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Abstract
Purpose  This study aims to take the compound planetary gear train as an example to investigate how the vibration isolator 
affects the dynamic characteristics of the gear system.
Methods  The dynamic parameters are obtained from the finite element model of the gearbox case with the vibration isola-
tors by the substructure method. The lumped mass method is used to construct the systematic coupled dynamic model of 
the compound planetary gear train with the marine twin-layer gearbox case. The dynamic response of the coupled system is 
calculated by the numerical calculation method of the Fourier series.
Results  The number of vibration isolators negatively affects the bearing forces of the input shaft, output shaft, and planets. 
The influence of the number of vibration isolators on LSCs is different in the differential stage and the encased stage. When 
the vibration isolators stiffness is less than 200 N/μm, the stiffness of the vibration isolator has a significant effect on the 
bearing forces of the input shaft, output shaft, and planets. The increase in the stiffness of the vibration isolator would increase 
the LSCs of the differential stage and decrease the LSCs of the encased stage.
Conclusions  The number and stiffness of the vibration isolator have influences on the bearing forces and the LSCs. Com-
pared with the LSCs in the differential stage, the LSCs in the encased stage are more sensitive to the number and stiffness 
of vibration isolators.

Keywords  Load sharing coefficient · Compound planetary gear train · Vibration isolator · Marine gearbox case · Journal 
bearing

Introduction

Excessive vibration of the gearbox in ship equipment not 
only reduces the reliability of the compound planetary gear 
train, but also weakens the acoustical stealth of ship [1]. To 
reduce the vibration noise, vibration isolation, also called 
elastic components, is generally used in rotating machinery 
equipment [2, 3]. However, the influence of the vibration 
isolator on the dynamic behavior of the gear system has 
not received enough attention. The purpose of this study 
is to explore how the vibration isolator affects the dynamic 

behavior of the gear system by taking the compound plan-
etary gear train as an example.

The existing literature on the dynamic characteristics of 
the planetary gear train focuses on time-varying meshing 
stiffness, piecewise backlash, planet bearing stiffness, and 
comprehensive gear errors [4–8]. Considering the flexible 
support and multiple manufacturing errors, Mo et al. [9] 
established the refined dynamic model of the compound 
planetary gear train to calculate the loading sharing coef-
ficient and floating orbits of center gears. Zhang et al. [10] 
studied the modal properties of the planetary gear train of 
the helicopter under the gyroscopic effect. Besides, some 
researchers have considered the flexibility of the gearbox 
case. Lin et al. [11] utilized the experimental modal analysis 
method to identify the joint parameters of the gearbox case, 
and then used modal superposition method to analyze the 
coupling dynamics model of the full finite element gear-
box. To investigate the vibration response of the gearbox 
case, Zhou et al. [3] and Guo et al. [12] applied the bearing 
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dynamic load calculated by the gear system dynamics model 
to the gearbox case finite element model. Using the mode 
mechanical impedance synthesis analysis, Ren et al. [13] 
established the coupled impedance dynamic model of the 
gear-shaft-bearing-housing to analyze the system dynamic 
characteristics. To improve the accuracy of the investigation, 
Wang et al. [14] considered the basic admittance characteris-
tics in the dynamic model of marine gear system. Using the 
dynamic substructuring method, Abbes et al. [15] analyzed 
the overall dynamic behavior of the parallel helical gear 
transmission. Zhu et al. [16] obtained the stiffness of the 
wind turbine gearbox case using the substructure method, 
and then coupled it to the dynamics model of the planetary 
gear system with flexible pins.

Besides, some scholars pay attention to the vibration 
transmission path of gearbox. Zhou et al. [17] added spring 
elements between the marine gearbox and the installation 
base to study the dynamic response of the gearbox, but they 
overlooked the flexibility of the gearbox when calculating 
the dynamic load of the gearbox. Wang et al. [18] found that 
the design of a new compounded periodic struts between 
the helicopter cabin and the gearbox can alleviate the cabin 
noise caused by the gearbox. Luan et al. [2] coupled the 
double-layer gearbox case with the planetary gear transmis-
sion system through MASTA software, and they found that 
adding vibration isolators between the double gearbox case 
can effectively reduce the vibration noise of the gearbox.

Considering all of the above evidence, many studies 
regard planet bearings as isotropic spring units when con-
structing system dynamics models, while the asymmetry 
and interaction of stiffness and damping of planet bearing 
are overlooked. Moreover, most of the researches focus on 
the optimization of gear transmission system, while few 
researches investigate the optimization of gearbox-case 
dynamic parameters. It would, therefore, be interesting to 
investigate the role of vibration isolator in marine twin-layer 
gearbox case. The purpose of this study is to address the fol-
lowing two questions: (a) how the system dynamics model 
incorporates the asymmetry and interaction of the stiffness 
and damping of planet bearings; (b) how the number and 
stiffness of the vibration isolator affect the dynamic charac-
teristics of the compound planetary gear train.

This study is organized as follows. First, the dynamic 
parameters are extracted from the finite element model of 
the gearbox case by the substructure method. Second, the 
systematic coupled dynamic model of the compound plan-
etary gear train with the gearbox case is established by the 
lumped mass method. The dynamic response of the coupled 
system is solved by the numerical calculation method of the 
Fourier series. Third, the influences of the number and stiff-
ness of the vibration isolators on the dynamic behavior of 
the compound planetary gear train are explored. This finding 
may expand the literature on vibration isolators and rotating 

machinery equipment, and provide guidance for the optimi-
zation of the marine gearbox case structure.

Systematic Coupled Dynamic Model

Figure 1 shows a schematic diagram of the compound plane-
tary gear train with a marine twin-layer gearbox case, which 
consists of a differential stage and an encased stage. The 
numbers in Fig. 1 represent the elements of the compound 
planetary gear train with marine twin-layer gearbox case, 
and the names of their corresponding elements are listed in 
Table 1. The cylindrical vibration isolators are placed radi-
ally between the inner and outer shells.
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Fig. 1   Schematic diagram of compound planetary gear train with 
marine twin-layer gearbox case

Table 1   Names of the elements of the compound planetary gear train 
with marine twin-layer gearbox case

Numbers Names

No. 1/No. 9 Floating ring Zf1/Zf2

No. 2/No. 10 Intermediate floating member Zg1/Zg2

No. 3/No. 11 Composting ring Zr1/Zr2

No. 4/No. 12 Planet Zpi/Zmj

No. 5/No. 13 Carrier H
No. 6/No. 14 Sun Zs1/Zs2

No. 7/No. 15 Journal bearing at output/input shaft Bout/Bin

No. 8/No. 16 Planet bearing Bpi/Bmj

No. 17 Inner shell
No. 18 Cylindrical vibration isolator
No. 19 Outer shell
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Figure 2 illustrates the dynamic model of the compound 
planetary gear train with the marine twin-layer gearbox case. 
The differential stage uses the rotational coordinate system. 
In Fig. 2, HI, VI, Hp, and Vp are the rotating coordinate sys-
tems based on the rotation angular velocity ωc of carrier H. 
The encased stage is fixed on the inner shell of gearbox. The 
encased stage uses the fixed coordinate system. HII, VII, Hm, 
and Vm are the fixed coordinate systems. X, Y, and Z in the 
global coordinate system mean axial, vertical, and horizontal 
directions, respectively. The Z and Y directions in the global 
coordinate system are the same as the HII and VII directions 
in the fixed coordinate system. The displacement vector X 
for the coupling system is defined as follows:

where Xs1, Xpi, Xr1, and Xc are the displacement vectors 
of the sun, planet, ring gear, and carrier in the differential 
stage, respectively. Xs2, Xmj, and Xr2 are the displacement 
vectors of the sun, planet, and ring gear in the encased stage, 
respectively. These displacement vectors include torsion and 
two translational degrees of freedom. xg1, xf1, xg2, and xf2 
are torsional line displacements along the pitch circle radius 
of Zg1, Zf1, Zg2, and Zf2, respectively. Xg

in and Xg
out are the 

displacement vectors of the gearbox case at the input and 
output, respectively. Xmj

g is the displacement vectors of the 
carrier of the encased stage. There are two degrees of trans-
lational freedom in Xg

in, Xg
out, and Xmj

g.

(1)� =
{
�s1 , �pi ,�r1 , xg1 , xf1 ,�s2 ,�mj ,�r2 , xg2 , xf2 ,�c , �

g

in
,�

g

out ,�
g

mj

}T

,

Calculation of Journal Bearing Forces

The oil film force of journal bearing can be expressed by 
four stiffness coefficients and four damping coefficients 
when the displacement and velocity of journal shaft remain 
small disturbance near the static equilibrium position [19]. 
The stiffness and damping matrices of the journal bearing 
can be expressed as follows:

where kij and cij (i, j = x, y) are the stiffness coefficient and 
damping coefficient of journal bearing, respectively.

Fig.ure illustrates the relationships among the compo-
nents of the differential stage. In Fig. 3, ψpi is the phase angle 
of the ith planet, ψpi= 2π(i − 1)/N. N denotes the number of 
differential stage planetary gears. αrp (αsp) represents the 
pressure angle of the internal (external) mesh pair.

Based on the Eq. (2), the ith planet bearing force in the 
differential stage can be obtained as follows:

(2)�b =

⎡
⎢⎢⎣

0 0 0

0 kxx kxy
0 kyx kyy

⎤
⎥⎥⎦
, �b =

⎡
⎢⎢⎣

0 0 0

0 cxx cxy
0 cyx cyy

⎤
⎥⎥⎦
,

(3)�
b
pi
= �

b
pi

(
�
D
pi
�c − �pi

)
+ �

b
pi

(
�
D
pi
�̇c − �̇pi

)
,

Fig. 2   Dynamic model of the compound planetary gear train with marine twin-layer gearbox case
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where Kpi
b denotes the stiffness matrix of planet bearing. Cpi

b 
means the damping matrix of planet bearing.�̇c is the veloc-
ity vector of the carrier. �̇pi is the velocity vector of the 
ith planet in the differential stage. Tpi

D is the transfer matrix, 
which can be obtained from Eq. (4):

The bearing forces on the input and output shafts can be 
defined by Eq. (5):

where Kb
in (Kb

out) is the bearing stiffness matrix of the input 

(output) shaft. Cb
in (Cb

out) is the bearing damping matrix of 
the input (output) shaft. �̇g

in
(�̇g

out ) is the velocity vector of 
the planetary gearbox at the input (output).

The jth planet bearing force in the encased stage can be 

expressed by Eq. (6):

(4)T
D
pi
=

⎡⎢⎢⎣

0 0 0

0 cos�pi sin�pi

1 − sin�pi cos�pi

⎤⎥⎥⎦

(5)

{
�
b
in
= �

b
in

(
�c − �

g

in

)
+ �

b
in

(
�̇c − �̇

g

in

)

�
b
out

= �
b
out

(
�c − �

g

out

)
+ �

b
out

(
�̇c − �̇

g

out

) ,

where Kmj
b is the stiffness matrix of the planet bearing in the 

encased stage. Cmj
b represents the damping matrix of planet 

bearing in the encased stage. �̇g

mj
 is the velocity vector of the 

carrier. �̇mj is the velocity vector of the jth planet. Tmj
D is the 

transfer matrix, which is calculated by Eq. (7):

where ψmj is the phase angle of the jth planet, 
ψmj= 2π(j − 1)/M. M represents the number of gears in 
encased stage planetary gears. The matrices in Eq. (3) and 
Eq. (6) are listed in the “Appendix”.

Calculation of the Meshing Force

The Fourier series method is used to calculate the time-
varying meshing stiffness of herringbone gears as follows:

where k0 represents the mean value for the time-varying 
meshing stiffness. εα, βb, and b denote end-face contact ratio, 
helical angle, and gear tooth width, respectively. t and Tm 
represent the meshing time and meshing period. γ means 
the mesh phasing facto [20]. Ak and Bk are obtained from 
Eq. (9):

where εβ denotes axial contact ratio for the herringbone gear.
According to Fig. 3, the equivalent displacement for each 

gear pair is projected into the meshing line direction, which 
is expressed as follows:

where erpi (espi) is the equivalent error of the internal (exter-
nal) mesh pair along meshing line direction. xs1, xpi, and xr1 
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b
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D
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0 cos�mj sin�mj

0 − sin�mj cos�mj
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⎥⎥⎦
,

(8)
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(10)
{

Srpi(t) =
(
xpi + Hpi sin �rp − Vpi cos �rp

)
−
(
xr1 + Hr1 sin�rpi

− Vr1 cos�rpi

)
− erpi(t)

Sspi(t) =
(
xs1 − Hs1 sin�spi

+ Vs1 cos�spi

)
−
(
xpi + Hpi sin �sp + Vpi cos �sp

)
− espi(t)

,

Fig. 3   Schematic diagram of the geometric relationship among com-
ponents in the differential stage
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denote the torsional line displacements of Zs1, Zpi, and Zr1, 
respectively. Hs1, Hpi, and Hr1 represent the horizontal dis-
placements of Zs1, Zpi, and Zr1, respectively. Vs1, Vpi, and Vr1 
mean the vertical displacements of Zs1, Zpi, and Zr1, respec-
tively. ψrpi (ψspi) denotes the position angles of the internal 
(external) mesh pair, which can be calculated by Eq. (11)

Based on Eq. (12), the equivalent displacement in the 
encased stage is obtained by Eq. (12):

where xs2, xmj, and xr2 denote the torsional line displace-
ments of Zs2, Zmj, and Zr2, respectively. Hs2, Hmj, and Hr2 
represent the horizontal displacements of Zs2, Zmj, and Zr2, 
respectively. Vs2, Vmj, and Vr2 mean the vertical displace-
ments of Zs2, Zmj, and Zr2, respectively. ψrmj (ψsmj) is the 
position angles of the internal (external) mesh pair, which 
can be expressed by Eq. (13):

The resultant meshing force for elasticity and damping is 
defined by Eq. (14):

where Ṡi(t) represents the first-order derivative of equivalent 
displacement. Ci denotes the meshing damping factor.

Dynamic Equation of Compound Planetary Gear 
Train

According to Fig. 2, differential equations of the compound 
planetary gear train are constructed by Newton’s second law.

(11)

{
�rpi = �pi+�rp

�spi = �pi − �sp

.

(12)

⎧
⎪⎪⎨⎪⎪⎩

Srmj(t) =
�
xmj + Hmj sin �rm − Vmj cos �rm

�

−
�
xr2 + Hr2 sin�rmj − Vr2 cos�rmj

�
− ermj(t)

Ssmj(t) =
�
xs2 − Hs2 sin�smj + Vs2 cos�smj

�

−
�
xmj + Hmj sin �sm + Vmj cos �sm

�
− esmj(t)

,

(13)

{
�
rmj

= �
mj
+�

rm

�
smj

= �
mj
− �

sm

.

(14)Pi(t) = Ki(t)Si(t) + CiṠi(t), i = spi, rpi, smj, and rmj,

In the differential stage, differential equations can be 
expressed by

1.	 Sun gear Zs1:

	 

where TD is the input torque on the sun gear Zs1. rs1b 
represents the base circle radius of the sun gear Zs1. ms1 
means the equivalent mass of the sun gear Zs1. Ms1 is the 
actual mass of the sun gear Zs1.

2.	 Planet gear Zpi:

	 

where mp means the equivalent mass of the ith planet 
Zpi. Mp is the actual mass of the ith planet Zpi. FHcpi(t) 
(FVcpi(t)) denotes the ith planet bearing force in the 
horizontal (vertical) direction, which can be obtained 
by the Eq. (5). Fpi means the centrifugal force of the 
ith planet.

3.	 Composting ring gear Zr1:
	 

where mr1 means the equivalent mass of the composting 
ring gear Zr1. Mr1 is the actual mass of the composting 
ring gear Zr1.

4.	 Intermediate floating member Zg1 and floating ring Zf1:

	 

(15)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ms1ẍs1 +
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c
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�
+

N�
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Pspi(t) cos𝜓spi = −Ms1g cos(𝜔ct)

(16)

⎧
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mpẍpi − Pspi(t) + Prpi(t) = 0

Mp

�
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c
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− Pspi(t) sin 𝛼sp + Prpi(t) sin 𝛼rp

−FHcpi(t) = −Mpg sin(𝜔ct + 𝜓pi) + Fpi
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�
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c
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c
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N�
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c
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N�
i=1

Prpi(t) cos𝜓rpi + Kr1Vr1 = −Mr1g cos(𝜔ct)
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mg1ẍg1 − Kg1q

�
xr1 − xg1

�
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�
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�
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where mg1 represents the equivalent mass of the inter-
mediate floating member Zg1. mf1 denotes the equivalent 
mass of the floating ring Zf1. rs2b is the base circle radius 
of the sun gear Zs2. rf1b means the pitch circle radius of 
the floating ring gear Zf1.

In the encased stage, differential equations can be 
expressed by

1.	 Sun gear Zs2:

where ms2 means the equivalent mass of the sun gear Zs2. 
Ms2 is the actual mass of the sun gear Zs2.

2.	 Planet gear Zmj:

(19)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

ms2ẍs2 −
Kf1s2

rs2b

�
xf1

rf1b
−

xs2

rs2b

�
+

M�
j=1

Psmj(t) = 0

Ms2Ḧs2 −

M�
j=1

Psmj(t) sin𝜓smj + Ks2Hs2 = 0

Ms2V̈s2 +

M�
j=1

Psmj(t) cos𝜓smj + Ks2Vs2 = −Ms2g

(20)

⎧⎪⎪⎨⎪⎪⎩

mmẍmj − Psmj(t) + Prmj(t) = 0

MmḦmj − Psmj(t) sin 𝛼sm+Prmj(t) sin 𝛼rm − FHmj(t) = −Mmg sin𝜓mj

MmV̈mj − Psmj(t) cos 𝛼sm − Prmj(t) cos 𝛼rm − FVmj(t) = −Mmg cos𝜓mj

where FHmj(t) (FVmj(t)) denotes the jth planet bearing 
force in the horizontal (vertical) direction. mm means the 
equivalent mass of the jth planet Zmj. Mm is the actual 
mass of the jth planet Zmj.

3.	 Composting ring gear Zr2:

where mr2 means the equivalent mass of the composting 
ring gear Zr2. Mr2 is the actual mass of the composting 
ring gear. Zr2

4.	 Intermediate floating member Zg2 and floating ring Zf2:

where mg1 represents the equivalent mass of the inter-
mediate floating member Zg2. mf2 denotes the equivalent 
mass of the floating ring Zf2. rf2b denotes pitch circle 
radius of floating ring gear Zf2. rL represents the rotation 
radius of the carrier.

Besides, the differential equation of carrier H can be 
expressed by

(21)

⎧
⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

mr2ẍr2 −

M�
j=1

Prmj(t) + kg2q
�
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�
= 0
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Prmj(t) sin𝜓rmj + Kr2Hr2 = 0

Mr2V̈r2 +

M�
i=1

Prmj(t) cos𝜓rmj + Kr2Vr2 = −Mr2g

(22)

⎧⎪⎨⎪⎩

mg2ẍg2 − Kg2q

�
xr2 − xg2

�
+ Kf2q

�
xg2 − xf2

�
= 0

mf2ẍf2 − Kf2q

�
xg2 − xf2

�
+

Kf2L

rf2b

�
xf2

rf2b
−

xc

rL

�
= 0

Fig. 4   Finite-element model of 
the marine twin-layer gearbox 
case, a the integral structure of 
the gearbox case, b the carrier 
of the encased stage mounted in 
the inner shell. c The output end 
of the gearbox case. d The input 
end of the gearbox case
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where FH
in (FH

out) represents the bearing force of the input 
(output) shaft in the horizontal direction. FV

in (FV
out) denotes 

the bearing force of the input (output) shaft in the vertical 
direction. mc is the equivalent mass of the carrier. Mc is the 
actual mass of the carrier. PL represents the equivalent force 
of the output torque.

Dynamic Equation of the Marine Twin‑Layer 
Gearbox Case

The substructure method that can effectively reduce the 
degree of freedom of the gearbox model is used to cal-
culate the mass, stiffness and damping matrices for the 
marine twin-layer gearbox case. This gearbox case is 
made of alloy steel with a density of 7900 kg/m3, an elas-
tic modulus of 2.05 × 105 MPa, and Poisson’s ratio of 0.3. 
The finite element model of the twin-layer gearbox case 
includes 828,873 nodes and 585,756 elements, as shown 
in Fig. 4.

The spring element with stiffness and damping is used 
to simulate the cylindrical vibration isolator placed between 
the inner and outer shells. The stiffness and damping of the 
spring element are 7.3 × 106 N/m and 6.6 × 105 N s/m, respec-
tively. The master node is built in the center of the bearing 
hole and is rigidly coupled to the slave node on the surface of 
the bearing hole (see Fig. 4b–d). The bolt holes at the bottom 
of the gearbox case are given a fixed constraint. When solv-
ing, the mass, stiffness, and damping matrices of the slave 
nodes are all condensed to the master node. Therefore, the 
dynamic parameters of the gearbox case can be characterized 
by the mass matrix, stiffness matrix and damping matrix on 
the master node.

After condensing, the dynamic equation of twin-layer 
gearbox case is expressed as

where Mg, Kg, and Cg are mass, stiffness, and damping 
matrices of the master nodes on the twin-layer gearbox  
case, respectively. Xg is the displacement vector of the  
master nodes on the twin-layer gearbox case, 

(23)
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}
 . Xcm is the displacement vector in 

the gear system, Xcm= {Xc, Xmj}. Fg is the force vector of the 
journal bearing force and gravity.

Systematic Coupled Dynamic Equation

Based on the above equation, the coupled dynamic equa-
tion of the compound planetary gear train with the twin-
layer gearbox case can be expressed with the following 
matrix–vector form as

where M and G denote the mass and gyroscopic matrices, 
respectively. Kb and Cb are the bearing stiffness and damp-
ing matrices, respectively. �

�
 is the centripetal stiffness 

matrix.
Km(t) and Cm are the meshing stiffness and damping 

matrices, respectively. F(t) represents the exciting force 
vector.

Dynamic Characteristics

Solution of Systematic Coupled Dynamic Equation

In Eq. (25), Km(t) and X (t) can be written as Eq. (26):

where �̄m is the average stiffness matrix.�̄ is the static dis-
placement vector. ∆Km(t) and ∆X(t) are the fluctuating parts 
of �̄m and �̄ , respectively.

After substituting Eq. (26) into Eq. (25), the periodic 
excitation forces on the left side of the Eq. (25) are divided 
into two parts. One is that the average value remains to the 
left of Eq. (25). The other is that the fluctuation value is 
moved to the right of Eq. (25). Thus, systematic coupled 
dynamic equation is written as Eq. (27), which can be solved 
by numerical calculation of the Fourier series in Ref. [21]:

where {P} is the exciting force vector, including stiffness, 
error, gravity, planetary centrifugal force, and load.

Calculation of Load Sharing Coefficient

In the differential stage, the external and internal LSCs are 
defined as Eq. (28):

(25)
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where (Pspik1)max ((Prpik2)max) denotes the maximum value 
of the external (internal) dynamic meshing force in the k1th 
(k2th) meshing period. n1 (n2) represents the total number 
of the meshing period for the external (internal) gear pairs.

Based on Eq. (29), the external and internal LSCs for the 
encased stage can be constructed by Eq. (29):

(28)
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where (Psmjk3)max ((Prpik4)max) represents the maximum value 
of the external (internal) dynamic meshing force in the k3th 
(k4th) meshing period. n3 (n4) denotes the total number of 
the meshing period for the external (internal) gear pairs.

According to Eqs. (28) and (29), the LSCs of the coupled 
system can be expressed by Eq. (30):

Table 2   Parameters of the differential stage

Stages Elements Teeth number Module Tooth width Helix angle Pressure angel

Differential stage Sun 41 2.5 120 mm 25° 20°
Planet 94 2.5 120 mm 25° 20°
Composting ring 229 2.5 120 mm 25° 20°
Intermediate floating member 251 2.5/2 20 mm/40 mm 25°/0° 20°
Floating ring 375 2/2 30 mm/50 mm 0°/0° 20°

Encased stage Sun 91 2.5 160 mm 25° 20°
Planet 59 2.5 160 mm 25° 20°
Composting ring 209 2.5 160 mm 25° 20°
Intermediate floating member 231 2.5/2 20/40 25°/0° 20°
Floating ring 348 2/2 30/50 0°/0° 20°

Fig. 5   Bearing force at the 
output shaft. a Time response 
in the Z and Y directions, b 
frequency response in the Z 
direction, c frequency response 
in the Y direction
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where Bp is the LSC in the differential stage. Bm is the LSC 
in the encased stage.

The input torque of the coupling system is 3183 N m, and 
the input speed is 3000 r/min. Table 2 lists the parameters of 
the compound planetary gear train with marine twin-layer 
gearbox case.

Journal Bearing Forces

Dynamic meshing excitation is transmitted to the gearbox 
case through bearings in the transmission system, causing 
the gearbox case to vibrate [12]. Therefore, investigating the 
bearing dynamic load characteristics can effectively evaluate 
the vibration isolation performance of the marine twin-layer 
gearbox case. The vibration responses of compound plan-
etary gear train are obtained by Eq. (27).

The number of vibration isolators in this gearbox case is 
18. Figure 5 shows the time and frequency response of the 
bearing force at the output shaft. The bearing force in the Z 

(30)

{
Bp = max(bspi, brpi)

Bm = max(bsmj, brmj)

direction is ranged between − 2300 and 2440 N, while the 
bearing force in the Y direction is ranged between − 2109 N 
and 1770 N. It could be concluded that the amplitude of the 
bearing force in the Z direction is greater than that in the Y 
direction. Besides, the frequency responses of the bearing 
forces in the Z and Y directions are dominated by the mesh-
ing frequency f1 of the differential stage, since the time-
varying meshing stiffness of the differential stage is fluctuat-
ing. In Fig. 5b–c, fH, fp, and fr1 are the rotation frequencies 
of the carrier, planet, and ring gear of the differential stage, 
respectively.

Figure 6 illustrates the time–frequency response of the 
first planet bearing force in the encased stage. The amplitude 
of the first planet bearing force in the Z direction is greater 
than that in the Y direction. In Fig. 6b, c, the frequency 
responses of the first planet bearing force in both the Z and 
Y directions are the superposition of the rotation frequencies 
(i.e., fm, fp, fs2, and fr2) and the meshing frequency f2, fm, fs2, 
and fr2 represent the rotation frequencies of the planet, sun 
and ring gear of the encased stage, respectively. It’s worth 
noting that the rotation frequency fp of the differential stage 
planet appears in the frequency responses of the planet bear-
ing force of the encased stage.

Fig. 6   First planet bearing 
force of the encased stage, a 
time response in the Z and Y 
directions, b frequency response 
in the Z direction, c frequency 
response in the Z direction
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Fig. 7   LSCs of the differential 
stage, a external meshing, b 
internal meshing
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Load Sharing Characteristics

The LSCs in the compound planetary gear train with the 
twin-layer gearbox case are calculated by Eqs. (28) and (29). 
The results are obtained from the three meshing pairs of the 
differential stage, as shown in Fig. 7. In the differential stage, 
the external LSCs range from 0.974 to 1.032 and internal 
LSCs range from 0.917 to 1.133. Moreover, the (external 
and internal) LSCs in the differential stage differ signifi-
cantly among the three meshing pairs. For example, the sp3 
LSC is greater than the sp1 and sp2 LSCs (see Fig. 7a).

It can be drawn from the Eqs. (28) and (29) that the torque 
of the encased sun gear is Zr1/Zs1 times that of the differen-
tial sun gear. In other words, the load in the encased stage 
is greater than load the in the differential stage. Figure 8 
shows that the external LSCs in the encased stage are close 
to 1, with a range of 0.957–1.029; the internal LSCs in the 
encased stage are varied from 0.966 to 1.018. Besides, the 
LSCs difference among the five meshing pairs in the encased 
stage is smaller compared with the differential stage. It is 
useful to note that the maximum value of LSCs in the dif-
ferential stage is larger than that of the encased stage. This 
result is consistent with the conclusion in the literature [22] 
that the encased stage has a larger load than the differential 
stage, and thus its balanced load capacity is stronger.

Impact of Vibration Isolators on the System

According to Eq. (24), the dynamic parameters of the marine 
twin-layer gearbox case affect the dynamic characteristics of 
the compound planetary gear train. The stiffness and damp-
ing of the marine twin-layer gearbox case are affected by the 
number and stiffness of the vibration isolators. Therefore, 
how the number and stiffness of vibration isolator affect 
the bearing force and load sharing characteristics in the 
compound planetary gear train is investigated. The effec-
tive value of the bearing forces is characterized by the root 
mean square of the resultant bearing force in the Y and Z 
directions as follows:

where Fbi is the effective value of each journal bearing force. 
The function RMS() represents taking the root mean square. 
Fbiy and Fbiz are the bearing forces in the Y and Z directions, 
respectively.

Number of the Vibration Isolator

The vibration isolator is radially arranged between the inner 
and outer shells of the gearbox (see Fig. 1), and its number 

(31)Fbi = RMS
(√

F2
biy
(t) + F2

biz
(t)
)
,

Fig. 8   LSCs of the encased 
stage, a external meshing, b 
internal meshing
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Fig. 9   Influence of the number 
of the vibration isolator on 
bearing force, a bearing force of 
input shaft. b Bearing force of 
output shaft
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ranges from 3 to 18. Figure 9 shows the variation of bearing 
force with the number of vibration isolators on the input 
and output shafts. In general, when the number of vibration 
isolators becomes larger, the bearing forces on the output 
and input shafts become smaller. It’s worth noting that with 
increasing the number of vibration isolators, the bearing 
force of the input shaft (Fig. 9a) is generally smaller than 
that of the output shaft (Fig. 9b). Therefore, the stiffness and 

damping of the output should be increased in the marine 
gearbox.

Figure 10 illustrates the relationship between the number 
of vibration isolators and the bearing forces of planet bear-
ings in the encased stage. With the increase of the number 
of vibration isolators, the bearing forces gradually decreases. 
This is because the increase in the number of vibration 

Fig. 10   Influence of the number 
of vibration isolators on the 
bearing forces of planet bear-
ings in the encased stage. a The 
1st planet bearing. b The 2nd 
planet bearing, c the 3rd planet 
bearing, d the 4th planet bear-
ing, e the 5th planet bearing

938

939

940

941

942

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

B
ea

rin
g 

Fo
rc

e 
Fm

1/
(N

) 

Number of the vibration isolator (a)

1320

1322

1324

1326

1328

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

B
ea

rin
g 

Fo
rc

e 
Fm

2/
(N

) 

Number of the vibration isolator (b)

1718

1720

1722

1724

1726

1728

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

B
ea

rin
g 

Fo
rc

e 
Fm

3/
(N

) 

Number of the vibration isolator (c)

982

983

984

985

986

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

B
ea

rin
g 

Fo
rc

e 
Fm

4/
(N

) 

Number of the vibration isolator (d)

1264

1265

1266

1267

1268

3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

B
ea

rin
g 

Fo
rc

e 
Fm

5/
(N

) 

Number of the vibration isolator (e)

Fig. 11   Influence of the number 
of vibration isolators on LSCs 
of the system, a the differential 
stage, b the encased stage

1.13306

1.13307

1.13308

1.13309

1.1331

1.13311

3 4 5 6 7 8 9 101112131415161718

LS
C

s \
B 

p

Number of the vibration isolator (a)

1.04315

1.0432

1.04325

1.0433

1.04335

1.0434

3 4 5 6 7 8 9 101112131415161718

LS
C

s \
B 

m

Number of the vibration isolator (b)



778	 Journal of Vibration Engineering & Technologies (2021) 9:767–780

1 3

isolators would increase the stiffness and damping of the 
marine twin-layer gearbox case.

Figure 11 shows how the LSCs vary with the number 
of vibration isolators in the compound planetary gear train 
with the twin-layer gearbox case. Increasing the number of 
vibration isolators could enhance the LSCs of the differential 
stage, while the LSCs of the encased stage would decrease 

with the increase of the number of vibration isolators. This 
result indicates that compared with the differential stage, the 
LSCs in the encased stage is more sensitive to the number 
of vibration isolators.

Stiffness of the Vibration Isolator

In addition to the number of vibration isolators, the stiffness 
of vibration isolators is also an important dynamic parameter 
that affects marine twin-layer gearbox case. In this section, 
we investigate the effects of isolator stiffness on bearing 
force and load sharing characteristics. The number of vibra-
tion isolators in the gearbox is 18. The stiffness of vibration 
isolators is discrete in the range of 10–800 N/μm.

Figure 12 shows the influence of the stiffness of the vibra-
tion isolator on bearing force of the output and input shafts. 
When the stiffness of vibration isolators is less than 30 N/
μm, the bearing forces on the output and input shafts dis-
play the downward trend. This result is because the natural 
frequency of the system is far from the excitation frequency. 
At this time, the vibration isolators present better effects of 
vibration reduction. When the stiffness of vibration isolators 
ranges from 30 to 200 N/μm, bearing forces on the output 
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and input shafts show an increasing trend. This finding is 
because the natural frequency of the system is gradually 
approaching the excitation frequency within the correspond-
ing vibration isolator stiffness range. The vibration reduction 
effect of the vibration isolator is weakened. When the stiff-
ness of the vibration isolators exceeds 200 N/μm, the bearing 
forces on the output and input shafts gradually increase and 
tend to be stable. This is because the natural frequency of the 
system is greater than the excitation frequency. The vibration 
isolators fail to reduce vibration within the corresponding 
vibration isolator stiffness range.

Figure 13 shows the relationship between the stiff-
ness of vibration isolators and planet bearing force in 
the encased stage during the stiffness range of 10–800 N/
μm. The bearing forces of planet bearings in the encased 
stage decrease obviously when the stiffness of the vibra-
tion isolators increases from 10 to 200 N/μm. In addition, 
the bearing forces of planet bearings in the encased stage 
tend to be stable when the stiffness of vibration isolators 
is greater than 200 N/μm. This result indicates that when 
the stiffness of the vibration isolator exceeds 200 N/μm, 
the performance of the vibration isolator in the marine 
twin-layer gearbox case would be weakened.

Figure 14 reveals how the stiffness of vibration isola-
tors affects the LSCs in the compound planetary gear train 
with the twin-layer gearbox case. When the stiffness of 
vibration isolators is ranged between 10 and 800 N/μm, 
the LSCs in the differential stage is varied from 1.133082 
to 1.133143, and the LSCs in the encased stage is varied 
from 1.04256 to 1.04336. This result suggests that com-
pared with the differential stage, the LSCs in the encased 
stage is more sensitive to the stiffness of vibration isola-
tors. Moreover, the LSCs in the differential stage show an 
upward trend with increasing stiffness of vibration isola-
tors. In contrast, when the stiffness of vibration isolators 
becomes larger, the LSCs in the encased stage becomes 
smaller. The LSCs in the differential and encased stages 
tend to be stable with the increase of vibration isolator 
stiffness. These results suggest that to improve the perfor-
mance of the vibration isolator, the stiffness of the vibra-
tion isolator could be appropriately reduced in the vibra-
tion isolation design.

Conclusions

The dynamic model of the twin-layer gearbox case with 
the vibration isolator is constructed, and then coupled with 
the dynamic model of the compound planetary gear train. 
The time–frequency responses of journal bearing forces are 
investigated, and the load sharing characteristics in both 
differential and encased stages are studied. Besides, the 

impact of vibration isolators on the bearing force and LSC 
are explored.

The number and stiffness of vibration isolators could 
affect the bearing forces and LSC of the compound plan-
etary gear train with the twin-layer gearbox case. As the 
number of vibration isolators increases, the bearing forces of 
the input shaft, output shaft, and planets decrease. Besides, 
the influence of the number of vibration isolators on LSCs 
is different in the differential stage and the encased stage.

The bearing force curve of the input shaft has a “inflec-
tion point” when the stiffness of vibration isolators is 30 N/
μm. The variation trend of the bearing force curve of the 
output shaft is basically the same as that of the input shaft. 
When the vibration isolators stiffness is less than 200 N/
μm, the stiffness of the vibration isolator has a significant 
negative effect on the bearing force of the planet bearing.

The increase in the stiffness of the vibration isola-
tor would increase the LSCs of the differential stage and 
decrease the LSCs of the encased stage. Compared with 
the LSCs in the differential stage, the LSCs in the encased 
stage is more sensitive to the number and stiffness of vibra-
tion isolators. When the stiffness of the vibration isolators 
is greater than 200 N/μm, it has little effect on the bearing 
forces and LSCs.
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