereas a nonlinear system will have 
higher harmonics also. Again, a symmetric nonlinearity 
will have only the odd harmonics in its response spec-
trum, whereas an asymmetric nonlinearity will have both 
even and odd harmonics. This has been well discussed in 
[30], and using this method of response characterisation, 
one can identify an asymmetric nonlinearity. However, the 

(3b)
Quadratic stiffness with FR[x(t)] = k2x(t)|x(t)|.

(4a)
Cubic damping with FD[ẋ(t)] = c1ẋ(t) + c3ẋ

3(t).

(4b)
Quadratic damping with FD[ẋ(t)] = c2ẋ(t)|ẋ(t)|.

(5)
FD[ẋ(t)] ≠ −FD[−ẋ(t)] or FR[x(t)] ≠ −FR[−x(t)].

(6)
Asymmetric damping with FD[ẋ(t)] = c1ẋ(t) + c2ẋ

2(t) + c3ẋ
3(t).

(7)
Asymmetric stiffness with FR[x(t)] = k1x(t) + k2x

2(t) + k3x
3(t).

(8)
FR[x(t)] = kx(t)ifx(t) > 0orFR[x(t)] = 𝛼kx(t)ifx(t) < 0, 𝛼 < 1

(9)Coulomb damping with FD[ẋ(t)] = ±𝜇N.
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question still remains whether the nonlinearity is in damp-
ing or it is in the stiffness.

Identification Between Asymmetric Damping 
and Asymmetric Stiffness Nonlinearities

In a polynomial form of nonlinearity, asymmetry comes 
from the even powers of displacement or velocity. The first 
even power comes from the square term in the asymmet-
ric nonlinearity model. However, we consider an extended 
model upto cubic term as it presents more general cases of 
asymmetry. We first consider asymmetric stiffness nonlin-
earity, for which the equation of motion, under harmonic 
excitation force, becomes,

Here, the polynomial model is considered upto cubic term 
just for keeping the model simple and yet general.

Characteristic variation of harmonic response amplitude 
over a range of excitation frequency is computed through 
numerical simulation with m1 = 1.0, k1 = 1.0 and c1 = 0.1 (5% 
damping factor). These values are selected as they repre-
sent non-dimensional or normalised values (to be discussed 
in section “Harmonic Probing and Nonlinear Response 
Analysis Using Volterra Series”). Natural frequency in nor-
malised form becomes equal to 1. Two sets of nonlinear 
stiffness coefficients are considered as k2 = 0.02, k3 = 0.1 
and k2 = 0.05, k3 = 0.1. The first, second and third har-
monic amplitudes are fourier filtered from the numerically 

(10)
mẍ(t) + c1ẋ(t) + k1x(t) + k2x

2(t) + k3x
3(t) = f (t) = A cos (𝜔t).

(a) First harmonic amplitude

(c) Third harmonic amplitude
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Fig. 1   Response harmonic amplitude for asymmetric stiffness nonlinearity, ( k2 = 0.02, k3 = 0.1)
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simulated time response x(t) and are plotted in Figs. 1 and 
2 as shown below. 

Similarly for asymmetric damping nonlinearity, the equa-
tion of motion is considered as,

Two sets of nonlinear damping coefficients are considered 
as c2 = 0.02, c3 = 0.1 and c2 = 0.05, c3 = 0.1. First, second 
and third harmonic amplitudes, obtained from numerically 
simulated response, are shown in Figs. 3, 4.

One can clearly note that in case of stiffness nonlinear-
ity, there occurs jump phenomenon in all the harmonics, but 
no such jump phenomenon is seen for damping nonlinear-
ity. Also, the third harmonic amplitude at natural frequency 
is bigger than that at one-third ntural frequency for damping 

(11)mẍ(t) + c1ẋ(t) + c2ẋ
2(t) + c3ẋ

3(t) + k1x(t) = A cos𝜔t.

nonlinearity, whereas for stifness nonlinearity it is otherwise. 
These characteristics provide a mechanism to distinguish 
asymmetric damping nonlinearity from asymmetric stiffness 
nonlinearity.

Upto this step, we have discussed how to identify whether 
the system nonlinearity is an asymmetric damping nonlinearity 
or not. Once it is identified, next step is to estimate the nonlin-
ear and then linear parameters in Eq. (11). Here, we use Vol-
terra series response formulation in terms of first and higher 
order FRFs for approximating measured harmonic amplitudes 
under a single-tone harmonic excitation.
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Fig. 2   Response harmonic amplitude for asymmetric stiffness nonlinearity ( k2 = 0.05,k3 = 0.1)
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Volterra Series Based Nonlinear Response 
Formulation Under Harmonic Excitation

A general physical system in terms of Volterra series is rep-
resented by an input excitation force f (t) and output response 
x(t),

(12)

x(t) =

∞

∫
−∞

h1
(
�1
)
f (t − �1)d�1

+…

∞

∫
−∞

…

∞

∫
−∞

hn
(
�1, �2,… , �n

)
f
(
t − �1

)
… f

(
t − �n

)
d�1 … d�n

= x1(t) + x2(t) +⋯ + xn(t) +⋯ ,

where, hn
(
�1, �2,… , �n

)
 are known as nth order Volterra 

kernel and its Fourier Transform provides the nth order fre-
quency response functions (FRFs) or Volterra kernel trans-
forms as,

F o r  a  h a r m o n i c  e x c i t a t i o n  w i t h 
f (t) = A cos (�t) =

A

2
ej�t +

A

2
e−j�t , the first three response 

components, following Eq. (11), become,

(13)

Hn

(
�1,�2,… ,�n

)
=

∞

∫
−∞

…

∞

∫
−∞

hn
(
�1, �2,… , �n

) n∏
i=1

e−j�i�id�1 … d�n.

(14a)x1(t) =
A

2
H1(�)e

j�t +
A

2
H1(−�)e

−j�t,

(a) First harmonic amplitude
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Fig. 3   Response harmonic amplitudes for asymmetric damping nonlinearity, ( c2 = 0.05, c3 = 0.1)
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Total response, x(t) can be then expressed as,

(14b)
x2(t) =

A2

2
H2(�,−�) +

A2

4
H2(�,�)e

j2�t +
A2

4
H2(−�,−�)e

−j2�t,

(14c)

x3(t) =
A3

8
H3(�,�,�)e

j3�t +
3A3

8
H3(�,�,−�)e

j�tx(t)

= x1(t) + x2(t) +⋯ =

∞∑
n=1

(
A

2

)n ∑
p+q=n

nCqH
p,q
n
(�)ej�p,qt

+
3A3

8
H3(�,−�,−�)e

−j�t +
A3

8
H3(−�,−�,−�)e

−j3�t,

where, Hp,q
n (�) = Hn

⎛⎜⎜⎜⎝
�,�,…
⏟⏟⏟
p times

,−�,−�,…
⏟⏞⏞⏞⏟⏞⏞⏞⏟

q times

⎞⎟⎟⎟⎠
, �p,q = (p − q)� and nCq =

n!

(n−q)!q!
.

The nonlinear response (Eq. 15) can be written in terms 
of various harmonic amplitudes as,

(15)

x(t) = x1(t) + x2(t) +⋯ =

∞∑
n=1

(
A

2

)n ∑
p+q=n

nCqH
p,q
n
(�)ej�p,qt,

(a) First harmonic amplitude

(c) Third harmonic amplitude
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Fig. 4   Response harmonic amplitudes for asymmetric damping nonlinearity, ( c2 = 0.1, c3 = 0.05)
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where, response amplitude of mth harmonic X(mω) can be 
obtained as,

First, second and third harmonic amplitudes, using 
Eq. (17), can be expressed in a series form as,

Above equations are well known already [12, 13] and 
presented here in brief for ease of understanding of further 
work, which uses Volterra series, but specific to a new 
nonlinearity type, i.e., asymmetric damping nonlinearity. 
Equations (18a–c) are general for the whole class of non-
linear systems, but become specific when we use specific 
sythesis of higher order FRFs in the harmonic amplitude 
equations. In the following section, we first derive the syn-
thesis formula for the higher order FRFs for the specific 
case of asymmetric damping nonlinearity.

Synthesis of Higher Order FRFs for Asymmetric 
Damping Nonlinearity

Equation (15), upon differentiation, gives the series form 
for velocity ẋ(t) as,

(16)
x(t) = X0 + |X(�)| cos (�t + �1

)
+ |X(2�)| cos (2�t + �2

)
+⋯ ,

(17)X(m�) =

∞∑
i=1

2
(
A

2

)m+2i−2
m+2i−2Ci−1H

m+i−1,i−1

m+2i−1
(�),

(18a)

X(�) = AH1(�) +
3

4
A
3
H3(�,�,−�)

+
5

8
A
5
H5(�,�,�,−�,−�) +⋯ ,

(18b)X(2�) =
A2

2
H2(�,�) +

A4

2
H4(�,�,�,−�) +⋯ ,

(18c)

X(3�) =
A3

4
H3(�,�,�) +

5

16
A5H5(�,�,�,�,−�) +⋯ .

Substituting Eqs. (15) and (19) in Eq. (11), one obtains,

Equating coefficients of 
(

A

2

)n

ej�p,qt both sides in 
Eq. (20), n = 1, 2, 3…., one obtains,

For n > 1,
Coefficient of 

(
A

2

)n

ej�p,qt in first line of Eq. (20) gives,

such that, p1 + q1 = n1, p2 + q2 = n2, p3 + q3 = n3 and 
n1 + n2 + n3 = n.

Coefficient of 
(

A

2

)n

ej�p,qt . in second line of Eq. (20) is

such that, p1 + q1 = n1, p2 + q2 = n2 and n1 + n2 = n.
Coefficient of 

(
A

2

)n

ej�p,qt in third line of Eq. (20) is,

such that, p1 + q1 = n1, p2 + q2 = n2, p3 + q3 = n3 and 
n1 + n2 + n3 = n.

Sum of all these terms coming from LHS of Eq. (20) 
will be zero as there is no such term on the RHS for n > 1. 
Therefore,

(19)ẋ(t) =

∞∑
n=1

(
A

2

)n ∑
p+q=n

j𝜔p,q
nCqH

p,q
n
(𝜔)ej𝜔p,qt.

(20)

∞∑
n=1

(
A

2

)n ∑
p+q=n

nCqH
p,q
n
(�)ej�p,qt

[
−m�2

p,q
+ k1 + jc1�p,q

]

+ c2

[
∞∑
n=1

(
A

2

)n ∑
p+q=n

j�p,q
nCqH

p,q
n
(�)ej�p,qt

]2

+ c3

[
∞∑
n=1

(
A

2

)n ∑
p+q=n

j�p,q
nCqH

p,q
n
(�)ej�p,qt

]3

=
A

2
ej�t +

A

2
e−j�t.

(21)H1(�) =
1(

−m�2 + k1 + jc1�
) , for n = 1.

(22)nCqH
p,q
n
(�)

[
−m�2

p,q
+ k1 + jc1�p,q

]
=

nCqH
p,q
n (�)

H1

(
�p,q

) ,

(23)
c2

∑{
j�p1,q1

n1Cq1
Hp1,q1

n1
(�)

}{
j�p2,q2

n2Cq2
Hp2,q2

n2
(�)

}
,

(24)c3

∑{
j�p1,q1

n1Cq1
Hp1,q1

n1
(�)

}{
j�p2,q2

n2Cq2
Hp2,q2

n2
(�)

}{
j�p3,q3

n3Cq3
H

p3,q3
n3

(�)
}
,

(25)

nCqH
p,q
n (�)

H1

(
�p,q

) + c2

∑{
n1Cq1

Hp1,q1
n1

(�)
}{

n2Cq2
Hp2,q2

n2
(�)

}

+ c3

∑{
j�p1,q1

n1Cq1
Hp1,q1

n1
(�)

}{
j�p2,q2

n2Cq2
Hp2,q2

n2
(�)

}{
n3Cq3

H
p3,q3
n3

(�)
}
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This gives,

The synthesis formulation as obtained above gives second 
order and third order FRFs as,

Equation (27) shows that second order FRF is related to 
square nonlinearity parameter c2 only and Eq. (28) shows 
that third order FRF is related to both c2 and c3. In addition 
they are also explicitly related to frequency ω.

Above equations simplify formulation and analysis of 
nonlinear response and form the basis for nonlinear parme-
ter estimation. In next sections, we first carry out response 
analysis and characterisation for systems with asymmetric 
damping nonlinearity, investigate the behaviours with the 
help of Volterra series based harmonic amplitude formula-
tions and then study signal measurabilty and volterra series 
truncation error to decide appropriate excitation level and 
excitation frequency for estimation of nonlinear and linear 
parameters.

Harmonic Probing and Nonlinear Response 
Analysis Using Volterra Series

Equation (11) is numerically solved for a given harmonic 
excitation and first, second and third harmonic amplitudes 
are filtered out from the measured response using Fourier 
filtering technique. A parametric study is then carried out 
to investigate effect of varying nonlinear parameters on the 
amplitude of these harmonics. This parametric study is done 
with non-dimensionl form of Eq. (11) given by,

(26)

ncqH
p,q
n (�)

H1

(
�p,q

) = −c2
∑

pi + qi = ni
n1 + n2 = n

{
j�p1,q1

n1cq1H
p1,q1
n1

(�)
}{

j�p2,q2

n2cq2H
p2,q2
n2

(�)
}

− c3

∑

pi + qi = ni
n1 + n2 + n3 = n

{
j�p1,q1

n1cq1H
p1,q1
n1

(�)
}{

j�p2,q2

n2cq2H
p2,q2
n2

(�)
}{

j�p3,q3

n3cq3H
p3,q3
n3

(�)
}
.

(27)H2(�,�) = c2�
2H2

1
(�)H1(2�),

(28)H3(�,�,�) = H3
1
(�)H1(3�)

{
4c2

2
�4H1(2�) + jc3�

3
}
.

where,

with the normalised form of nonlinear damping parameters 
given by,

Here, all derivatives are with respect to non-dimensional 
time � and frequency is represented in normalised form, 
Ω =

�

�n

 , such that the first order FRF becomes,

Then the non-dimensional form of harmonic amplitudes 
given by Volterra series will be,

Above expressions are in terms of higher order FRFs, which 
can be expanded in terms of first order FRF and nonlinear 
parameters using Synthesis formulation given in Eq. (26) to 
give,

(29)
���(�) + 2� � (�) + �(�) + �2

2
� (�) + �3

3
� (�) = cos (Ω�),

� =
x

Xs

=
x

A∕k
, Ω =

�

�n

, � = �nt,

d

dt
= �n

d

d�
and

d2

dt2
= �2

n

d2

d�2
.

(30)�2 =
c2A�

2
n

k2
1

and �3 =
c3A

2�3
n

k3
1

.

(31)H1(Ω) =
1(

1 − Ω2
)
+ j2�Ω

(32)
�(Ω) = H1(Ω) +

3

4
H3(Ω,Ω,−Ω) +

5

8
H5(Ω,Ω,Ω,−Ω,−Ω) +⋯ ,

(33)�(2Ω) =
1

2
H2(Ω,Ω) +

1

2
H4(Ω,Ω,Ω,−Ω) +⋯ ,

(34)

�(3Ω) =
1

4
H3(Ω,Ω,Ω) +

5

16
H5(Ω,Ω,Ω,Ω,−Ω) +⋯ .

�(Ω) = H1(Ω) + series first term

−
1

4
H3

1
(Ω)H1(−Ω)

{
�2
2
4Ω4H1(2Ω) + 3c3jΩ

3
}
+ series second term,
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For weakly nonlinear system, values of nonlinear param-
eters, β2 and β3 will generally be very small and can be con-
trolled by excitation force magnitude (Eq. 30). For small para-
metric values, we can simplify the series expressions given 
in Eqs. (35)–(37), truncating them to their first term only as 
given below,

Single term approximation of above amplitude series 
expressions, help to simplify the mathematical and computa-
tional work but this introduces a truncation error which will 
be higher for higher parametric values. Smaller values of 
β2 and β3 will keep the error negligible but then second and 
third harmonic amplitudes will be much smaller than first 
harmonic amplitude and may not be distinctly measurable or 
visible in the response spectrum. This calls for a parametric 
response analysis to design or select proper excitation force 
level and excitation frequency range, so that error in Volt-
erra series truncation is sufficiently small and yet the signal 

(35)

1

16
Ω4H4

1
(Ω)H2

1
(−Ω)

×
{
16Ω2�4

2
H1(2Ω)

(
2H1(Ω)H1(2Ω) + H1(−Ω)H1(−2Ω) + 6H1(2Ω)H1(3Ω) − 3H1(3Ω)H1(−2Ω)

)

+ 2JΩ�2
2
�3
(
4H1(Ω)H1(2Ω) − H1(−�)H1(2Ω) + H1(−Ω)H1(−2Ω) + 5H1(2Ω)H1(3Ω) − H1(−2Ω)H1(3Ω)

+4H1(2Ω)
2 − 2H1(2Ω)H1(−2Ω)

)
+9�2

3
(−2H1(Ω) + H1(−Ω) − H1(3Ω))

}
series third term

�(2Ω) =
1

2
�2Ω

2H2
1
(Ω)H1(2Ω) series first term

(36)
−

3

4
Ω5�2H

3
1
(Ω)H1(−Ω)H1(2Ω)

×
{(

4

3
Ω�2

2
H1(Ω) + 4Ω�2

2
H1(3Ω) + 2jc3

)
H1(2Ω) + j�3

(
H1(Ω) + H1(3Ω)

)}
series second term,

(37)

�(3Ω) =
1

4
H3

1
(Ω)H1(3Ω)

{
�2
2
4Ω4H1(2Ω) + �3jΩ

3
}

series first term

−
1

16
Ω6H4

1
(Ω)H1(−Ω)H1(3Ω)
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16Ω2�4

2
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(
12H1(4Ω)H1(3Ω) + 2H1(4Ω)H1(2Ω) + 3H1(Ω)H1(2Ω) + 6H1(3Ω)H1(2Ω)
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+ 12JΩ�2
2
�3
(
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2
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series second term.

(38)�(Ω) ≈ �1(Ω) = H1(Ω),

(39)�(2Ω) ≈
1

2
H2(Ω,Ω) =

1

2
�2Ω

2H2
1
(Ω)H1(2Ω),

(40)
�(3Ω) ≈

1

4
H3(Ω,Ω,Ω) =

1

4
H3

1
(Ω)H1(3Ω)

{
�2
2
4Ω4H1(2Ω) + �3jΩ

3
}
.

strength of second and third harmonic are good enough to 
be measurable.

Measurability Study and Characteristic Dependance 
of Harmonic Amplitudes on Nonlinear Parameters

A fundamental problem associated with experimental meas-
urements in a nonlinear system is that the measured signal 
strength of higher harmonics are often much smaller and can 
get easily overlooked or immersed in the baseline noise spec-
trum. As given above, Eq. (39) shows that the signal strength 
of second harmonic with respect to first harmonic will be of 
the order of the nonlinear parameter, β2, which will gener-
ally be very small; of the same order as nonlinear damping 
coefficient, c2. Similarly Eq. (40) shows that third harmonic 
amplitude with respect to first harmonic will be of the order 
of nonlinear parameter, β3. We can use these equations to get 
an approximate idea of measurability of second and third 
harmonics, but the approximation error will be much higher 
near the resonant frequency (this will be discussed through 
Figs. 11, 12, 13 and 14 in next Sect. 4.2). To get better quan-
titative values of measurability of higher harmonics, a set of 
numerical simulations are carried out by considering a range 
of nonlinear parameters over a frequency range of Ω = 0.3 to 
1.6 and harmonic amplitudes, �(Ω) , �(2Ω) and �(3Ω) , are fil-
tered out from the measured response. The excitation level, 
A, (which indirectly controls the value of nonlinear parameter 
�2, �3 (Eq. 11), even if the damping nonlinearity parameters 
c2 and c3 remains same) is selected so that the second and 
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third harmonic amplitude is measurable (the word ‘measur-
able’ used by us here mean that these harmonic amplitudes are 
at least greater than 1% of fundamental harmonic amplitude 
in low frequency zone). In Figs. 5, 6, and 7, variation in first, 
second and third harmonic amplitudes are plotted over the 
frequency range Ω = 0.3 to 1.6 for different levels of nonlinear 
parameters, �2, �3.

From above figures (Figs. 5, 6, 7), some important and 
interesting response characteristics are observed (these char-
acteristics are then explained with the harmonic amplitude 
expressions given in Eqs. (38)–(40)).

1.	 Third harmonic amplitude increases as β3 increases 
and the amplitude is relatively much higher around fre-
quencies 0.33 and 1.0 (Figs. 5(iii), 6(iii), 7(iii)). This 
observation is very important from the point of view of 
measurability of third harmonic, which indicates that to 
measure third harmonic amplitude, excitation frequency 
should be around 0.33 or 1.0. However, for final deci-
sion, error due to series truncation also needs to be con-
siderd.

2.	 First harmonic amplitude decreases as β3 increases 
(Figs. 5(i), 6(i), 7(i)).

3.	 Here β2 has been kept constant and β3 has been varied. 
So second harmonic amplitude should not have changed. 
But it changes and rather second harmonic amplitude 
decreases as β3 increases (Figs. 5(ii), 6(ii), 7(ii)). This 
amplitude gets higher around the frequency 0.5 and 1.0.

Now we try to provide justification/validation of the obser-
vations on the basis of Voltera series-based harmonic ampli-
tude expressions as given in Eqs. (38)–(40).

Explanations on Observation (i)

From Eq. (40), it can be seen that third harmonic amplitude 
is proportional to β3 and hence amplitude increases as β3 
increases. Also it can be seen from the equation that third 
hamonic amplitude is proportional to H3

1
(Ω)H1(3Ω) . This is 

the reason why the amplitude is relatively higher at Ω = 1 and 
at 0.33.

Explanation on Observation (ii)

The variation in First harmonic amplitude with different non-
linear parameter set can be attributed to varition in equiva-
lent linearised damping, which depends on the contribution 
from nonlinear damping. Energy dissipation in one cycle of 
a system with damping equal to ceq will be �ceq�X2 . Now, 
for the system with asymmetric damping with square and 
cubic terms, energy dissipated in one cycle (taking first order 
approximation of the response as x(t) = X sin�t and substitut-
ing, �t = � ) can be found to be

which gives,

which, in normalised form, becomes

Thus with increasing β3, equivalent linearised damping 
value increases and hence first harmonic amplitude decreases 
over the complete frequency range and significantly near the 
natural frequency. Equation (43) is an important result as it 
will help us to estimte linear damping ξ from measurement 
of equivalent damping ξeq, once nonlinear parameter β3 is 
estimated.

Explanation on Observation (iii)

If we look at Eq. (39), second harmonic amplitude does 
not depend on β3, and yet second harmonic is found to be 
decreasing with increasing β3. This is because, with increas-
ing β3 harmonic amplitudes H1(Ω) decreases (as explained in 
previous point) and that makes second harmonic to decrease.

We now present figures (Figs. 8, 9, 10) where, β3 has been 
kept constant and β2 is varied.

Following observations can be made on the characteristic 
variation in the harmonic amplitudes, with respect to con-
stant β3 and varying β2.

1.	 Third harmonic gets bigger around frequency 0.33 and 
1.0 (Figs. 8(iii), 9(iii), 10(iii)) but does not change much 
as β2 varies. This can be explained by square power 
term of β2 in Eq. (40) for which its contribution is much 
smaller.

2.	 Second harmonic amplitude increases sharply at fre-
quency 0.5 (Figs. 8(ii), 9(ii), 10(ii)) as β2 increases. 
This observation is very important for measurability of 
second harmonic and can be explained on the basis of 
Eq. (39)

3.	 First harmonic amplitude has no significant change as β2 
varies (Figs. 8(i), 9(i), 10(i)). This is because equivalent 

(41)

∫ Fddx =

T

∫
0

Fdẋ(t)dt =

T

∫
0

(
c1ẋ(t) + c2ẋ

2(t) + c3ẋ
3(t)

)
ẋdt

=

2𝜋

∫
0

(
c1𝜔X

2 cos2 𝜃 + c2𝜔
2X3 cos3 𝜃 + c3𝜔

3X4 cos4 𝜃
)
d𝜃

= 𝜋c1𝜔X
2 +

3

4
𝜋c3𝜔

3X4

(42)
�ceq�X

2 = �c1�X
2 +

3

4
�c3�

3X4 such that

ceq = c1 +
3

4
c3�

2X2,

(43)�eq = � +
3

8
�3Ω

2�
2
.
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linearised damping (Eq. 43) does not depend on square 
nonlinear parameter, β2.

Study of Series Truncation Error in Measured 
Harmonic Amplitudes

Equation (29) is numerically solved for a range of nonlinear 
parameters and first three harmonic amplitudes are filtered 
out from the response. These amplitudes are then compared 
(Figs. 11, 12) with synthesised harmonic amplitudes as 
given in Eqs. (38)–(40), which are based on single-term 
Volterra series approximation.

From the comparison of first harmonic amplitudes in 
Figs. 11a, 12a, one can note that error in Volterra series 

approximation becomes large in frequency range 0.6 to 
1.4. Hence for estimation of linear modal parameters, i.e., 
natural frequency and linear damping ratio, excitation fre-
quency should be selected excluding this high error zone. 
For second harmonic amplitude, Volterra series approxima-
tion deviates considerably from exact value near one-half of 
natural frequency and natural frequency. Similarly, for third 
harmonic amplitude, error in Volterra series approximation 
grows significantly near one-third of natural frequency and 
natural frequency. However, these frequencies are ideal for 
measurement of higher harmonics as maximum measurabil-
ity occurs at these frequencies as can be seen in Figs. 5, 6, 
7, 8, 9 and 10. To get a better idea, error between numeri-
cally simulated value and approximated single term Volterra 
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series value is computed in a short range of ω/ωn = 0.3 to 
0.7 in above cases and the error variations are presented in 
Figs. 13, 14 below.

Selection of Harmonic Excitation Level 
and Frequency

From Figs. 13 and 14, it can be seen that error becomes very 
small near the frequency ratio of 0.4 and 0.6, with 0.4 having 
even smaller error than 0.6. Measurability of second and third 
harmonics are moderately good at frequency ratio of 0.4 and 
0.6, specifically 0.4 is better than 0.6 for second harmonic 
and 0.6 is better than 0.4 for third harmonic. Based on these 

factors, both 0.4 and 0.6 are recommended as the frequency 
ratio to be used for measurement of higher harmonic ampli-
tudes in experimentation. The selection of excitation level can 
be decided from the measurability so as to get at least 1% sig-
nal strength in case of higher harmonics. We find that β2 = 0.05 
or 0.1 is good enough for second harmonic measurability and 
β3 has to be preferably more than 0.05 for signal strength of 
third harmonic. But higher β3 causes a serious problem of 
increasing effective damping in the system, which distorts both 
first and second harmonic amplitude values. In our proposed 
algorithm, we investigated estimation error for β2 = 0.05, 0.1 
and β3 = 0.05, 0.1, 0.2 and 0.3.
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Parameter Estimation Algorithm 
and Simulation

We first make a preliminary estimate of natural frequency, 
using frequency sweep test. This is the frequency at which 
peak amplitude occurs. This need not be exact natural fre-
quency. Then we follow the steps one by one as given below.

Step 1: Measure first harmonic amplitude X(ω) for a 
series of frequencies ω/ωn = 0.3, 0.4, 0.5, 0.6, 1.2, 1.4, 1.6 
and 1.8. Frequencies close to natural frequency (except 
ω/ωn = 1.2) are avoided because single-term Volterra series 

truncation error would be very high (Figs. 11a, 12a). For sec-
ond and third harmonic measurement, excitation frequency 
has been selected to be 0.4 and 0.6 and since ω/ωn = 1.2 is 
second harmonic for 0.6 and third harmonic for 0.4, we have 
to make a measurement at this frequency although it is close 
to natural frequency.

Step 2: Response amplitudes X(ω) are approximated as

X(�)

A
≈ H1(�) =

1(
k1 − m�2

)
+ jc1�
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And then curve fitted [31] to obtain an initial estimate of 
natural frequency and linear stiffness k1. Now excitation fre-
quencies are adjusted with respect to estimated natural fre-
quency to make normalised excitation frequencies 
ΩE =

�

�n

 = 0.3, 0.4 etc. Measured first harmonic amplitudes 
are now converted into normalised amplitudes �(Ω) = k1X(�)

A
 

and the fresh set of normalised amplitudes are used in curve 
fitting according to equation,

which gives estimates of normalised natural frequency and 
equivalent damping ratio ξEq. �(3Ω).

�(Ω) ≈ H1(Ω) =
1(

1 − Ω2
)
+ j2�Ω

Step 3: Measure second and third harmonic amplitudes 
�(2Ω) and at the pre-decided forcing frequency 
ΩE =

�

�n

 = 0.4 or 0.6.
Step 4: Make a preliminary estimate of cubic nonlinear 

parameter, β3, using Eq. (40) as

Because β2 appears in second power in Eq.  (40), its 
contribution in third harmonic will be very small and 
can be neglected. Note that we do not know linear damp-
ing ξ yet and hence can not compute the first order FRFs 

(44)�3 ≈

||||||
−j

(
4�
(
3ΩE

)

Ω3H3
1

(
ΩE

)
H1

(
3ΩE

)
)||||||

.
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Fig. 8   Response harmonic amplitude for different values of, �3 = 0.05, �2 = 0.02, 0.05, 0.1



832	 Journal of Vibration Engineering & Technologies (2021) 9:817–843

1 3

H1(Ω)orH1(3Ω) at this stage. So, initially we take the help 
of single-term Volterra series approximation, H1(Ω) ≈ �(Ω).

Step 5: We can now estimate linear damping ξ from the 
estimated values of equivalent linearised damping ξeq and of 
nonlinear parameter, β3, using Eq. (43) in the form

Step 6: Now we compute H1(Ω) and H1(3Ω) using esti-
mated value of linear damping and substitute them back in 
step 4, to get refined estimate of β3.

Step 7: Substitute back new estimate of β3 in step 5 to get 
refined estimate of ξ.

� = �eq −
3

8
�3
(
ΩE

)2
�
2
, where � is the normalised harmonic amplitude at Ω = ΩE.

This iteration in Steps 6 and 7 is continued till estimates 
converge to an acceptable tolerance limit. This completes 
estimation of ξ and β3.

Step 8: Now we estimate square nonlinear parameter β2, 
from the formula (Eq. 39)

(45)

�2 ≈
|||||

2�
(
2ΩE

)

Ω2H2
1

(
ΩE

)
H1

(
2ΩE

)
|||||
=

|||2�
(
2ΩE

)|||
Ω2|||H2

1
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Here H1(Ω) and H1(2Ω) . are FRF values computed 
using estimated linear damping ξ.

There will be error in the estimated values, which can 
be attributed mainly to two factors.

1.	 Error in approximation of H1(Ω) ≈ �(Ω) . This error will 
be significantly higher for frequencies ω/ωn in between 
0.6 to 1.4 and hence we dont go for mesurement in this 
range except for ω/ωn = 1.2 as explained before.

2.	 Error in single-term Volterra series approximation of 
second and third harmonic amplitudes. This error is rela-
tively less around ω/ωn = 0.4 and 0.6 and hence these 
two frequencies are selected here as excitation frequency 
for maesurement of higher harmonic amplitudes. Meas-
urability wise 0.6 is a better frequency than 0.4, but as 
we will see later, estimation error is also higher at this 
frequency.
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Estimation Results from Numerical Simulation

Numerical simulation is carried out with normalised values 
of modal parameters, Ωn = 1.0 and linear damping ξ = 0.05. 
A range of values are considered for nonlinear parameters; 
β2 = 0.05 and 0.1 and β3 = 0.05, 0.1, 0.2 and 0.3.
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Fig. 11   Comparison of measured harmonic amplitudes with single term Volterra series approximation, �2 = 0.05 and �3 = 0.1

For illustration, we show step by step numerical results 
for a typical case of β2 = 0.05 and β3 = 0.1 at excitation fre-
quency ω/ωn = 0.6. Measured harmonic amplitudes are given 
in Table 1 and curvefitting based on first harmonic ampli-
tudes is shown in Fig. 15 below.

Curve fitting (shown in Fig. 15) gives ωn = 1.0357 and 
ξeq = 0.0699,

Step 4 gives �3 =
4X(1.8)

Ω3
E
H3

1
(0.6)H1(1.8)

≈
4 × 0.00834

0.63 × 1.55653 × 0.4507
= 0.0910,

Step 5 gives � = �eq −
3

8
�3

(
�E

�n

)2

�
2
= 0.0699 −

3

8
× 0.091 × 0.62 × 1.55652 = 0.040.
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Computation of first order FRF with this estimated linear 
damping gives H1(0.6) = 1.5581 and H1(1.8) = 0.445. Substi-
tuting in step 4 gives β3 = 0.0917.

Step 5 gives ξ = 0.0402. Another iteration gives same value 
and we stop here.

To estimate β2 now, we first find H1(1.2) = 2.220 using 
ξ = 0.0402. Then Step 8 gives

In the same manner, estimation is made for all combina-
tions and results are summarized in Tables 2, 3, 4, and 5.

�2 =
2X(2�)

Ω2
E
H2

1
(�)H1(2�)

=
2 × 0.0414

0.62 × 1.55812 × 2.220
= 0.0427.

Analysis and Observations from Estimation Results

Figures  16, 17, 18 and 19 show comparisons both on 
measurability count and estimation error count.

From above figures, one can see that excitation frequency 
0.4 gives better estimation (within 10%) for both the nonlin-
ear parmeters, whereas, frequency of 0.6 gives higher esti-
mation error, which is reasonably around 10% for β3 = 0.1 
but error increases sharply for higher β3. So finally one has 
to decide between two cases. Either to set excitation fre-
quency at 0.4 and then to set excitation level so as to make 
β3 as much as 0.2, or set excitation frequency at 0.6 and then 
set excitation level so as to make β3 maximum 0.1. Among 
these two cases, which ever gives better measurability, is to 
be adopted for estimation.
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Fig. 12   Comparison of measured harmonic amplitudes with single term Volterra series approximation, �2 = 0.05 and �3 = 0.2
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Robustness of the Estimation Algorithm 
in Presence of Random and Bias Errors

The numerical results presented so far did not consider a 
possible error, which can very well occur in the measure-
ment of response amplitudes and frequency values, while 
doing spectrum analysis. It has been emphasised before that 
for weak nonlinearity, signal strength of second and third 
harmonic will be much less compared to overall response 
amplitude and therefore accurate amplitude measurement of 
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Fig. 13   Error in single-term Volterra series approximation for second and third harmonic amplitude 
(
�2 = 0.05, �3 = 0.1

)

(ii) Second harmonic amplitude

Non-dimensional frequency
0 0.2 0.4 0.6 0.8

%
 E

rr
or

100

101

102

103

2=0.05 3= 0.2

Non-dimensional frequency
0 0.2 0.4 0.6 0.8

%
 E

rr
or

100

101

102

2=0.05 3= 0.2

(iii) Third harmonic amplitude
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)

Table 1   Harmonic amplitudes (β2 = 0.05, β3 = 0.1 and ω/ωn = 0.6)

Ω = ω/ωn �(Ω) �(2Ω) �(3Ω)

0.3 1.0983
0.4 1.1890
0.5 1.3290
0.6 1.5565 0.0414 0.0083
1.2 1.5866
1.4 0.9818
1.6 0.6287
1.8 0.4507
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these higher harmonics will become difficult in presence of 
noise, if noise magnitude is also of the same order as signal 
strength of these higher harmonics. To study the possible 
effect of measurement errors on the accuracy of parameter 

estimation, further numerical simulations are carried out in 
this section introducing two types of errors in the estimation 
procedure.

Case I: Presence of Random noise in measured response 
x(t). This error may be due to background vibration or other 

Fig. 15   Curve fitting of first 
order FRF from measured 
harmonic amplitude, �2 = 0.05, 
�3 = 0.1 at ω/ωn = 0.6
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Table 2   Estimated values 
of nonlinear parameters for 
varying β3 with β2 = 0.05, 
Ω

E
 = 0.6

β3 2nd harmonic 
amplitude, X(2ω)

3rd harmonic 
amplitude, X(3ω)

Estimate of β3 Estimate of β2 Estimate of 
damping, ξ

0.05 0.0448 0.00415 0.0458 0.0470 0.0476
0.1 0.0414 0.00894 0.0917 0.0427 0.0402
0.2 0.0343 0.0163 0.1798 0.0354 0.0462
0.3 0.0284 0.0232 0.2560 0.0296 0.0471

Table 3   Estimated values 
of nonlinear parameters for 
varying β3 with β2 = 0.1 Ω

E

, = 0.6

β3 2nd harmonic 
amplitude, X(2ω)

3rd harmonic 
amplitude, X(3ω)

Estimate of β3 Estimate of β2 Estimate of 
damping, ξ

0.05 0.09 0.0048 0.0527 0.0929 0.0460
0.1 0.0829 0.0073 0.0805 0.0864 0.0450
0.2 0.0685 0.0147 0.1627 0.0749 0.0678
0.3 0.0566 0.0219 0.2428 0.0619 0.0545

Table 4   Estimated values 
of nonlinear parameters for 
varying β3 with β2 = 0.05, 
Ω

E
 = 0.4

β3 Second harmonic 
amplitude, X(2ω)

Third harmonic 
amplitude, 
X(3ω)

Estimate of β3 Estimate of β2 Estimate of damping ξ

0.05 0.0151 0.00265 0.0448 0.0493 0.0448
0.1 0.0150 0.0055 0.0918 0.0489 0.045
0.2 0.0144 0.0109 0.1871 0.0475 0.0602
0.3 0.0138 0.0157 Iteration diverges Iteration diverges Iteration diverges
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ambient conditions. We consider here white Gaussian noise 
with a noise to signal ratio of 2% (this means ratio of respec-
tive rms values).

Case II: Bias error occurring in frequency measure-
ment of excitation as well as response harmonics in FFT 
spectrum.

Table 5   Estimated values 
of nonlinear parameters for 
varying β3 with β2 = 0.1, 
Ω

E
 = 0.4

β3 Second harmonic 
amplitude, X(2ω)

Third harmonic 
amplitude, 
X(3ω)

Estimate of β3 Estimate of β2 Estimate of damping ξ

0.05 .0305 0.0032 0.0536 0.0996 0.0458
0.1 .0301 0.00546 0.0916 0.0970 0.041
0.2 0.029 0.0105 0.1813 0.0959 0.0624
0.3 0.0278 0.0152 Iteration diverges Iteration diverges Iteration diverges

(a) Second  harmonic amplitude  (b) Third  harmonic amplitude
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Fig. 16   Harmonic amplitude for varying nonlinear parameters,�2 and �3 ( ΩE = 0.4)
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Investigation of Effect of Random Noise in Response 
Measurement (Case I)

Here to simulate a random noise in MATLAB, a Gaussian 
random data set is first created using RAND command and 
the data set is adjusted in magnitude to have its mean value 
zero with rms value 2% of rms of the response amplitude in 
each case. This simulates the random noise data which is 
added with simulated response x(t) and then the noisy 

response data is submitted for signature analysis to obtain 
the harmonic amplitudes. Due to presence of noise, meas-
ured harmonic amplitudes at First, Second and Third har-
monics will have different values now than when noise was 
not considered. Numerical simulation is done for a typical 
set of nonlinear parameters; β2 = 0.05 and β3 = 0.1. Fig-
ure 20a shows both of the response and noise signal on the 
same plot (for 2% noise to signal ratio) for excitation fre-
quency �E

�n

= 0.6 . The resulting noisy response is plotted in 
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Fig. 18   Estimation error in nonlinear parameters,�2 and �3 ( ΩE = 0.4)
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Fig. 20b. One can see from Fig. 21b that presence of noise 
is not dominantly visible in the time history plot, but still 
this much of noise will affect our signature analysis. This 
can be seen from Table 6, where response harmonic ampli-
tudes under ten different sets of noisy data from repeated 
response simulation are presented along with the mean 
amplitude values and harmonic amplitudes in noise free 
response for comparative study. It can be seen that noise has 
more effect on second and third harmonic amplitude values 
than on first harmonic amplitude. This is obvious because, 
first harmonic amplitude is much larger (almost 50 times 
noise signal), whereas second harmonic amplitude is of the 
same order as noise signal and third harmonic amplitude is 
rather smaller than the noise signal. This observation once 
again emphasises the importance of measurability and signal 
strengthening which has been discussed in Sect. 4.1.

Now with each set of measured harmonic amplitudes, 
nonlinear parameter estimation is carried out using the same 
step by step procedure and the estimates with error values 
are presented in Table 7 below.

The scattering of estimation error for different noise sam-
ples is shown in Fig. 21a, b. The scattering is less around 
the mean value for nonlinear parameter, β2 but it is rela-
tively much higher for the parameter, β3. This can again be 
explained by the fact that third harmonic amplitude was a 
weaker signal here compared to noise level. However, the 
average taken over a sample size of 10 data sets for random 
noise, the estimate is quite close to that of noise free case for 
both the nonlinear parameters. The presence of noise will 

give slightly higher error in estimates (15.2% compared to 
14.6% for β3 and 9.1% compared to 8.3% for β2). One may 
consider increasing the excitation level so as to enhance sig-
nal strength of third harmonic to reduce the impact of noise. 
It will reduce the scattering band but average value will be 
higher as noise free estimation error itself will increase at 
higher excitation values. Since it is a random noise, averag-
ing is the best option that can be suggested here.

Investigation of Effect of Bias Error in Harmonic 
Amplitude Measurement (Case II)

Here, we will consider two sources of bias error. First, the 
error in excitation frequency measurement, which may be 
due to instrumental error in its display resolution coun-
ter. Second source of error can be attributed to frequency 
resolution gap in a FFT spectrum. When we do signature 
analysis we do not get amplitude at every frequency value 
as a continuous function, rather we get amplitudes at dis-
crete frequency points which are separated by a factor which 
depends on sample data bloc size and number of spectral 
lines in the frequency window. For example with a data bloc 
size of 2048, number of spectral lines can be calculated as 
2048/2.56 = 800. So the spectral gap or frequancy resolution 
in a FFT spectrum will be Full scale frequency/800. The 
factor 1/800 amounts to 0.00125 or 0.125%. Considering 
first and second factors together we carry out the simulation, 
where harmonic amplitudes are measured with a frequency 
disturbance with ±0.5% and ±1% bias errors.

(a) Response and noise separately shown (b) Response merged with noise  
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Fig. 20   Time history plot of response without and with 2% random noise
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We consider effect of bias error on second and third har-
monics only as first harmonic amplitude will be very little 
affected, similar to random error as discussed earlier. The 
estimation errors are listed in Table 8 below.

Here, one can observe that no clear trend is visible in 
estimation error Vs bias error. In some cases estimation is 
even better than noise free case. It can be concluded that 
on average basis, the error of estimation in presence of bias 
error is not significantly different from noise free estimates.

Conclusion

An identification procedure for classification of asymmetri-
cally damped nonlinear system from other types of nonlin-
earities is presented. Response harmonic characteristics are 
studied for asymmetric damping case and Volterra series 
based response formulation is used to explain those charac-
teristics. It is shown that square and cubic nonlinear param-
eters both can be estimated from measured values of second 

(a) Nonlinear parameter β3 (b) Nonlinear parameter β2
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Fig. 21   Scattering of estimation errors in nonlinear parameters under different noise samples

Table 6   Harmonic amplitudes measured in presence of 2% random 
noise. ΩE = 0.6

Noise data set First 
harmonic 
amplitude

Second 
harmonic 
amplitude

Third 
harmonic 
amplitude

1 1.55187 0.04080 0.00795
2 1.55137 0.04154 0.00886
3 1.54982 0.04128 0.00840
4 1.55030 0.04127 0.00837
5 1.55190 0.04079 0.00855
6 1.55183 0.04155 0.00888
7 1.55067 0.04168 0.00752
8 1.55010 0.04030 0.00795
9 1.54842 0.04133 0.00800
10 1.55000 0.04095 0.00786
Average amplitude 1.55160 0.04122 0.00823
Noise free amplitude 1.55650 0.04140 0.00830

Table 7   Error in estimated nonlinear parameters with and without 
random noise

Noise data 
set

Estimate 
of β2 
(β2 = 0.05)

% Estima-
tion error 
for β2

Estimate of 
β3 (β3 = 0.1)

% Estimation 
error for β3

1 0.0421 15.8 0.0875 12.5
2 0.0428 14.4 0.0974 2.6
3 0.0425 15.0 0.0924 7.6
4 0.0425 15.0 0.0921 7.9
5 0.0420 16.0 0.0941 5.9
6 0.0428 14.4 0.0976 2.4
7 0.0430 14.0 0.0826 17.4
8 0.0415 17.0 0.0875 12.5
9 0.0426 14.8 0.0880 12.0
10 0.0422 15.6 0.0864 13.6
Average 

value
0.0424 15.2 0.0909 9.1

Noise free 
value

0.0427 14.6 0.0917 8.3
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and third harmonic amplitudes. The parameter estimation 
algorithm is developed and presented through a structured 
step by step procedure. Numerical simulation shows that the 
procedure can give resonably accurate estimation if excita-
tion level and frequencies are selected properly as per the 
guidelines framed. The algorithm also captures fairly good 
estimation of linear damping ratio through estimation of 
equivalent linearised damping. Finally, the algorithm is also 
tested for its robustness against random noise and bias error.
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