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Abstract
Background  Dynamic load identification plays an important role in practical engineering. In this paper, a novel fast algorithm 
is investigated to identify the multi-point dynamic load positions in frequency domain.
Methods  For any given frequency, the amplitude of each load spectrum is relatively constant. By solving the kinetic equa-
tion set with the elimination method, the relationship of the true dynamic load positions can be expressed as the form of 
filter coefficients, then many dynamic load position combinations can be found that they do not satisfy the relationship so 
they can be excluded from the possible true position combinations. Compared to the traditional method, the novel algorithm 
only needs to sort out the true positions from a few dynamic load position combinations by the minimum determination 
coefficient method, which reduces the number of matrix inversion operations and improves the speed of the identification 
of load positions.
Conclusions  Through a numerical simulation and an identification test on the simply supported beam structure, the high 
accuracy and effectiveness of the novel algorithm are successfully demonstrated, while the rapidity of the novel algorithm 
is shown by comparing the computation time of the novel algorithm with that of the traditional method.

Keywords  Load position identification · Frequency domain · Determination coefficient method · Filter coefficient · Inverse 
problem

Introduction

Contemporarily, the identification of dynamic load and its 
position plays a crucial role in substantial practical engineer-
ing situations including motion of vehicle or aircraft and 
vibration of buildings induced by earthquake, wind or waves. 
There are two approaches used to identify dynamic loads: 
the direct way and indirect way. The direct method deter-
mines the dynamic loads by measuring apparatus, however, 
the dynamic loads are difficult to measure directly or even 
cannot be measured in many complex practical engineering 
situations, including push force acted on the rocket, road 
excitation applied to vehicle, etc. Thus, the technique of load 
identification, a significant indirect way to obtain dynamic 
loads, has been rapidly developing since the early 70s. It 

determines dynamic loads based on the dynamic charac-
teristics of system and the measured responses of structure.

Currently, there are two main series of load identifica-
tion method: the frequency-domain technique and the time-
domain technique. The frequency-domain technique converts 
the kinetic equation into frequency domain to identify the 
loads with known information. Due to the linear relationship 
between the loads and responses, the identification process 
becomes easier, which make the identification technique 
developed rapidly and applied to practical engineering prob-
lems successfully. Bartlett and Flannelly [1] first employed 
the frequency domain technique and determined hub forces in 
a helicopter modal successfully. Hillary et al. [2] established 
the systematic frequency-domain method of load identifica-
tion using measured strain as the known response informa-
tion to identify the dynamic loads in frequency domain, and 
discussed the effect of different response parameters on iden-
tification accuracy. Starkey et al. [3, 4] found that directly 
inverse of frequency response function was ill conditioned 
near the resonance zone, and the increase of identification 
loads number reduced the accuracy of the identification 
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result. Yu et al. [5] used bending moment responses of bridge 
modal to identify the moving vehicle axle loads in frequency 
domain, and evaluated two solutions of the overdetermined 
set of equations established in the process of load identifica-
tion. Liu et al. [6] used enhanced least squares schemes and a 
total least-squares scheme to identify forces in the frequency 
domain with considering the error both in the structural 
response signals and the frequency response function (FRF) 
matrix. The frequency-domain techniques often require long 
enough data to do Fourier transformation or other harmonic 
transformation, thus the applications of these frequency-
domain techniques are limited. Based on these reasons, the 
time-domain technique was developed. The research of time-
domain technique started relatively late and still has many 
problems need to be solved, like the convolution between 
loads and responses which leads to the difficulties of mathe-
matical process. In recent years, the time-domain technique is 
continually improved with further studies. Desanghere et al. 
[7] first introduced the modal coordinate transformation in 
the process of identifying the excitation and established the 
time-domain method for dynamic load identification. Chan 
et al. [8, 9] studied the moving load identification and devel-
oped a series of identification methods. Because of the noise 
data of measured responses and the ill-conditioned charac-
teristic of the system, dynamic load identification is generally 
an ill-posed inverse problem. Choi et al. [10] used Tikhonov 
regularization to improve the condition of the inverse prob-
lems, and compared the efficiency of several methods which 
were available to select the optimal regularization param-
eter, including ordinary cross-validation (OCV), generalized 
cross-validation (GCV) and L-curve method. Beside of the 
Tikhonov regularization method, there have been also some 
traditional regularization methods, such as the truncated 
singular value decomposition (TSVD) [11], the modified 
TSVD [12], the damped singular value decomposition [13], 
the iterative regularization methods [14] and so on. Liu et al. 
[15, 16] used the shape function and moving least square 
fitting method to approximate the load, while the Galerkin 
method was adopted to overcome the influences of the noise 
and improve the accuracy of the dynamic load identification. 
Since the load identification modal relates to the positions 
of measurement points, many researches including those 
mentioned above have the same premise that the position 
of the dynamic load is known, which is generally not the 
case and needs to be identified before the reconstruction of 
the dynamic load. To settle this problem, Gaul et al. [17] 
employed a wavelet transform to determine the arrival time of 
the waves at different frequencies, and used an optimization 
method to identify the impact location. Bakari et al. [18] used 
the particle swarm optimization algorithm to solve the locali-
zation of the distributed impact force acting on the beam 
structure. Li and Lu [19] adopted a complex method to deter-
mine the location of the impact and then identify the impact 

history by a constrained optimization scheme. Ginsberg [20] 
created a sample-force-dictionary as the prior knowledge to 
transform the impact identification into a sparse recovery 
task. Zhu et al. [21, 22] studied the identification methods 
of dynamic load position in frequency domain and in time 
domain, respectively, and proposed minimum determination 
coefficient as the criterion in the optimization problems.

However, if the dynamic loads act in more than one posi-
tion, due to the permutation and combination of the different 
positions, the process of dynamic load position identification 
costs plenty of time which would cause unknown problems 
during researches and practical engineering situations. Con-
sidering the factors above, this paper proposes a novel algo-
rithm of load position identification in frequency domain, 
which can efficiently reduce the time of dynamic load position 
identification. The process of identification becomes easier 
due to the linear correlation between the dynamic load and 
the response. At a certain frequency, the dynamic loads are 
constants and the other loads can be obtained by one load 
multiplying corresponding coefficients, then a linear equation 
set of the coefficients can be established. By solving this equa-
tion set, the relationship of load positions can be expressed as 
a parameter optimization problem. In the process of comput-
ing the parameter optimization problem, many load position 
combinations can be excluded from the possible true position 
combinations, as the parameter values of these load position 
combinations are too large. Then only few groups of load 
positions need to be considered, which reduces the times of 
matrix inversion obviously. The high accuracy and effective-
ness of the novel algorithm are successfully demonstrated 
through numerical simulation and identification test on the 
simply supported beam structure. The results indicate that 
under the premise of satisfying the reasonable precision, the 
novel algorithm can reduce the time of dynamic load position 
identification apparently, which is greatly beneficial to the 
further study of the load identification problems.

Formulation of Load Position Identification

In this section, the identification of dynamic load position is 
formulated by referring to the multiple-degree-of-freedom sys-
tem (i.e. MDOF system) as well as other systems. The degree 
of freedom of this system is assumed to be L. The dynamic 
equilibrium equation of the MDOF system can be expressed as

where M, C, and K represent the mass, damping and stiff-
ness matrixes, respectively. Their dimensions are L × L and 
they are supposed to be constant with respect to time t. x and 
f are the displacement and load vector, respectively. The dot 
represents the derivative with respect to time t.

(1)𝐌𝐱̈(t)+𝐂𝐱̇(t)+𝐊𝐱(t)= 𝐟 (t),
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Based on Fourier transform, the dynamic equilibrium 
equation can be transformed to

where X and F are the response and load spectrum vector, 
respectively. Their dimensions are L × 1. The ω is called the 
circle frequency.

By introducing the frequency response function matrix, 
Eq. (2) can be derived as

where

We suppose the number of dynamic loads is n ( 2n < L ). 
Now, the subscripts of true dynamic loads are assumed as 
a1 , a2 , a3,…, an . With responses of n points, the relation-
ship between responses and dynamic loads can be written 
as

where �I = [X1,X2,… ,Xn]
T , �I = [Fa1

,Fa2
,… ,Fan

]T , and

where Hi,j represents the frequency response function at the 
ith point when a unit simple harmonic force is applied at 
the jth point.

For a certain system, the frequency response function 
matrix is usually given, and the responses can also be meas-
ured, so the loads can be acquired by the matrix inversion as

As the true dynamic load positions are unknown, every 
dynamic load positions combination 

{
zi
}
, i = 1, 2,⋯ n , can 

lead to a group of dynamic load values. The number of the 
groups is Cn

L
 in terms of the assumption that the n positions 

of dynamic loads are different to each other. In these Cn
L
 

groups, just one group is the true dynamic load positions 
combination. The number Cn

L
 can be expressed as

To find the true dynamic load position combination, 
responses of other n points are measured and represented 
by subscripts of n + 1 to 2n . Like Eq. (7), the load spec-
trum vector can also be expressed as

(2)−�2
�� + i��� +�� = �,

(3)� = ��,

(4)� = (� − �
2
� + i��)−1.

(5)�I= �I�I,

(6)�I =

⎡
⎢⎢⎢⎢⎢⎣

H1,a1
H1,a2

H1,a3
⋯ H1,an

H2,a1
H2,a2

H2,a3
⋯ H2,an

H3,a1
H3,a2

H3,a3
⋯ H3,an

⋮ ⋮ ⋮ ⋱ ⋮

Hn,a1
Hn,a2

Hn,a3
⋯ Hn,an

⎤⎥⎥⎥⎥⎥⎦

(7)�I= �
−1

I
�I.

(8)Cn
L
=

L ∗ (L − 1) ∗ ⋯ (L − n + 1)

n ∗ (n − 1) ∗ ⋯ ∗ 2 ∗ 1
.

where �II = [Xn+1,Xn+2,… ,X2n]
T , and

For each dynamic load positions combination {
zi
}
, i = 1, 2,⋯ n , Eqs. (7) and (9) can give two groups of 

dynamic load values, respectively. With avoiding the influ-
ence of symmetry, these two groups of dynamic load values 
are equal just in the true dynamic load positions combination. 
Thus, the problem of dynamic load position identification can 
be transformed into the optimization problem of finding the 
minimum difference between the two groups of equivalent 
dynamic loads obtained by Eqs. (7) and (9). The optimization 
function can be expressed as follows:

The determination coefficient � in Eq. (11) depends on the 
position variables 

{
zi
}
, i = 1, 2,⋯ n . Only when the variables 

happens to be the actual load positions, the coefficient � will 
take the minimum value. It can be expressed as follows:

The flowchart of the traditional method to identify the load 
positions is shown in Fig. 1. To identify the true dynamic load 
position combination, the traditional method calculates Cn

L
 

groups of the determination coefficient � , then the minimum 
can be found. The position combination corresponding to the 
minimum determination coefficient is the true dynamic load 
position combination. In the whole process of identification, 
there are 2Cn

L
 times of the matrix inversion which cost plenty 

of time and lead to much trouble in the practical operation.

Novel Algorithm of Load Position 
Identification

At a certain frequency, the values of n dynamic load 
spectrums are constants, so the other load spectrums can 
be represented by the first one with corresponding scale 
coefficients.

where �2 , �3 , ⋯ , �n are the scale coefficients corresponding 
to the load spectrums Fa2

 , Fa3
,⋯,Fan

 . Substituting Eq. (13) 
into Eq. (5), the relationship between responses and loads 
can be rewritten as

(9)�II= �
−1

II
�II,

(10)�II =

⎡
⎢⎢⎢⎢⎢⎣

Hn+1,a1
Hn+1,a2

Hn+1,a3
⋯ Hn+1,an

Hn+2,a1
Hn+2,a2

Hn+2,a3
⋯ Hn+2,an

Hn+3,a1
Hn+3,a2

Hn+3,a3
⋯ Hn+3,an

⋮ ⋮ ⋮ ⋱ ⋮

H2n,a1
H2n,a2

H2n,a3
⋯ H2n,an

⎤
⎥⎥⎥⎥⎥⎦

.

(11)�(z1, z2,… , zn) =
‖‖�I − �II

‖‖22.

(12)�(a1, a2,… , an) = min{�}.

(13)Fai
= �iFa1

, i = 2, 3,… , n,
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From the first equation of the equation set (14), Fa1
 can 

be expressed

Substituting Fa1
 into the other equations of the equation 

set (14) and merging similar terms, an equation set about 
scale coefficients can be obtained

where � = [�2, �3,… , �n]
T , and the elements of the vector 

� and matrix � can be represented as follows:

As the same as Eq. (16), Eq. (9) can be expressed as

(14)Xk =

(
Hk,a1

+

n∑
i=2

�iHk,ai

)
Fa1

, k = 1, 2,… , n,

(15)
Fa1

=
X1

(H1,a1
+

n∑
i=2

�iH1,ai
)

.

(16)� = ��,

(17)bi = X1Hi+1,a1
− Xi+1H1a1

, i = 1, 2,… , n − 1

(18)ui,j = Xi+1H1,aj+1
− X1Hi+1,aj+1

,
i = 1, 2,… , n − 1

j = 1, 2,… , n − 1
,

(19)� = ��,

where

Through a matrix inversion of Eq. (16), the coefficient 
vector can be derived from

where �−1 is the inversion of the matrix � , and by referring 
to matrix theory, the �−1 can be expressed as

where |�| is the determinant of the matrix � , and U∗
i,j

 is the 
algebraic complement of the element ui,j . U∗

i,j
 can be written 

asEquation (22) can be rewritten into an equation set form 
as

Through a matrix inversion of Eq. (19), the coefficients 
can also be expressed as

For Eqs. (24) and (25) with the same subscript i , the right 
side of the two equations are equal, so a equation set reflect-
ing the relationship of 2n responses can be obtained

According to the properties of the matrix, the determinant 
|�| and |�| can be expressed as

The equations of with different subscript i in the equa-
tion set (26) are similar to each other. The right side of 
each equation is the same function with the position vari-
ables a2 , a3 , a4,…, an . The left side of each equation is the 

(20)di = Xn+1Hn+i+1,a1
− Xn+i+1Hn+1a1

, i = 1, 2,… , n − 1,

(21)

wi,j = Xn+i+1Hn+1,aj+1
− Xn+1Hn+i+1,aj+1

,
i = 1, 2,… , n − 1

j = 1, 2,… , n − 1
.

(22)� = �
−1
�,

(23)�
−1 =

1

���

⎡
⎢⎢⎢⎢⎣

U∗
1,1

U∗
2,1

⋯ U∗
n−1,1

U∗
1,2

U∗
2,2

⋯ U∗
n−1,2

⋮ ⋮ ⋱ ⋮

U∗
1,n−1

U∗
2,n−1

⋯ U∗
n−1,n−1

⎤
⎥⎥⎥⎥⎦
,

(24)�i+1 =

∑n−1

j=1
U∗

j,i
bj

��� , i = 1, 2,… , n − 1.

(25)�i+1 =

∑n−1

k=1
W∗

k,i
dk

��� , i = 1, 2,… , n − 1.

(26)

∑n−1

j=1
U∗

j,i
bj

∑n−1

k=1
W∗

k,i
dk

=
���
��� , i = 1, 2,… , n − 1

(27)|�| =
n−1∑
j=1

U∗
j,1
uj,1, |�| =

n−1∑
j=1

W∗
j,1
wj,1.

Fig. 1   The flowchart of the traditional method
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function with n − 1 position variables. First, considering 
Eq. (26) with the subscript i = 1 , it can be expanded as

From Eqs. (17) and (18), it is obvious that bi and ui,1 
( i = 1, 2,… , n − 1 ) have the same form except that their 
position variables are different. bi contains the position 
variable a1 , while ui,1 contains the position variable a2 . 
Thus, through replacing the position variable a1 with a2 , 
the component bi turns to −ui,1 . The transforming situation 
is the same as the di and −wi,1.

Now a function S composed of n − 1 variables is intro-
duced. To represent the left side of Eq. (28), let the n − 1 
variables of S be a1 , a3 , a4,…, an, respectively, then

By transforming the position variable a1 in function S to 
a2 , the right side of Eq. (28) can be represented by

Because the left side of Eq. (28) equals to the right side, 
Eq. (28) can be expressed by the function S as

From Eq.  (31), a relationship of the true load posi-
tions is known that the value of function S is invariable 
when the first variable value is transformed from a1 to a2, 
while the other n − 2 variable values equal to a3 , a4,…, an, 
respectively.

Now, we consider Eq.  (26) with the subscript i = 2 . 
By the properties of elementary  matrix  transforma-
tion in mathematics, it is known that the algebraic comple-
ment U∗

i,1
 becomes −U∗

i,2
 ( i = 1, 2,… , n − 1 ) by transform-

ing the position variable a3 to a2 and at the same time W∗
i,1

 
becomes −W∗

i,2
 . Therefore, when the position variable a3 

is transformed to a2 , the left side of Eq. (28) becomes the 
left side of Eq. (26) with the subscript i = 2, while the right 
side of Eq. (26) can also be written as S

(
a2, a3, a4,… , an

)
 . 

Like Eq. (31), Eq. (26) with the subscript i = 2 can be 
expressed by the function S as

Similarly, Eq. (26) with the other subscripts can also be 
rewritten as the form of the function S

(28)
U∗

1,1
b1 + U∗

2,1
b2 +⋯ + U∗

n−1,1
bn−1

W∗
1,1
d1 +W∗

2,1
d2 +⋯ +W∗

n−1,1
dn−1

=
U∗

1,1
u1,1 + U∗

2,1
u2,1 +⋯ + U∗

n−1,1
un−1,1

W∗
1,1
w1,1 +W∗

2,1
w2,1 +⋯ +W∗

n−1,1
wn−1,1

.

(29)

S(a1, a3, a4,… , an) =
U∗

1,1
b1 + U∗

2,1
b2 +⋯ + U∗

n−1,1
bn−1

W∗
1,1
d1 +W∗

2,1
d2 +⋯ +W∗

n−1,1
dn−1

.

(30)

S(a2, a3, a4,… , an) =
U∗

1,1
u1,1 + U∗

2,1
u2,1 +⋯ + U∗

n−1,1
un−1,1

W∗
1,1
w1,1 +W∗

2,1
w2,1 +⋯ +W∗

n−1,1
wn−1,1

.

(31)S(a1, a3, a4,… , an) = S(a2, a3, a4,… , an).

(32)
S(a1, a2, a4,… , an) = S(a2, a3, a4,… , an), i = 3, 4,… , n − 1.

Equation (31), (32) and (33) can be combined as

Moving the right side to the left and taking the abso-
lute value of the equation, Eq. (34) can be transformed to

The true load positions a1 , a2 , a3,…, an make Eq. (35) 
valid. On the contrary, the false load position combinations 
do not satisfy this equation generally. Therefore, the filter 
coefficients are introduced to determinate the true load posi-
tions from the plenty of load position combinations. The 
filter coefficients are expressed as follows:

where the �i ( i = 1, 2,… , n − 1 ) is the filter coefficient 
composed of the variables 

{
zi
}
, i = 1, 2,⋯ n , so they can 

be expressed as the form of functions like �i
(
z1, z2,… , zn

)
 . 

When the variables z1 , z2 , z3,…, zn equal to true load posi-
tions a1 , a2 , a3,…, an, respectively, the filter coefficient �i 
equals to zero. Therefore, we have

Since the filter coefficient �i ( i = 1, 2,… , n − 1 ) is non-
negative, so the sum of these filter coefficients is also non-
negative. The sum can be written as

The overall filter coefficient � contains n variables. Then, 
Eq. (37) is equivalently expressed as

It is known to us that the equation set has more than one 
set of solutions when the number of unknowns is greater 
than the number of equations. In view of this theory, the 
unique solution of Eq. (37) cannot be determined, so it 
is impossible to calculate the true load positions only by 
Eq. (36). However, Eq. (37) can help to exclude the most 
load position combinations which do not satisfy this equa-
tion before using the matrix inversion to identify the true 

(33)
S(a1, a2,… , ai, ai+2,… , an) = S(a2, a3, a4,… , an), i = 3, 4,… , n − 1.

(34)
S(a1, a2,… , ai, ai+2,… , an) = S(a2, a3, a4,… , an), i = 1, 2,… , n − 1.

(35)
||S(a1, a2,… , a

i
, a

i+2,… , a
n
) − S(a2, a3, a4,… , a

n
)|| = 0, i = 1, 2,… , n − 1.

(36)

�
i
(z1, z2,… , z

n
)

= ||S(z1, z2,… , z
i
, z

i+2,… , z
n
) − S(z2, z3,… , z

n
)||, i = 1, 2,… , n − 1,

(37)�i(a1, a2, a3,… , an) = 0, i = 1, 2,… , n − 1.

(38)�(z1, z2, z3,… , zn) =

n−1∑
i=1

�i(z1, z2, z3,… , zn)

(39)�(a1, a2, a3,… , an) = 0.



568	 Journal of Vibration Engineering & Technologies (2021) 9:563–573

1 3

load positions. Compared to all position combinations, the 
quantity of those combinations which satisfy Eq. (37) is 
so small that times of the matrix inversion can be reduced 
obviously. In theory, when the load position an is given, the 
other n − 1 load positions can be determined by Eq. (37), 
what means that for any given an , the corresponding load 
positions a1 , a2 , a3,…, an−1 can be found.

The novel algorithm of load position identification can 
be divided into four steps as follows:

Step 1. An assumption is made that the load positions 
satisfy z1 > z2 > z3 > ···> zn−1 > zn . The values of function 
S about different position combinations 

{
zi
}
, i = 1, 2,… n 

can be obtained by the definition of S in Eq. (29). Because 
the function S contains n − 1 variables, the function value 
is evaluated Cn−1

L
 times.

Step 2. When a group of load positions z2 , z3,…, zn 
are assumed, the corresponding z1 can be determined 
by searching the minimum of the filter coefficient � in 
the section 

[
z2 + 1, L

]
 which means position z1 satisfies 

z2 + 1 ≤ z1 ≤ L . Because the load position z1 is determined 
by z2 , z3,…, zn , it can be represented as the form of func-
tion z1(z2 , z3,…, zn) . In step 2, the main operation is to 
compare the size of values, of which computation time is 
much shorter than that of matrix inversions.

Step 3. After defining the load position z1(z2 , z3,…, zn) , 
filter coefficient � can be used to further filtrate the load 
position combinations. The second load position z2 can be 
obtained by searching the minimum of the filter coefficient 
� in the section 

[
z3 + 1, L − 1

]
 . Then, z2 can be expressed 

as z2(z3 , z4,…, zn) . In a similar way, the other load posi-
tions z3 , z4,…, zn−1 can also be obtained by filter coefficient 
�, respectively. Due to the assumption z1 > z2 > z3 > ···> 
zn−1 > zn , the section of zn is [1, L − n + 1] . Thus, L − n + 1 
position combinations can be obtained finally.

Step 4. The L − n + 1 position combinations obtained in 
step 3 are used to identify the true load positions by com-
puting the corresponding determination coefficient �(z1 , 
z2,…, zn) and finding the minimum value. The position 
combination with the minimum determination coefficient 
� is the true load positions 

{
ai
}
, i = 1, 2,… n.

Through the four steps mentioned above, the true 
dynamic load positions can be identified. The flow chart of 
the novel algorithm to identify the load positions is shown 
in Fig. 2. In process of the identification, there are many 
times of searching minimums which costs much short time 
in computer arithmetic. And a lot of position combina-
tions are excluded by the filter coefficients. The number 
of position combinations which are need to compute the 
determination coefficients is (L − n + 1) . This number is 
smaller than that of the traditional method which is Cn

L
. 

Therefore, the true load position combination can be iden-
tified rapidly through the novel algorithm.

Simulation Results

To verify the validity of the proposed algorithm, a simula-
tion example of a beam structure is studied to illustrate the 
process of load position identification. The computation time 
and identified results of the novel algorithm are compared 
with those based on the traditional method. The simulation 
model of the Bernoulli–Euler beam with fixed ends is shown 
in Fig. 3.

In this model, the length, width and height of the beam 
are l = 0.64m , w = 0.04m and h = 0.01m respectively. 
The material of the beam has the density 7800 kg/m3, the 
Young’s module 210 GPa and the Poisson’s ratio 0.3. The 

Fig. 2   The flowchart of the novel algorithm
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beam is evenly divided into 640 elements and there are 641 
nodes in total.

The beam is subjected to three sine loads in verti-
cal direction with frequency f = 50Hz which is shown in 
Fig. 4. The position of the external loads are xa1 = 0.193m , 
xa2 = 0.317m and xa3 = 0.409m and the corresponding 
amplitudes are Fa1

= 35N , Fa2
= 55N and Fa3

= 75N.
To identify the load positions, six measurement points of 

the response are chosen and their positions are x1 = 0.15m , 
x2 = 0.25m , x3 = 0.28m , x4 = 0.31m , x5 = 0.33m and 
x6 = 0.37m . By simulation calculation, the noisy accel-
eration response of x1 in vertical direction with 5% noise 
levels is shown in Fig. 5, and the corresponding frequency 
response is shown in Fig. 6. 

To identify the load positions, the frequency–response 
function of the whole model is calculated. There are 641 
nodes in the model and except the fixed nodes in 2 ends, the 
other 639 nodes all have the possibility of being an exciting 
point. Therefore, the degree of freedom of this system L is 
639 and the number of dynamic loads n is 3.

The identified results through the traditional method and 
the novel algorithm are shown in Table 1 as well as the 
computation time of the two method. The determination 
coefficient curves of the two methods in the exponent are 
shown in Figs. 7 and 8, respectively. For ease of observa-
tion, logarithmic form of the determination coefficient is 
used here. The minimum determination coefficient of the 
traditional method is 0.8054 and its corresponding number is 
28044195. The load positions represented by this number is 
shown in Table 1. As for the novel algorithm, the minimum 
determination coefficient is 0.8074, and its corresponding 
first load position is 0.187.  

From the identified results in Table 1, it is shown that both 
the two methods can be used to identify the effective load 
position from the noisy measured responses. Thus, the novel 
algorithm proposed in this paper is valid and steady. How-
ever, the computation time of the two methods has greater 

Fig. 3   The finite element model of a beam with fixed ends

Fig. 4   The load curve of the external load in x
a1

Fig. 5   The acceleration of Point x1 in vertical direction

Fig. 6   The acceleration of point x1 in frequency domain



570	 Journal of Vibration Engineering & Technologies (2021) 9:563–573

1 3

difference, and the computation time of the novel algorithm 
is much shorter than that of the traditional method. The time 
of traditional method is 248 times as long as the novel algo-
rithm. These results demonstrate that the novel algorithm 
can identify the load positions more rapidly and efficiently 

than the traditional method and at the same time keep the 
identified results satisfactory.

Experimental Results

A dynamic test on a simply supported beam structure is 
carried out to prove the feasibility of the proposed algo-
rithm in practical engineering situation. As shown in 
Fig. 9, the steel rectangular beam is simply supported at 
the two ends.

The geometric dimension of this beam is measured. The 
length, width and thickness are l = 0.695m , w = 0.039m and 
h = 0.007m, respectively. The material of this beam has the 
density 7800 kg/m3, the Young’s module is 210 GPa and 
the Poisson’s ratio is 0.3. Based on these parameters given 
above, the finite element model of this beam is established, 
evenly dividing the beam into 695 elements composed of 
696 nodes.

Table 1   The identified results 
of the simulation through two 
method

Identified load positions (m) Computation 
time (s)

Determination 
coefficient lg 
( �)1st point 2nd point 3rd point

True positions 0.193 0.317 0.409 – –
Traditional method 0.188 0.321 0.423 2123.57 0.8054
Novel algorithm 0.187 0.320 0.417 8.58 0.8074

Fig. 7   The curve of determination coefficient based on the traditional 
method

Fig. 8   The curve of determination coefficient based on the novel 
algorithm

Fig. 9   The experimental model of simply supported beam

Table 2   Natural frequency of the beam (unit: Hz)

1st 2nd 3rd 4th

Test 39.09 154.32 346.12 611.41
Simulation 38.43 153.7 345.6 613.84
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According to the frequency response function obtained by 
the experiment, the finite element model of the beam is mod-
ified, and the simulation values and experiment values of the 
first four-order natural frequency are recorded in Table 2.

Three sine loads are subjected on the beam structure and 
the frequency of the loads is f = 60Hz . The position of the 
loads are xa1 = 0.17m , xa2 = 0.38m and xa3 = 0.56m . Except 
the two simply supported ends, there are 694 nodes having 
the possible of being a load position. To identify the true 
load positions, the responses of six points are measured and 
the positions of these points are x1 = 0.204m , x2 = 0.339m , 
x3 = 0.41m , x4 = 0.485m , x5 = 0.276m and x6 = 0.561m . 
The measured response of x2 in time domain and in fre-
quency domain are shown in Figs. 10 and 11, respectively. 

The determination coefficient curves of the two method 
are shown in Figs. 12 and 13 and the corresponding iden-
tified results are recorded in Table 3. It can be seen that 

both the two methods can identify the load positions accu-
rately from the measured response in the test. The mini-
mum determination coefficient of the traditional method in 
the exponent is − 1.4821 and its corresponding number is 
32332823. This number represents the load positions com-
bination [0.173, 0.387, 0.556]. For the novel algorithm, the 
minimum value of the determination coefficient in the expo-
nent is − 1.4375, and its corresponding first load position 
is 0.163 m. The other two positions are shown in Table 3.  

It can be found that the maximum error of the identified 
load positions based on the novel algorithm is 0.009 m and 
it exists in the second point. This error is smaller compared 
with the size of the sensor used in this test, so we can con-
sider that the identified results satisfy the precision require-
ment of the practical engineering structure.

Fig. 10   The measured response of point x2 in time domain

Fig. 11   The measured response of point x2 in frequency domain

Fig. 12   The curve of determination coefficient of the traditional 
method in test

Fig. 13   The curve of determination coefficient of the novel algorithm 
in test
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What are also recorded in Table 3 are the computation 
time of the traditional method and the novel algorithm. 
From Table 3, it is shown that the computation time of the 
novel algorithm is obviously decreased than that of the tra-
ditional method. The novel algorithm can give an approxi-
mately accurate result of identifying the load positions in a 
very short period of time, which brings much convenience 
to the load position identification in practical engineering 
problems. The results of this test illustrate that the novel 
algorithm is stable and efficient enough to identify the load 
positions rapidly.

Conclusion

This paper proposes a novel algorithm that can identify the 
multi-point dynamic load positions from measured responses 
in frequency domain stably and rapidly. The following main 
conclusions can be drawn:

1.	 The filter coefficient is introduced to filter the load posi-
tion combinations before the inversion of frequency 
response function matrixes. In this process, many 
dynamic load position combinations can be found that 
they do not satisfy the requirement, so they can be 
excluded from the possible true position combinations. 
Compared with the traditional method, the novel algo-
rithm only needs to sort out the true positions from a 
few dynamic load position combinations by searching 
the minimum determination coefficient.

2.	 The results of the simulation and the test both prove that 
the novel algorithm can identify the external loads act-
ing on the MDOF structure accurately.

3.	 In the process of load position identification, the novel 
algorithm consumes much shorter computation time 
than that the traditional method consumes, which dem-
onstrates that the novel algorithm is effective, accurate 
and rapid for solving load position identification in prac-
tical engineering problems.
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