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Abstract
Purpose This work presents an analysis method for the vibration and stress characteristics of the ring gear.
Methods First, the dynamic model of planetary gear sets is established to extract the meshing force of meshing element. 
The model is then combined with the load tooth contact analysis (LTCA) method to determine the load relationship between 
teeth. The dynamic characteristics of the ring gear are calculated using the modal superposition method and Newmark β time 
integration method, and the effectiveness of the calculation method is verified by comparing with the experimental results. 
Finally, the vibration and stress characteristics of the thin-walled ring gear are analyzed.
Results and Conclusion The amplitude and stress of ring gear vibration increase obviously at resonance speed. Because of the 
flexibility of the thin-walled ring gear, the compressive stress of the tooth root at the meshing position is obviously smaller 
than the tensile stress caused by the concave deformation. Due to the influence of external convex deformation, the stress on 
the outside of the gear ring at the meshing position is more concentrated than the tooth root position.

Keywords Planetary gear transmission system · Thin-walled ring gear · Fiber bragg grating · Meshing excitation · Dynamic 
stress · Vibration response

Introduction

The planetary gear transmission system has the advantages 
of high safety performance, long service life, and large trans-
mission ratio. It is widely used in aviation, shipbuilding, 
electric power and other mechanical fields. As a key com-
ponent carried by the planetary gear transmission system, 
the ring gear is simultaneously subjected to multiple mesh-
ing excitation sources, which causes it to become the main 
component of gear tooth cracks and fatigue damage in the 
planetary gear system. With the development of precision 
machinery, planetary gear transmission systems tend to be 
lightweight. To reduce the quality of the transmission sys-
tem to meet the needs of the project, the thin-walled ring 
gear has gradually become popular for practical applications. 
Therefore, analysis of the vibration characteristics and stress 

characteristics of the thin-walled ring gear under meshing 
excitation is of great significance to prevent the occurrence 
of fatigue damage and ensure the safety of the planetary 
gear train.

Early research on planetary gear sets focused on system 
analysis. For example, in the work of Kahraman et al. [1], 
the torsion model of the planetary gear transmission system 
was established, and the natural frequency of the planetary 
gear system was analyzed. Lin and Parker et al. [2] estab-
lished the analysis model of the planetary gear transmission 
system and studied its natural frequency and vibration mode. 
Subsequently, Wu and Parker [3] analyzed the inherent char-
acteristics of the equidistant planetary gear flexible ring gear 
model by perturbation and a candidate mode method. Tsai 
and Shyi-Jeng [4] introduced the meshing analysis method 
of floating sun–planet gear pair, and discussed the influence 
of assembly and manufacturing error of planetary gear on 
the backlash and performance the sun gear. Liu et al. [5, 
6] calculated the vibration characteristics of herringbone 
planetary gears and the influence of centrifugal force on the 
planetary gear transmission system at high speed. Fan et al. 
[7] calculated and analyzed the dynamic characteristics of 
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the planetary gear transmission system considering the flex-
ibility of the ring gear. In the analysis of the ring gear, the 
ring is usually used instead of the analysis. Literature [8–11] 
employed different methods to study the inherent character-
istics of the ring and its vibration characteristics. Tanna et al. 
[12] used the finite element method to analyze the inher-
ent characteristics of three-dimensional unconstrained ring 
gear. Subsequently, Wang et al. [13] studied the influence 
of Meshing Effect on ring gear vibration. Hidaka et al. [14] 
analyzed that the displacement of the ring gear mainly came 
from the elastic deformation, and studied the resonance con-
ditions of the ring gear.

Fortunately, many scholars have completed extensive 
research on gear stress, providing a lot of theoretical support 
for the research in this work. Argyris et al. [15] proposed a 
numerical calculation method for the stress analysis of spiral 
bevel gears. Kahraman et al. [16] calculated the effect of dif-
ferent rim thicknesses on the tooth root stress by taking into 
account the flexibility of the ring gear. Ming-Jong Wang [17] 
used a digital photoelastic system to determine the maxi-
mum bending stress of spur gears. Wang et al. [18] proposed 
a finite element analysis method for high contact ratio gears, 
and calculated tooth root stress and contact stress. Wu et al. 
[19] proposed a contact stress analysis method for the bevel 
gear tooth surface considering the influence of tooth contact 
deformation and tooth bending deflection. Tesfahunegn, Y 
et al. [20] analyzed the influence of tooth profile modifica-
tion on transmission error and contact stress. Li et al. [21, 
22] used the finite element method to analyze the contact 
stress of the spur gears and the stress of the thin-sided spur 
gears with oblique webs in high-speed rotation. Lias et al. 
[23] studied the influence of spur gears on the bending stress 
of gears in the case of radial misalignment. Gonzalezperez 
et al. [24] proposed a finite element model for the calcula-
tion of gear contact stress and bending stress, and obtained 
accurate results. Literature [25, 26] calculated the contact 
stress and bending stress with the finite element method to 
provide theoretical guidance for the gears.

Experimental measurement has also been focused of the 
majority of scholars. Patil et al. [27] used a gear dynamic 
stress tester (GDSTR) to measure the contact stress of the 
gear pair and employed the finite element method for simu-
lation comparisons. Dai et al. [28] used the finite element 
method to calculate the tooth root strain at different speeds, 
and compared this with the experimental results to obtain a 
large change in the strain curve under resonance. Literature 
[29, 30] used fiber Bragg grating (FBG) sensors to meas-
ure the dynamic strain of gears under external and internal 
gearing.

In summary, most of literatures focuses on the dynamic 
characteristics of planetary gear transmission system. For 
the gear stress, the analysis mostly concentrates on the exter-
nal-gear, especially the change in the contact and bending 

stress of the cylindrical gear under static conditions. The 
stress analysis of the internal meshing-gear is relatively less. 
At the same time, the dynamic stress under load is the direct 
factor affecting the fatigue life of ring gear, and the thin-
walled ring gear has greater flexibility, with many uncertain-
ties regarding practical applications. In past research, rela-
tively few studies have been conducted on the thin-walled 
ring gear.

In this work, a new numerical calculation method for the 
vibration and stress characteristics of ring gear is proposed. 
Establishing the dynamic model of planetary gear transmis-
sion system, the dynamic load of planet-ring gear meshing 
element is extracted. Then, the load distribution relation-
ship between the ring gear and the meshing-gear teeth is 
determined by combining with the load tooth contact analy-
sis method [31]. Finally, the modal superposition method 
and Newmark β integration method are used to solve the 
dynamic characteristics of the ring gear. Compared with 
the traditional ring gear, the thin-walled ring gear will have 
greater bending deformation due to its flexible structure, 
which will directly affect its vibration mode and stress dis-
tribution. On the basis of verifying the method proposed in 
this paper, the vibration and stress characteristics of thin-
walled ring gear are further analyzed.

Calculation Method for Dynamic Stress 
of Flexible Ring Gear

The planetary gear transmission system is a complex gear 
train composed of sun gears, planet gears, and ring gears. In 
the past, the mechanics of materials approximation method 
and the finite element method have commonly been used 
to calculate the gear stress. The former is usually used for 
strength check at the theoretical design stage, and cannot 
effectively reflect the dynamic change process of tooth root 
stress during operation. The latter is widely used, but there 
are still many difficulties in accurately simulating the com-
plex process of planetary gear transmission, such as the need 
for a very fine mesh on the gear tooth contact surface, which 
will greatly increase calculation time and reduce calculation 
efficiency. Therefore, under careful consideration of the situ-
ation that the ring gear is subjected to meshing excitation, 
this paper proposes a comprehensive method for calculating 
the dynamic stress of the ring gear as shown in Fig. 1.

First, the dynamic transmission process of the planetary 
gear system is analyzed synthetically, the dynamic model 
of translation–torsion coupling of the planetary gear trans-
mission system is established, and the dynamic load time 
history of planet-ring gear meshing element is extracted. 
Second, the dynamic load cycle is divided into n impact 
loads, and the load distribution relationship between teeth 
is determined by LTCA. Then, the n modes of the ring gear 
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under the initial condition are extracted, and the dynamic 
equations of the ring gear are decoupled using the modal 
matrix. Finally, the stress time history of the ring gear under 
the dynamic load is solved step by step using the Newmark-β 
time integration method.

To verify the effectiveness of the above calculation 
method, the time-domain strain history of the root of the 
ring gear in the planetary gear set of the wind turbine test 
bed is extracted using an FBG sensor and is then compared 
with the theoretical calculation results.

The Construction of System Dynamics Model

Basic parameters of planetary gear transmission system are 
shown in Table 1.

The model of planetary gear transmission system is 
shown in Fig. 2. The planetary gear system is 2K-H plan-
etary gear set, and the four planets are evenly distributed 
along the circumference. In the process of planetary gear 
transmission, the motion process is more complicated than 
that of fixed-shaft transmission. Also, the analysis is much 
more difficult. Therefore, considering the complex coupling 
relationship among various components, the translation–tor-
sion coupling dynamic model of the planetary gear transmis-
sion system is established. In the modeling, the center of 

the model is taken as the coordinate origin, the horizontal 
direction is X, and the vertical direction is Y. The model 
uses springs to simulate the meshing stiffness of the mesh-
ing element, where kspi and krpi are the meshing stiffness of 
the i-th planet with the sun and the ring gear (i = 1, 2, 3, 4).

In the transmission process of planetary gear train, the 
periodic change of meshing stiffness is also the main inter-
nal excitation of system vibration. According to reference 
[32], the time-varying stiffness of meshing element can be 
extracted effectively. The meshing stiffness curve of meshing 
element is shown in Fig. 3. To facilitate subsequent analysis, 
each gear tooth is numbered in the counterclockwise direc-
tion of the Y-axis. A total of 100 gear teeth are numbered 
from 1 to 100.

Fig. 1  Dynamic stress calcula-
tion process of flexible ring gear

Table 1  Planetary gear transmission system parameters

Name Sun Planet Ring

Tooth number 28 36 100
Tooth width/mm 10 10 10
Modulus/mm 1 1 1
Pressure angle/(°) 20 20 20
Mass/kg 0.0356 0.0544 0.423
Moment of inertia/(kg·m2) 0.00047 0.001210 0.143
Modification coefficient 0
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In Fig. 3, ws, vs, θs, wr, vr and θr are respectively the sun 
gear, ring gear translation and torsional micro displacement. 
wpi, vpi and θpi are each the radial, tangential and torsional 
micro displacements of the planet respectively. In practical 
applications, the sun gear and planet are supported by bear-
ings, while the ring gear is fixed by bolts. The spring is used 
to simulate the supporting structure of each component in 
the system modeling. ks, kp and kr are the supporting stiff-
ness of sun, planet and ring gear, respectively. According to 
the literature [33], the equivalent damping coefficient of the 
system is related to the adjacent mass and stiffness, and its 
values are shown in Table 2.

Taking the meshing element of planet-ring gear in Fig. 3. 
as an example to analyze the force situation, the projection 

vector of the translation and torsion micro displacement of 
meshing element along the direction of the line of action is

(1)
xr = vr cos(�i + �pi) − wr sin(�i + �pi) + �rRr

xpi = −wpi sin(�i + �pi) + vpi cos(�i + �pi) + �piRpi

}
,

Fig. 2  Planetary gear set and system dynamics model

Fig. 3  Meshing element dynamics model

Table 2  Modeling parameters of planetary gear transmission

Name Sun Planet Ring

Support stiffness (N/m) 8.0E7 8.0E8 1.35E9
Support damping ratio 0.05
Meshing damping ratio 0.1
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where αi is the engagement angle between the ith planet and 
the ring gear. φpi is the phase angle of the planet i.  Rr and 
 Rpi are the base circle radius of the ring gear and the planet, 
respectively.

The meshing force can be expressed as

According to Newtonian mechanics theory, the dynamic 
differential equation of the meshing element of the planet 
and the ring gear can be obtained

where n = 1, 2, 3, 4. ηrpi is the elastic deformation of the 
planet-ring gear meshing element along the line of action. 
mr is the mass of the ring gear. Ir is the moment of inertia 
of the ring gear.

In the same way, the dynamic equation of the sun-planet 
gear meshing element can be expressed as follows:

(2)

Frpi = krpi(vpi cos(�i + �pi) − wpi cos(�i + �pi)

+ �piRpi − vr cos(�i + �pi) + wr sin(�i + �pi) − �rRr) .

(3)

mrv̈r −

n�
i=1

krpi𝜂rpi sin(𝛼i + 𝜑pi) + krvr = 0

mrẅr +

n�
i=1

krpi𝜂rpi cos(𝛼i + 𝜑pi) + krwr = 0

(Ir∕R
2
r
)�̈�rRr +

n�
i=1

krpi𝜂rpi + kr𝜃𝜃rRr = 0

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

,

where n = 1, 2, 3, 4. ηspi is the elastic deformation of the 
sun-planet gear meshing element along the line of action. 
ms is the mass of the sun gear. Is is the moment of inertia of 
the sun gear.

Extraction and Analysis of Dynamic Load of Meshing 
Element

Due to the symmetry of the planetary gear system struc-
ture, the meshing force of planet-ring gear meshing element 
changes periodically. In the transmission process of plan-
etary gear train, the meshing element of planet-ring gear is 
in multi-tooth meshing state, although the force of a single 
tooth of the ring gear fluctuates periodically. Due to the com-
plex meshing situation, therefore, it is difficult to extract 
the time-domain load history of a single tooth of ring gear 
effectively. To sum up, this work extracts the total meshing 
force of meshing elements through the system dynamics pro-
gram. In the subsequent analysis, the LTCA method is used 
to determine the load distribution relationship between teeth.

When the input speed of the sun gear is 600 r/min and the 
load is 59 N·m, the dynamic load time history and spectrum 
analysis are calculated as shown in Fig. 4.

(4)

msv̈s +

n�
i=1

kspi𝜂spi sin(𝜑pi − 𝛼i) + ksvs = 0

msẅs +

n�
i=1

kspi𝜂spi cos(𝜑pi − 𝛼i) + ksws = 0

(Is∕R
2
s
)�̈�sRs −

n�
i=1

kspi𝜂spi + ks𝜃𝜃sRs = Tin∕Rs

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

,

Fig. 4  Dynamic load and 
frequency spectrum analysis 
of the meshing element of the 
planet ring

a

b
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According to Fig. 4a, the dynamic load fluctuation ampli-
tude is 2.6 N. In the spectrum analysis of Fig. 4b, the main 
excitation frequency is the energy of the meshing frequency 
of the planet-ring meshing element (218.65 Hz) and its 
frequency doubling component energy. As the frequency 
increases, the energy gradually decreases.

Finite element analysis of dynamic stress 
of ring gear

In an ideal state, during the meshing process of the planet 
and the ring gear, each participating tooth pair will always be 
in line contact. Therefore, to effectively simulate the planet-
ring gear meshing process, the contact surface of the ring 
gear is divided into n contact lines along the direction of the 
tooth profileas shown in Fig. 5b (Fdi is the impact load when 
the ith contact line participates in meshing), which will 

effectively reduce the mesh refinement degree of the con-
tact surface of the ring gear, and at the same time reduce the 
calculation time and the storage to improve the efficiency.

The planet-ring meshing element is a continuous dynamic 
meshing process. Hence, the dynamic load can be discre-
tized into n impact loads for each period of meshing of the 
gear teeth. As shown in Fig. 5a, the curve A is dispersed 
into 12 impact loads. From meshing in to meshing out, the 
action time of each impact load is Δt, and the action position 
successively changes from the first contact line entering into 
meshing to the exit of meshing.

When meshing the ring gear, the traditional meshing 
method has dense mesh in the contact area, which will 
greatly increase the calculation time and storage. To avoid 
the above situation, when meshing the ring gear teeth, it 
is divided into n equal parts along the tooth profile, that 
is, n + 1 contact lines are divided, and the discrete load is 
applied to the corresponding contact lines, and then the 

a

b

Fig. 5  Schematic diagram of discretized dynamic load and ring gear loading
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vibration and stress characteristics of the ring gear under 
the meshing excitation are obtained.

Load Distribution Relationship Between Teeth

When multiple teeth are meshed at the same time, there is 
also a problem of dynamic load distribution between teeth. 
In this paper, the LTCA method is used to discretize one 
period of the dynamic load on the ring gear, and the defor-
mation of each participating gear along the contact line 
direction in a period is determined Δij(t) (the deformation 
along the ith contact line of the jth engaged gear at t time), as 
shown in Fig. 5. Fij(t) is the component force of the dynamic 
load on the jth engaged tooth along the ith contact line at 
time t, as shown in Fig. 5b. And the meshing element of the 
planet-ring gear is single tooth and double tooth alternately 
meshing. According to the calculation Eq. (5) of gear theo-
retical coincidence degree, in a meshing cycle, 93% of the 
time is in double tooth meshing, and 7% of the time is in 
single tooth meshing.

The theoretical calculation formula of the coincidence 
degree of the planet-ring gear meshing element is

where αa1, αa2 and α′ are the planet, the ring gear tip pressure 
angle and the indexing circle pressure angle, respectively, 
z1 and z2 are the number of teeth of the planet gear and the 
ring gear.

Figure 6 shows, at time tq, the planet and the ring gear 
are in the state of double tooth meshing, and the loads borne 
by the double tooth are defined as Fi and Fj, respectively. 
The elasticity and bending deformation of each participat-
ing meshing tooth in the direction of the contact line under 
the load can be expressed as δi, δj, νi and νj, respectively. 
Assuming that the total load on the ring gear at this time is 

(5)�a =
1

2�
[z1(tan �a1 − tan ��) − z2(tan �a2 − tan ��)],

Fq, the relationship between the meshing teeth and the total 
load can be obtained according to the vector and superposi-
tion of the force

At this moment, the total deformation of each tooth along 
the direction of the contact line is Δq, then the relationship 
of the deformation of each tooth is

According to Eqs. (6), (7) and (8), the load of the j-th 
meshing gear tooth can be expressed as

Since the load on the ring gear changes with time in 
actual work, the dynamic load can be expressed as Fq(t), 
then Eq. (8) can be rewritten as

where Fq(t), Fj(t), Δq(t) and Δj(t) are the total load and defor-
mation of the ring gear and the load and deformation of the 
j-th meshing gear at time t.

The dynamic load of the ring gear presents periodic fluc-
tuation, and it is divided into n sub-steps. The deformation 
of each sub-step along the contact line of the meshing teeth 
is shown in Fig. 8.

According to Fig. 7, when the jth tooth enters into mesh-
ing, the meshing position is located at the tooth root, and the 
meshing force is small. Its bending deformation and elastic 
deformation are small. With the revolution of the planet, 
the load on the jth tooth increases gradually, and the elastic 
deformation increases, and the bending deformation also 
presents an increasing trend from the root to the top of the 
tooth. In the same way, the elastic deformation and bending 
deformation of ith tooth decrease gradually when the ith 
tooth is out of meshing. Figure 7 shows that the horizontal 
axis X represents the revolution angle of the planet, and the 
vertical axis Y represents the normalized deformation of the 
teeth engaged along the contact line direction.

Analysis Of Inherent Characteristics Of Ring Gear

The finite element method is used to build the dynamic 
model of the ring gear. The matrix form is as follows:

(6)Fq = Fi + Fj.

(7)Δj = �j + �j,

(8)Δq = Δi + Δj.

(9)Fj =
Δj

Δq

Fq.

(10)Fj(t) =
Δj(t)

Δq(t)
Fq(t),

Fig. 6  t = tq Load distribution and stress nephogram
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where [M] is the mass matrix of the ring gear.[K] is the stiff-
ness matrix of the ring gear. {q} is the displacement vector 

(11)[M]{q̈} + [C]{q̇} + [K]{q} = {Fa},

of the node. {Fa} is the external load matrix. Its damping 
matrix [C] can be considered as a linear combination of the 
mass matrix [M] and the stiffness matrix [K].

From a mathematical point of view, the above-men-
tioned mass, damping, and stiffness matrices are all high-
order matrices, so it takes a lot of calculation time using 
the general method. Because the modal superposition 
method is convenient to calculate and is widely used in 
engineering, this article uses the modal superposition 
method decouples Eq. (11).

From Eq. (11), the undamped free vibration equation 
of the ring gear is

The undamped free vibration equation should satisfy

where δi is the eigenvector of the i-th mode. ωi is the i-th 
natural vibration frequency. t is time.

(12)[C] = a[M] + b[K].

(13)[M]{q̈} + [K]{q} = 0.

(14)q = {�i} cos�it,

Fig. 7  Deformation of meshing gear along contact line under 
dynamic load

Fig. 8  Wind turbine test bench and fiber grating monitoring system
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From Eqs.  (11) and (12), the vibration characteristic 
equation of the structure can be obtained.

where the natural vibration frequency ωi of the i-th order can 
be obtained, and then the eigenvector {δi} of the ith order 
modal shape can be obtained.

Dynamic Stress Solution

After the modal matrix [Φ] of the ring gear is obtained, 
the coordinate transformation is carried out using the modal 
matrix.

where {Y(t)} is the principal coordinate matrix Y1 (t), Y2 (t), 
… Yp(t). Taking Eq. (14) into account

According to the orthogonality of modal matrix, Eq. (17) 
is decoupled, and the motion equation in the main coordinate 
system can be obtained.

where i = 1, 2, … p, (a + b�2
i
) is the modal damping coef-

ficient of the i-th main mode.  Ni (t) is the time vector varying 
with load in principal coordinate system.

When solving the dynamic equation in the principal 
coordinate system, because of the good convergence of the 
Newmark-β time integration method, this paper uses the 
Newmark-β time integration method to solve the Eq. (18) 
and then obtains the displacement field of each element of 
the inner gear ring.

After the displacement field of each element of the ring 
gear is obtained, the tooth root stress of the ring gear at any 
time can be further obtained according to the literature [34].

where [D] is the elastic constant matrix, [B] is the strain 
matrix, [S] = [D]·[B] is the stress matrix. The matrix forms 
of [D] and [B] are shown in the appendix.

Fiber Bragg Grating Measurement Principle

Fiber Bragg grating sensor is a kind of structure which is 
made of fiber core by means of ultraviolet illumination. This 
structure can reflect the light of specific wavelength. The res-
onance wavelength of reflected light is related to the period 
of fiber grating and the effective refractive index of the fiber 

(15)
|||−�

2
i
M + K

||| = 0.

(16){q(t)} = [Φ]{Y(t)},

(17)
[M][Φ]{Y(t)} + (a[M] + b[K])[Φ]{Y(t)} + [K][Φ]{Y(t)} = {Fa}.

(18)Ÿi(t) + (a + b𝜔2
i
)Ẏi(t) + 𝜔2

i
Yi(t) = Ni(t),

(19){�} = [D][B]Y(t + Δt) = [S]Y(t + Δt),

core. According to reference [35], the axial deformation of 
FBG will cause the reflection wavelength to shift, and the 
strain in the measurement area can be further obtained.

The key to the detection and diagnosis of the planetary 
gearbox is to obtain the change of strain in this position with 
time. Compared with the radial direction, the circumferential 
direction of the ring gear side should be changed signifi-
cantly, reaching the maximum value near the root circle and 
between the two adjacent teeth, and the measurement of the 
circumferential strain can better reflect the health state of 
the planetary gearbox. So, the FBG is arranged in the area 
with the maximum circumferential strain of the ring gear 
side, and the strain value of this part is more sensitive to the 
change of the state of the planetary gearbox.

In this paper, the wind turbine test bed produced by SQI 
company is taken as the research object, as shown in Fig. 8. 
The motor provides the input speed, and the magnetic pow-
der brake provides the load of the planetary gearbox.

The fiber grating used in the experiment is 2 mm in length 
and 0.125 mm in diameter. According to the above analysis, 
the fiber is pasted on the position of the tooth root at the 
middle side of the 6th and 7th tooth anticlockwise in the 
direction perpendicular to the ground, as shown in Fig. 8c; 
the fiber is led out from the side of the planetary gearbox, 
as shown in Fig. 8b; the dynamic monitoring system of the 
fiber grating is shown in Fig. 8d.

Time Domain Analysis of Dynamic Strain

In the experimental data collection, FBG sensor is pasted on 
the position of the middle root of the 6th and 7th tooth of the 
counterclockwise (Y-axis) perpendicular to the ground, as 
shown in Fig. 8b (circumferential direction). Therefore, this 
position should also be taken as the dynamic strain output point 
(as shown in Fig. 3) when extracting the simulation results. 
And, the simulation results are, respectively, obtained under the 
condition that the motor output frequency is 7.5 Hz and the load 
torque is 59 N·m The strain time history of the ring gear root 
under the experimental conditions is shown in Fig. 9.

To effectively extract the time-domain strain history of 
the gear root in the working process, this paper uses NI USB 
6009 acquisition card (sampling frequency: 5000 Hz, system 
detection accuracy: 4.8 mV/με). A sensor is pasted at the 
position of 1 mm at the root of the tooth space (number of 
sensors: 1), and then the time-domain strain history of the 
tooth root is obtained, as shown in Fig. 9a.

The dynamic strain time history can be divided into two 
parts by analyzing the above figure, that is, the meshing area 
and non-meshing area when teeth 6 and 7 (Fig. 5b) partici-
pate in meshing. It can be seen from Fig. 9 that in the mesh-
ing area, the meshing action leads to the complex meshing 
process from compression to tension at the tooth root, and 
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the dynamic strain will also appear sudden change. It can be 
seen from Fig. 9a, b, the maximum dynamic strain measured 
by the experiment is 26.2 με, and the maximum dynamic 
strain calculated by simulation is 28.5 με. There is a certain 
error between the experimental measurement result and the 
simulation result, which is due to the numerical error caused 
by the test method and other factors.

In the non-meshing area, it can be seen from Fig. 9a, the 
dynamic strain measured by the experiment shows a gradual 
decrease of smoothness, which is due to the recovery of ring 
gear deformation after the tooth are meshed and the attenu-
ation process of FBG sensor in signal transmission. In the 
simulation calculation (Fig. 9b), the dynamic strain curve is 
reduced to 0 in a step manner.

According to the calculation results in the reference [16], 
when the planet is meshed to the stress extraction position, 
its stress curve has a sudden change process from positive to 
negative in each cycle; and when the planet leaves the stress 
extraction position, its stress value also decreases to 0 by step, 
which is consistent with the fluctuation trend of the dynamic 
stress curve obtained by the simulation algorithm in this paper.

Comparative Analysis Of Strain Under Different 
Loads

To effectively demonstrate the consistency of simulation 
and experimental test results under different loads, the 
dynamic strain of ring gear under various load conditions 
are calculated and tested in this paper. During the experi-
mental measurement, the load is provided by the magnetic 
powder brake, so the motor frequency is 7.5 Hz, the load 
current of the magnetic powder brake is 0.6A, 1.0A, 1.5A, 
and 2.0A, respectively, and the corresponding load torque 
is 16 N·m, 34 N·m, 59 N·m and 79 N·m.

Take the mean value of the absolute value of the strain 
fluctuation when the teeth on both sides of the strain char-
acteristic point participate in the meshing under different 
loads, and draw the curve as shown in Fig. 10. It can be 
seen that under four load cases, the simulation results of 
the root strain are basically consistent with the experimen-
tal test results, the strain increases linearly with the load, 
and the maximum error between the simulation results and 
the experimental results is 8.88%.

Dynamic Characteristics of Thin‑Walled Ring 
Gear

In the analysis of thin-walled ring gear, according to refer-
ence [16], the rim thickness coefficient can be defined as:

Fig. 9  Circumferential dynamic 
strain time-domain curve

a

b

Fig. 10  Strain of tooth root under different loads
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where r0, rf and ra are the radius of the gear rim, the radius 
of the tooth root circle and the radius of the tooth top circle, 
respectively.

The smaller the rim thickness coefficient, the thinner the 
ring gear wall thickness, and with the decrease of the rim 
thickness coefficient, the mass of the ring gear decreases, but 
its flexibility will increase.

To sum up, this paper defines the rim thickness coefficient 
in the analysis of thin-walled ring gear λ = 0.55. Compared 
with the traditional ring gear, its flexibility is greater, and in 
practical work, due to the effect of load and meshing excita-
tion, the thin-walled ring gear will produce greater bending 
deformation, and the bending stiffness will also become the 
main factor affecting the vibration and stress distribution of 
the ring gear. Therefore, the vibration and stress character-
istics of the thin-walled gear ring are further analyzed by the 
method proposed in this paper.

Analysis of Ring Gear Vibration Characteristics

The input speed is the direct factor that affects the vibration 
and noise of the planetary gear transmission system. At high 
speed, the dynamic characteristics of planetary gear system 
are more obvious. In this paper, the vibration characteristics 
of ring gear at different speeds are calculated. In terms of 
vibration, the radial vibration of the ring gear is more rep-
resentative of its vibration characteristics than the circum-
ferential vibration. Therefore, the radial amplitude of the 
ring gear at 600–10800 r/min and the vibration amplitude of 
nodes 1–25 at different speeds are calculated and extracted 
as shown in Fig. 11.

(20)� =
r0 − rf

rf − ra
,

Figure 11a shows the amplitude of the ring gear radial 
vibration at different speeds. In the low-speed area, the ring 
gear radial vibration amplitude fluctuates less. As the speed 
increases, it is located in the medium and high-speed area, 
and the ring gear vibration is significantly enhanced. When 
the input speed of the sun gear is 4200 r/min, the sixth fre-
quency of the meshing frequency is close to the first natural 
frequency of the ring gear, which causes obvious vibration 
of the ring gear. When the speed is 8800 r/min, the third 
meshing frequency is close to the fourth natural frequency 
of ring gear. Similarly, when the input speed of the sun gear 
is 7600 r/min, the fourth octave of the meshing frequency is 
close to the ninth natural frequency of the ring gear.

The structure and boundary conditions of the ring gear 
have symmetry. To more effectively respond to the vibration 
of the ring gear under the meshing excitation, 25 nodes on 
the 1/4 circumference of the ring gear are extracted as the 
output points of the vibration response. The vibration ampli-
tude at 600, 4200, 7600 and 8800r/min is shown in Fig. 11b.

According to Fig. 11b, when the input speed of the sun 
gear is 600 r/min, the meshing excitation does not cause the 
ring gear resonance, and the ring gear deformation tends 
to static deformation. The radial vibration amplitude of the 
ring gear on both sides of the support position presents an 
inverted U-shape and is symmetrical with respect to the 
constraint position. The maximum amplitudes on the left 
and right sides of the constraint position are 6.5 μm and 
7.6 μm, respectively. With the increase of the rotational 
speed, the vibration of the ring gear gradually tends to its 
natural mode due to the influence of the meshing excitation. 
When the input rotational speed of the sun gear is 7600 r/
min, the vibration of the ring gear is particularly obvious due 
to the quadruple frequency of the meshing excitation, and 
the vibration amplitude is 15.4 μm. When the input speed 
of the sun gear is 4200 r/min and 8800 r/min, respectively, 

a b

Fig. 11  Radial vibration amplitude of ring gear
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according to Fig. 11b, the amplitudes are 11.2 μm and 
14.3 μm, respectively, The amplitudes of 8800 r/min are 
obviously larger than those of 4200 r/min because the energy 
of the sixth harmonic of the meshing frequency is obviously 
weaker than that of the third harmonic.

Stress Analysis of Ring Gear

It is of great significance to study the stress distribution of 
the ring gear during the operation of the planetary gear train 
for predicting the location of fatigue occurrence and ensur-
ing the safety of engineering, while the influence of reso-
nance on the stress of the ring gear is particularly significant. 
Given the above problems, this paper calculates and analyzes 
the stress of the ring gear at different speeds. For a more 
intuitive response to the stress fluctuation process of the ring 

gear, the time-domain history of the circumferential stress 
at the root of the ring gear at different speeds is extracted in 
this paper, as shown in Fig. 12.

By analyzing the time-domain history of the ring gear at 
different speeds shown in Fig. 12 and taking the input speed 
of the sun gear at 600 r/min as an example, the time-domain 
history of dynamic stress can be divided into the stress fluc-
tuation due to meshing deformation and the stress fluctua-
tion caused by vibration. Due to the effect of meshing force 
and the flexibility of thin-walled ring gear, when the planet 
is close to the stress extraction position, obvious ring gear 
compression deformation occurs before the teeth on both 
sides of the stress extraction position engaged in meshing. 
This leads to a large fluctuation of the root stress, and the 
magnitude of the compressive stress is σc = 35.6 MPa. Simi-
larly, when the planet is meshed out of the stress extraction 

Fig. 12  Circumferential 
dynamic stress of ring gear at 
different speeds

a

b

c

d
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position, the stress extraction position is in the state of ten-
sile deformation due to the effect of the meshing force, and 
the tensile stress of the ring gear is σt = 61.5 MPa. The com-
pressive stress at the root of the tooth is obviously smaller 
than the tensile stress. When the planet is far away from the 
stress extraction position, it can be seen that the dynamic 
stress fluctuates near 0, which is caused by the vibration 
deformation of the thin-walled ring gear caused by meshing 
excitation.

Rotation speed is the direct factor affecting the meshing 
excitation. As illustrated in Fig. 12b, it can be seen that the 
dynamic stress of the tooth root increases significantly at 
4200 r/min. This is due to the increase of rotation speed and 
the increase of the deformation of the ring gear, which is 
caused by the close relationship between the excitation fre-
quency and the natural frequency. When the input speed of 
the sun gear continues to increase to 7600 r/min and 8800 r/
min, the dynamic stress fluctuation of the ring gear is par-
ticularly obvious. Taking 8800r/min as an example, due to 
the influence of resonance, the stress fluctuation of the ring 
gear is significantly increased. With the rotation of the planet 
gear, the vibration at the stress extraction position gradually 
increases from strong to weak and then to strong. The stress 
also increases at first, then decreases and then increases. The 
magnitude of compressive stress is σc = 83.9 MPa, the mag-
nitude of tensile stress is σt = 126 MPa, and the magnitude 
of tensile stress is twice that under non-resonant conditions.

To further verify the relationship between stress and ring 
gear deformation under resonance and non-resonance condi-
tions, the deformation of ring gear under the sun gear input 
speed of 600 r/min and 8800 r/min is taken as an example, as 
shown in Fig. 13. (ring gear deformation magnified 10,000 
times).

To reflect the deformation of the ring gear in the mesh-
ing process more intuitively, the ring gear is deformed once 
every 15°revolution of the planet. As shown in Fig. 13a, 
the deformation of the gear ring is analyzed when the input 
speed of the sun gear is 600 r/min. When the angle between 
the centerline of planet 1, the sun gear, and the vertical 
direction is 0°, the meshing tooth pair of the planet and the 
ring gear is located near the constraint position. Due to the 
action of the meshing force, the gear ring between the two 
constraints gradually changes from convex deformation to 
concave deformation, the stress extraction position is just 
in the state of tension, and the stress is positive. When the 
angle between the central line of planet 1, the sun gear, and 
the vertical direction is 15°, the stress extraction position is 
located at the convex deformation position, the outer side 
of the ring gear is in tension state, the inner side is in com-
pression state, and the stress is negative. With the revolu-
tion of the planet, when the angle between the central line 
of the planet 1, the sun gear, and the vertical direction is 
30°, the gear ring at the stress extraction position is concave 

deformation, the outer side of the gear ring is in the com-
pression state, the inner side is in the tension state, and the 
stress is positive. As the planet continues to rotate, when 
the angle between the central line of planet 1, the sun gear 
and the vertical direction is 45°, 60°, and 75°, no planet is 
engaged between constraint 1 and constraint 2. At this time, 
the stress fluctuates near 0, which is caused by micro defor-
mation due to ring gear vibration.

Similarly, the deformation of the ring gear is analyzed 
when the input speed of the sun gear is 8800 r/min. It can 
be seen that when the angle between the central line of the 
planet gear 1 and the sun gear and the vertical direction is 0°, 
15°, and 30°, there is no obvious difference except that the 
deformation of the ring gear increases obviously. But when 
the angle between the centerline of planet 1 and sun gear 
and the vertical direction is 45°, there is no planet between 
constraint 1 and constraint 2, but the resonance effect caused 
by the meshing excitation increases the overall deformation 
of the ring gear, resulting in a large fluctuation of the stress. 
However, with increased distance of planet 1, the deforma-
tion caused by its vibration decreases gradually, which leads 
to a stress fluctuation from strong to weak in the non-mesh-
ing deformation area. In conclusion, the deformation trend 
is consistent with the dynamic stress time history.

Influence of Meshing Deformation on Stress Field 
Distribution

From the above analysis, it can be seen that the meshing 
deformation is a direct factor affecting the stress fluctuation. 
However, compared with the dynamic strain time-domain 
curve in Fig. 9., the range of stress fluctuation is significantly 
expanded, and the compressive stress σc at the tooth root 
position is significantly smaller than the tensile stress σt. 
Due to the above problems, to further explore the influence 
of the deformation of the thin-walled ring gear caused by 
meshing excitation on the stress, the stress cloud diagram 
near the meshing deformation of the ring gear and the trend 
of the stress fluctuation along the circumferential direction 
are shown in Fig. 14. This is a more intuitive way to show 
the meshing deformation, and in which the effect of force 
takes the equivalent stress as the output stress.

As shown in Fig. 14a, the stress cloud diagram of the ring 
gear can be divided into three areas, namely, the concave 
deformation area caused by the tension on the left side of 
the meshing tooth, the convex deformation area caused by 
extrusion near the meshing area, and the right side of the 
meshing tooth, and the concave deformation zone caused 
by the deformation of the side wheel body. According to 
the stress cloud diagram, the stress concentration position 
from the constrained position 1 to the constrained position 2 
gradually transitions from the root position to the edge of the 
wheel body and then to the root position. According to the 
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stress fluctuation curve at the tooth root of Fig. 14b, it can be 
seen that the maximum stress position is on the left side of 
the meshing gear tooth, and the magnitude is 63 MPa, while 
the stress at the meshing position is 32.1 MPa. The magni-
tude is much greater than the stress generated by the com-
pression deformation at the meshing position. These results 
are consistent with the results obtained in the time domain 
history of the circumferential stress. At the same time, it can 

be seen that the stress between two adjacent peaks experi-
ences large fluctuations, which is due to the influence of the 
spacing distribution of the gear tooth–tooth groove–tooth 
on the stress. Analysis of the stress fluctuation curve of the 
outer side of the ring gear in Fig. 14c shows that the stress 
at the meshing position experiences a sharp increase and the 
stress on both sides is relatively small. This is because the 
extrusion caused by the meshing excitation leads to convex 

Fig. 13  Deformation of gear 
ring at different speeds

a

b
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warpage. The stress of the rim ring body of the ring gear is 
more concentrated relative to the position of the inner root. 
At this time, the maximum stress is 35 MPa. As illustrated in 
Fig. 14c, the stress at the restraint position 1 shows a sharp 
drop. This is because the constraint prevents the deforma-
tion of the ring gear, so the stress concentration occurs at the 
intersection of the constraint positions.

Conclusion

Considering the dynamic characteristics of the planetary 
gear transmission system, ring gear vibration characteristics 
and dynamic stress calculation method are proposed, and the 
vibration and stress of the thin-walled ring gear are analyzed.

(1) In the calculation results of thin-walled ring gear, at the 
resonance speed, the vibration shapes of the ring gear is 
more complex than at the non-resonant speed. The root 

stress increases by 100% compared to the non-resonant 
speed.

(2) The deformation of ring gear tends to static deforma-
tion at the non-resonance speed, while it tends to its 
natural vibration mode at the resonance speed, and the 
vibration shape is more complex.

(3) In the calculation results of thin-walled ring gear, in 
the meshing position, due to the influence of the flex-
ibility of the thin-walled ring gear, the stress on the rim 
position of the ring gear is more concentrated than the 
root position; the stress of the tooth root of the tension 
deformation side is more concentrated than that of the 
meshing position.
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Fig. 14  Stress nephogram of gear ring and stress fluctuation curve of one eighth circle (600r/min)
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