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Abstract
Purpose  A close form solution was developed in this paper to find the nonlinear tuning parameters of symmetric/asymmetric 
rotor—Squeeze film damper system.
Methods  Initially, close form solution was developed to find the optimum tuning criteria using linear models. Later, it has 
been extended to nonlinear unbalanced rotor damper system using circular centre orbit condition. Analytical modeling of 
Squeeze film damper forces is carried out considering viscous, inertial and temporal contributions under laminar and turbu-
lent conditions. Modified Reynolds equation with short damper approximation is used to derive the SFD forces for 2π-film. 
The solution of the system of equations helped to predict optimum tuning parameters, such as cross-over frequency and 
maximum possible amplitudes. Contributions of various governing parameters are discussed.
Conclusion  Mass ratio of damper-to-rotor mass and nonlinear radial/tangential damper forces play an important role in 
finding the tuning parameters of symmetric system. Additional shaft parameter, fp, plays an important role in getting the 
optimum tuning parameters of asymmetric system as compared to symmetric system.

Keywords  Flexible rotor · Squeeze film dampers · Nonlinear fluid forces · Tuned mass damper

List of symbols
Ms	� Mass of rotor and disc system, Kg, Ms = M 

for asymmetric system, Ms = M/2 for sym-
metric system

Ms	� M/2 for symmetric system
M	� Mass of disc, kg
Md	� Mass of damper, kg
K1	� Shaft stiffness of top half-length of shaft, 

N/m
K2	� Shaft stiffness of bottom half-length of shaft, 

N/m
K3	� Stiffness of retainer spring, N/m
Ks	� Stiffness of the shaft, N/m Ks = K1 + K2 for 

asymmetric system Ks = (K1 + K2)/2
u	� Unbalance eccentricity, m
U	� Unbalance parameter, u

c

ωn	� Natural frequency of rotor, 
√

Ks

Ms

 , Hz

ωd	� Natural frequency of damper, 
√

K3

Md

 , Hz
ωp	� Natural frequency of bottom half of the 

shaft, 
√

K2

Ms

 , Hz
n	� Stiffness ratios of top and bottom half of the 

shaft, K2

K1

f	� Frequency ratio of damper vs rotor, �s

�n

fp	� Frequency ratio of half of the shaft con-
nected at damper end, �p

�n

α	� Mass ratio of damper to rotor, Md

Ms

ω	� Rotational speed, rad/s
Ω	� Frequency ratio, ω/ωn
Cd	� Damping coefficient of damper, 2�Md�d , 

N-s/m
CC	� Critical damping, 2Md ωd
ξ	� Damping ratio, Cd/Cc
xs,ys , xd,yd	� Rotor and damper Displacements in Carte-

sian coordinates, m
x̄s, ȳs , x̄d, ȳd	� Non-dimensional rotor and damper dis-

placement in Cartesian coordinates, x̄s =
xs

c
 , 

ȳs =
ys

c
 , x̄d =

xd

c
,ȳd =

yd

c
�s,�d	� Rotor and damper displacement vec-

tor, i.e.,�̄s = x̄s + iȳs = 𝜀se
i𝜑s and 

�d = xd + iyd = ede
i�d
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𝐗̄s , �̄d	� Non-dimensional rotor and damper displace-
ment vector

P	� Gauge pressure in the damper, N/m2

m	� Dynamic viscosity of damper oil, N-s/m2

ρ	� Density of damper oil, kg/m3

h	� Thickness of the film, m
θ	� Angular coordinate measured from the 

position of maximum film thickness in the 
direction of rotor angular speed, rad

t	� Time, s
R	� Radius of damper, m
L	� Length of the damper, m
z	� Axial coordinate in length direction
φs	� Angle of rotor from positive-x axis of the 

Cartesian coordinate system
φd	� Angle of damper from positive -x axis of the 

Cartesian coordinate system
c	� Initial radial clearance in the damper, m
btt	� Tangential damping coefficient, N-s/m
mr cen	� Mixed temporal and convective origin in 

radial direction
𝜀d𝜑̇d	� Tangential velocity, rad/s
𝜀d𝜑̇

2
d
	� Centripetal acceleration, rad/s2(

𝜀d𝜑̇d

)2	� Nonlinear tangential acceleration, rad/s2

Fr, Ft	� Damper oil film forces in radial and tangen-
tial direction, N

Fdx, Fdx	� Damper oil film forces in x- and y-direction, 
N

F̄r , F̄t	� Non-dimensional radial and tangential forces
�̄d	� Non-dimensional force vector, F̄dx + jF̄dy

B	� Damper viscous parameters, 4�RL
3

Msc
3�n

B1	� Damper inertial parameters, 4�RL
3

Msc

(.)	� Denotes differentiation with respect to ‘t’
Og	� Mass center of disc
Os	� Geometric center of disc
Od	� Geometric center of damper
Ob	� Bearing center
X-, Y-	� Stationary Cartesian coordinate system with 

origin at the damper geometric center
r-, t-	� Rotating coordinate system with origin at the 

damper geometric center

Subscripts
S	� Rotor
d	� Damper
r	� Radial
t	� Tangential
P, Q	� Cross-over points in frequency domain

Introduction

A high-speed rotating machinery in general requires addi-
tional external damping in addition to ball bearings. Such 
arrangement helps to reduce the synchronous response of 
the rotor; when damping provided by the bearings is insuf-
ficient to cross through the critical speeds. Tuned mass 
damper (TMD) systems are also known as dynamic vibra-
tion absorber (DVA) are widely used to reduce the vibra-
tion of primary system by adding an auxiliary mass on to it. 
This consists of an auxiliary spring—mass system attached 
to main system. It results in two-degrees of freedom sys-
tem. The determination of optimum parameters like stiff-
ness, mass and optimum damping of auxiliary system which 
leads to lowest possible rotor amplitudes and corresponding 
transmitted forces over a range of speed is important in the 
design of rotor–bearing damper systems.

Den Hartog [1] introduced tuning criteria to reduce the 
amplitude of a single degree freedom (SDOF) system sub-
jected to sinusoidal excitation by incorporating TMD. It 
was found that frequency of the auxiliary system should be 
the same as that of main system to get the equal cross-over 
points leading to lowest amplitude response of the main 
system. Criteria to get optimum damping were obtained 
using perturbation method. Randall et al. [2] used numerical 
search approach to find the optimum cross-over points of the 
linear TMD system with various parameters like mass ratio 
α, frequency ratio Ω and damping ratio ξ. A surface plot 
was generated using these parameters to find the optimum 
point. Study was extended by Liu and Liu [3] by develop-
ing close form solution to find the optimum parameters of 
the two different types of TMD systems known as skyhook 
damper and ground hook damper systems. A new approach 
like differentiating a higher order equation was used to get 
the optimum parameters of linear system. Febbo and Vera 
[4] analyzed SDOF or 2DOF system with DVA attached to a 
continuous beam modeled using Euler beam theory. Differ-
ent optimization techniques were used to find the optimum 
parameters for more degrees of freedom systems.

Gunter [5] presented analysis of a gas turbine to find 
response of rotor mounted on flexible support system. It was 
shown that lower support stiffness with moderate damping 
is quite effective in minimizing bearing forces at the time of 
crossing over of bearing critical speeds. Further Kirk and 
Gunter [6] extended same concept to design a rotor hav-
ing flexible support which acts like a DVA at the critical 
speeds. Cunningham et al. [7] showed the design of TMD 
for rotor mounted on bearings and SFD support. The work 
includes the determination of damper parameters to get 
equal cross-over points of bending critical speeds. Short 
Bearing Approximation (SBA) is used to find the damper 
stiffness and damping at fixed eccentricity ratio. Pilkey et al. 
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[8] developed an efficient two stage method to find the opti-
mum parameters of rotor mounted on a TMD. Damper sup-
port forces are used to calculate an equivalent force, which 
is then used to calculate the TMD parameters. Subsequently, 
the same can be converted back to equivalent spring mass 
system to account for all the variables in the calculations.

So far rotor and bearings are assumed to be linear and 
responses of rotor and bearing are independently predicted. 
To calculate the damper response, it is desirable to consider 
nonlinear damper fluid forces at the same instant. Open lit-
erature is available [9, 10] to solve the system of nonlinear 
equations of rotor–damper system using higher order time 
marching numerical schemes. These time domain solutions 
can be used to find the asynchronous vibration of the sys-
tem more accurately. Literature discussed here considers 
vibration model of rotor–damper system, where rotor mass, 
damping and stiffness is an equivalent model parameters of 
actual system. To account for complexity of rotor models, 
rotor can be modeled using beam theory with finite element 
method (FEM), where as bearing, dampers and support flexi-
bility can be modeled as spring–damper system and attached 
at the bearing locations as discussed in more detail [11]. 
However, additional efforts are required to conduct paramet-
ric studies of different variables to find their optimum values 
to cross over bending critical speeds. Rabinowitz and Hahn 
[12] developed close form coupled solution of rotor mounted 
on nonlinear SFD under circular center orbit (CCO) condi-
tions in polar coordinates. Responses of a two-degree flex-
ible rotor and damper system were plotted in terms of vari-
ous parameters, like α, Ω, U and damping parameters, to get 
the stable operation. This work has been extended further 
by Rabinowitz and Hahn [13] to find the TMD parameters 
of the rotor. Only 2π film approximation can lead to equal 
cross-over points of TMD. A design chart has been devel-
oped to find the optimum parameters at various operating 
speed. An experimental setup developed by Rabinowitz and 
Hahn [14] to validate the above results found results in good 
agreement. Nonlinear programming techniques were used to 
optimize the SFD mounted on rotor–bearing system to get 
low cross-over points of critical bending and maximization 
of instability onset speeds. McLean and Hahn [15] extended 
this method to solve multi-degree of freedom system simul-
taneously to find the damper and rotor responses. Results are 
demonstrated with 2dof system to find the bi-stable opera-
tions of SFD. Mclean and Hahn [16] considered fluid stiff-
ness and damping implicitly to investigate the rotor–damper 
system stability under CCO conditions. The above concepts 
are extended further to solve the rotor damper responses 
using finite element method by Chen et al. [17]. Zhu et al. 
[18] used similar approach to find the multiple solutions of 
rotor mounted on two similar nonlinear squeeze film damp-
ers operating under CCO conditions. Synchronous and non-
synchronous regions of vibrations were predicted. EI-Shafei 

and Yakoub [19] studied optimization of multimode rotor 
mounted on SFD to minimize the amplitude response of 
the rotor at critical speed and also to minimize the force 
transmitted to the structures at the operating speed under 
CCO conditions.

Pietra and Adiletta [20, 21] conducted the review of SFD 
in two parts. First part reviews the characteristics of SFD, 
which includes, finding of fluid forces with and without iner-
tia effects, short bearing and long bearing approximation 
with different boundary conditions of seals, oil inlet and 
outlet flow, CCO and orbits with small and larger ampli-
tudes and experimental investigations. Second part of review 
includes the analysis of rigid and flexible rotors mounted 
on SFD, which includes, responses of rigid-damper system, 
flexible rotor–damper system in polar and Cartesian coor-
dinate system, nonlinear tuning of rotor–damper symmetric 
system, stability of rotor–damper system, multi- degree of 
freedom system and scope for improved designs of SFD 
includes the floating ring, spiral foil and integral SFD with 
tilting pads, etc. To improve the performance of SFD, vari-
ous new design concepts have been proposed in literature. 
Central circumferential grooves are commonly used to cre-
ate the positive pressure on damper by external pressure. It 
divides the film land into two axial lengths, operates inde-
pendently with constant pressure in the groove. Along with 
axial flow in the damper, there is circumferential flow in the 
groove which was considered by Tan et al. [22] to predict 
forces of squeeze film damper in presence of fluid inertia 
and results are compared with experiments. Tan and Li [23] 
extended above work to find the unbalanced response of 
symmetric flexible rotor mounted on grooved SFD using 
analytical method. Another popular design includes a thin 
circular ring placed between outer diameter of the damper 
and housing known as floating-ring SFD. It can be used to 
avoid the sub- and super-harmonic rotor damper system. As 
a part, Rezvani and Hahn [24] conducted experiments to 
find response of flexible horizontal rotor mounted on asym-
metric supports. Model includes uniform shaft with centrally 
mounted disc with ball bearings at one end of the shaft and 
ball bearing with SFD without central spring on the other 
end of the shaft. Rotor responses measured experimentally 
are in good agreement with theoretical predictions, how-
ever theoretically predicted quasi-static vibration was not 
observed experimentally. This work was extended to find 
theoretical response of rotor mounted on floating-ring SFD 
using transient analysis by Rezvani and Hahn [25]. Response 
is highly dependent on the stiffness, and on the unbalance, 
and partly on the mass of the ring, but the damping of the 
outer ring did not have a significant effect. Zhou [26] pre-
sented transient analysis of rotor mounted on ball bearings 
with floating-ring SFD and results are compared with the 
experiments. It shows that the floating ring inside the SFD 
will have added advantages over plain SFD, which includes 



328	 Journal of Vibration Engineering & Technologies (2021) 9:325–339

1 3

the preventing of bi-stable operation. Non-synchronous 
stability can be controlled with floating ring mass. Further 
concepts of two-lobe bearing have been extended to SFD to 
find the improved stability of rotor–damper system. Adiletta 
[27] analyzed theoretically the advantages of two-lobe wave 
squeeze film damper.

Traditional SFD lubrication oil can be replaced with mag-
neto rheological (MR) fluid to build a variable damping SFD 
by magnetic/electric field to control the rotor vibration more 
effectively. Wang et al. [28] presented solution of Reynolds 
equation of the MR fluid squeeze film using Bingham model 
to find oil force, and the magnetic pull force. Response of 
rigid rotor mounted on MR fluid damper is analyzed theo-
retically to show improved vibration control. Zapomel et al. 
[29] presented bilinear theoretical material model to repre-
sent the MR fluid for better approximation.

Active magnetic bearing (AMB) reached sufficient matu-
rity to replace the conventional hydrodynamic bearings to 
avoid the high-speed instabilities of rotor bearing system 
and other advantages like balancing, resonance jumping, etc. 
Srinivas et al. [30] presented review of AMB, which sum-
marized the basic feature of AMB, various flexible rotor test 
rigs available in literature and its instrumentation, future 
research directions. Heidari and Safarpour [31] presented 
theoretical model for an active squeeze film damper (ASFD) 
which is a combination of AMB and SFD to control the rotor 
vibration using variable force, change in fluid film stiffness 
and damping. Rigid rotor mounted on ASFD is presented to 
control the jump phenomena and reduced transmitted forces.

Most of the practical systems are horizontal in nature; 
different types of centering rings are used to keep the rotor 
system in geometric center. Literature discussed above con-
siders retainer spring as a stiffness element, linear stiffness 
properties of the spring considers for the calculations. Han 
et al. [32] presented response of rigid Jeffcott rotor mounted 
on elastic centering ring SFD, where fluid film of damper 
was modeled using Reynolds equation and elastic centering 
ring is molded using FEM with Kirchhoff assumption. Cou-
pled solution shows that present model prevents bi-stable 
vibration of rotor by suppressing nonlinear effects of SFD 
fluid film. However, squirrel cage-type centering spring is 
commonly used in high-speed aero-engines. Zhang et al. 
[33] presented multi-objective optimal design method to 
optimize the squirrel cage-type centering spring, when flex-
ible rotor mounted on SFD with centering spring. Spring 
mass system is used to model the rotor and damper system, 
where as nonlinear fluid force of SFD was modeled using 
analytical solution of reduced Reynolds equation. Length, 
width, thickness and no. of squirrel cage bars were consid-
ered as variables to optimize the stress and stiffness of the 
centering spring. Results are compared with experiments 
and are in good agreement.

Literature discussed above summarizes modeling of 
flexible rotors mounted on various types of passive SFD to 
reduce the synchronous vibration of rotor. It also includes 
the advanced SFD with MR fluid and its active control sys-
tems. Due to highly nonlinear behavior of SFD, designer 
needs to optimize the rotor–damper system to get the opti-
mum rotor and damper parameters. The close form solutions 
can help the designers to get the quick optimum solution, to 
generate the initial conditions to nonlinear transient solu-
tions and also help to find limits or bounds in optimization 
studies of the these nonlinear systems. Open literatures doc-
umented shows, how to find the optimum parameters of non-
linear symmetric horizontal rotor–damper system to cross 
over bending critical speed smoothly. These design philoso-
phies were adopted in gas turbines, heavy duty compressors, 
to operating successfully beyond its bending critical speeds. 
However, it has been found that not much of literature avail-
able in the open domain to find the optimum tuning param-
eters of asymmetric rotor bearing and damper system. The 
objective of the present work is to develop a close form solu-
tion of nonlinear flexible rotor–damper system to find opti-
mum tuning parameters directly without using optimization 
techniques. Difference in design philosophy of symmetric 
and unsymmetrical rotor has been also dealt with examples.

Linear Modeling of Flexible Rotor–Damper 
System to Find Tuning Conditions

Mathematical modeling of vertical flexible rotor mounted on 
SFD has been described in this section. Figure 1a shows the 
schematic diagram of a rotor mounted with a SFD. A mass-
less shaft with one central disc was supported at either ends 
on ball bearings. One end of the ball bearing is mounted with 
squeeze film damper (SFD) with a retainer spring and another 
end is directly mounted on housing with ball bearing. Equiva-
lent spring mass system is shown in Fig. 1b. The motion of 
the system is described by x and y displacements of the geo-
metric center of the damper and rotor disc. External forces 
acting on the disc are the unbalance and damping forces at the 
bottom damper. od is the center of geometry of the damper, 
os is the center of geometry of the disc and og is the center 
of gravity of the disc. Equation of motion of rotor–damper 
system is derived with the following assumptions.

•	 Mass-less shaft mounted with a disc at the mid-span of 
the rotor shaft having a lumped mass,

•	 Gravitational effects are neglected,
•	 Rotor and support stiffness are radially symmetric and 

linear,
•	 Rotor imbalance is defined in a single plane on the disc 

at the rotor mid-span,
•	 Gyroscopic effect is neglected,
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•	 Roller element bearings are assumed to be rigid,
•	 Axial and tensional vibrations of the rotor system and the 

influence of the rolling element bearings are neglected,
•	 Inertia of the fluid is assumed to be small and neglected,
•	 Damping is assumed to be linear and a function of velocity.

Equations of motions for the rotor and the damper are 
written as

Asymmetric system described here is similar to 
rotor–bearing system described in literature [18]. The hydro-
dynamic bearing is replaced with ball bearings and squeeze 
film damper.

S u b s t i t u t i n g  �̄s = x̄s + iȳs = 𝜀se
i𝜑s  a n d 

�d = xd + iyd = ede
i�d in Eq. (1) and non-dimensionalizing 

by dividing Eq. (1a) by Msc�
2
n
 , and Eq. (1b) by Mdc�

2
n
 , the 

solution of Eq. (1) is represented as

Msẍs + K1

(
xs
)
+ K2

(
xs − xd

)
= Msu𝜔

2 cos (𝜔t),

(1a)Msÿs + K1

(
ys
)
+ K2

(
ys − yd

)
= Msu𝜔

2 sin (𝜔t),

Mdẍd − K2

(
xr − xd

)
+ K3xd + Cdẋd = 0,

(1b)Mdÿd − K2

(
yr − yd

)
+ K3yd + Cdẏd = 0.

Substituting Eq. (2) into Eq. (1), one gets the solutions of 
the system as given by

One can find the undamped response of the system by 
substituting ξ = 0 in Eq. (3). Further, equating undamped 
rotor system response to zero, i.e., �̄s

U
= 0 leads to the 

condition,

Equation (4) shows the frequency at which undamped 
rotor amplitude changes its sign. The form of Eq. (3) is 
�̄

U
=

A+j𝜉B

C+j𝜉D
 . The response, phase and damping of such kind 

of system can be calculated using the procedure shown in 

(2)�s = �se
i(�t) and �d = �de

i(�t).

(3a)

�̄s

U
=

(
f 2
p
+ 𝛼f 2 − 𝛼𝛺2

)
𝛺2 + (j2𝜉𝛼f𝛺)𝛺2

(
f 2
p
+ 𝛼f 2 − 𝛼𝛺2

)(
1 −𝛺2

)
−

(
f 2
p

)2

+ (j2𝜉𝛼f𝛺)
(
1 −𝛺2

) ,

(3b)

�̄d

U
=

f 2
p
𝛺2

(
f 2
p
+ 𝛼f 2 − 𝛼𝛺2

)(
1 −𝛺2

)
−

(
f 2
p

)2

+ (j2𝜉𝛼f𝛺)
(
1 −𝛺2

) .

(4)� =

√
f 2
p

�
+ f 2.

(a) (b)

Fig. 1   a Flexible asymmetric rotor mounted on rigid bearings at one end and rigid bearings bearing followed by squeeze film damper, retainer 
spring on other end. b Equivalent spring, mass and force system
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[1]. Using such procedure, the response of the rotor and 
damper are then given by

The invariant points with respect to ξ are given by the 
condition A

2

C2
=

B2

D2
 , which leads to

Taking +ve sign in RHS of Eq. (6) leads to a trivial solu-
tion Ω = 0. On the other hand, considering −ve sign in RHS 
of the same equation leads to fourth-order polynomial. The 
roots of the polynomial equation will give cross-over (CO) 
frequencies at points (P, Q) of the undamped system. This 
is given by

Rigid rotor response of the system can be found out by 
substituting very large value of ξ, i.e., �̄s

U
⇒ ∞ . This leads 

to �̄so

U
=

B

D
=

𝛺2

1−𝛺2
.

By considering 
(

�̄s

U

)
u=∞

 , one gets the condition of rigid 
rotor frequency as

To get the condition of equal amplitude at CO, one needs 
to satisfy the following relation, �2

P

1−�2
P

= −
�2

Q

1−�2
Q

 . This leads 

to an expression of equal cross-over amplitudes as

By substituting Eq. (9) into Eq. (7), one gets the fre-
quency at equal cross-over points. Optimum damping is 
obtained by substituting Eq. (4), Eq. (8) and, Eq. (9) into 

(5a)
�̄s

U
=

√√√√√√√√

(
f 2
p
+ 𝛼f 2 − 𝛼𝛺2

)2

𝛺4 + 𝜉2(2𝛼f𝛺)
2𝛺4

[(
f 2
p
+ 𝛼f 2 − 𝛼𝛺2

)(
1 −𝛺2

)
−

(
f 2
p

)2
]2

+ 𝜉2(2𝛼f𝛺)
2
(
1 −𝛺2

)2
,

(5b)
�̄d

U
=

√√√√√√√√

(
f 2
p
𝛺2

)2

[(
f 2
p
+ 𝛼f 2 − 𝛼𝛺2

)(
1 −𝛺2

)
−

(
f 2
p

)2
]2

+ 𝜉2(2𝛼f𝛺)
2
(
1 −𝛺2

)2
.

(6)
(
f 2
p
+ �f 2 − ��2

)(
1 −�2

)
= ±

[(
f 2
p
+ �f 2 − ��2

)(
1 −�2

)
−

(
f 2
p

)2
]
.

(7)�2
P,Q

=
1

2

(
1 + f 2 +

f 2
p

�

)
±

1

2

√√√√√
(
1 + f 2 +

f 2
p

�

)2

− 4

(
f 2
p

�
−

f 4
p

2�
+ f 2

)
.

(8)� = ±1.

(9)f 2 = 1 −
f 2
p

�

(
1 − f 2

p

)
.

Eq. (5a). This leads to an expression of equal amplitude 
at frequencies at cross-over points as well at rigid critical, 

which is shown below:

Equation (10) gives the condition of optimum damping 
with respective damper mass. Optimum damping required 

for respective rotor mass can be described as �2
opt

=
�f 4

p

2
.

The above methodology is extended to symmetric rotor-
bearing damper system. For this purpose, a mathematical 
modeling of flexible rotor mounted on symmetric supports 
with SFD is described here. A mass-less shaft mounted 
with a central disc is supported at either ends on identi-
cal ball bearings and SFDs with retainer springs as shown 
in Fig. 2a. An equivalent spring mass system is shown in 
Fig. 2b. Assumptions described above are also applicable in 
this case. Equation of motion for the rotor and the damper 
can be written as

(10)�2
opt

=
f 4
p

2
(
� − f 2

p
+ f 4

p

) .

(11a)Msc ̈̄𝐱s + Ksc
(
𝐱̄r − 𝐱̄d

)
= Msu𝜔

2ei𝜔t,

(11b)Mdc ̈̄𝐱d − Ksc
(
𝐱̄r − 𝐱̄d

)
+ K3c𝐱̄d + Cdc ̇̄𝐱d = 0.
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The solution of Eq. (11) is same as described at Eq. (2). 
The responses of rotor and damper are given as follows:

All other parameters, such as CO frequencies of 
undamped symmetric system, condition to get the equal 
CO amplitudes and optimum damping, can be obtained for 
symmetric system using Eq. (7), Eq. (9) and Eq. (10) by 
substituting fp = 1.

Nonlinear Modeling of Flexible Rotor 
Damper System to Find Tuning Conditions

Tuning criteria of flexible rotor mounted on SFD described 
in previous section are further extended to consider the non-
linear fluid forces. All assumptions made in the previous 
section are also applicable in this case except linear damping 
and contribution of inertial effect of fluid. The forces gener-
ated by oils film of the damper are determined by the Reyn-
olds equation with an incompressible lubricant and short 
bearing approximation (SBA). The contributions of fluid 
inertial effects are also considered in this case. The system of 
all governing equations is solved simultaneously using CCO 
motion of the system. Free body diagram of rotor–damper 
model is shown in Fig. 1. EOM about mass center of the 
rotor and the journal center of damper written in Cartesian 
coordinates in both the directions are as follows:

(12a)

�̄s

U
=

√√√√√
[
1 + 𝛼

(
f 2 −𝛺2

)]2(
𝛺2

)2
+ 𝜉2(2𝛼𝛺)

2
(
𝛺2

)2
⟨[
1 + 𝛼

(
f 2 −𝛺2

)](
1 −𝛺2

)
− 1

⟩2
+ 𝜉2(2𝛼𝛺)

2
(
1 −𝛺2

)2 ,

(12b)

�̄d

U
=

√√√√√
(
𝛺2

)2
⟨[
1 + 𝛼

(
f 2 −𝛺2

)](
1 −𝛺2

)
− 1

⟩2
+ 𝜉2(2𝛼𝛺)

2
(
1 −𝛺2

)2 .

The Rotor–damper system is assumed to have the syn-
chronous circular center orbit (CCO) excitation, as shown in 
Fig. 3. With this assumption, the force and the displacement 
in x-direction is orthogonal to y-direction. The steady-state 
equilibrium solution of Eq. (13) is given in Eq. (2). Sub-
stituting Eq. (2) into Eq. (13), and dividing Eq. (13a) with 
Msc�

2
n
 , and Eq. (18b) with Mdc�

2
n
 , lead to a set of equations 

given by

(13a)Msc ̈̄𝐱s + K1c
(
𝐱̄s

)
+ K2c

(
𝐱̄s − 𝐱̄d

)
= Msu𝜔

2ei𝜔t,

(13b)Mdc ̈̄𝐱d − K2c
(
𝐱̄s − 𝐱̄d

)
+ K3c𝐱̄d = 𝐅̄de

i𝜔t.

(a) (b)

Fig. 2   a Flexible symmetric rotor supported on identical squeeze film dampers and retainer springs. b Equivalent spring, mass and force system

Fig. 3   Circular center orbit motion of rotor–damper system
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Here, subscript ‘u’ corresponds to unbalance force and 
‘d’ corresponds to damper fluid film forces. Other compo-
nents of the above matr ix are A11 =

(
1 −�2

)
 , 

A12 = A21 = −f 2
p

 , A22 =

(
f 2
p
+ �f 2 − ��2

)
 . The method 

described in [15] is used here to find the response of the 
damper. From Eq. (14), one can find the damper force as

where �̄ = A21A
−1
11
�̄u and �̄ = A22 − A21A

−1
11
A12 . The non-

linear damper fluid forces described in next section can be 
represented in Cartesian coordinates using the following 
relation:

where Fdx =
1

�d

(
Frxd − Ftyd

)
 and Fdy =

1

�d

(
Fryd + Ftxd

)
 . 

The relation between damper force Fd and displacement Xd 
can be written as:

Equating Eq.  (16) and Eq.  (17) to get the damper 
response, one gets

Simplification of Eq. (18) leads to

Bisectional method is used to solve Eq. (19) within the 
limits of 0 ≤ �d ≤ 1 . Response of the rotor is calculated 
using Eq. (14) is given by 

whereV̄Re = −
f 2
p
U𝛺2

(1−𝛺2)
 and V̄Im = 0.

ĒRe =

(
f 2
p
+ 𝛼f 2 − 𝛼𝛺2

)
−

f 4
p

(1−𝛺2)
 and ĒIm = 0.

Equating undamped rotor response to zero in Eq. (20), 
i.e., Ft= 0, one gets the expression for frequency: 

(14)
[
A11 A12

A21 A22

]{
�̄s

�̄d

}
=

[
�̄u

�̄d

]
.

(15)𝐅̄d = 𝐕̄ + 𝐄̄𝐗̄d,

(16)�d = Fdx + jFdy,

(17)𝐅̄d =
1

𝜀d

(
F̄r + jF̄t

)
𝐗̄d = 𝐆𝐗̄d.

(18)�̄d =
�̄(

�̄ − �̄
) =

V̄Re + jV̄Im(
F̄r

𝜀d
− ĒRe

)
+ j

(
F̄t

𝜀d
− ĒIm

) .

(19)

(
F̄
r

)2
+
(
F̄
t

)2
+ 𝜀2

d

(
Ē
2

Re
+ Ē

2

Im

)

− 2𝜀2
d

[
F̄
r
Ē
Re

+ F̄
t
Ē
Im

]
−
(
V̄
2

Re
+ V̄

2

Im

)
= 0.

(20)
�̄s

U
=

√√√√√√√√

[(
f 2
p
+ 𝛼f 2 − 𝛼𝛺2 +

F̄r

𝜀d

)
𝛺2

]2
+

(
F̄t

𝜀d
𝛺2

)2

[(
f 2
p
+ 𝛼f 2 − 𝛼𝛺2 +

F̄r

𝜀d

)(
1 −𝛺2

)
−

(
f 2
p

)2
]2

+

[
F̄t

𝜀d

(
1 −𝛺2

)]2 ,

Undamped response of the damper from Eq. (21a) can 
be obtained as

CO frequencies at P and Q of an undamped nonlinear 
asymmetric system is given by

Condition to get the equal cross-over amplitudes is

The optimum damping required based on rotor mass is

Tuning criteria of vertical flexible rotor mounted on SFD 
has been described above. This is extended here to consider 
symmetric nonlinear system. By using free body diagram 
of rotor–damper model, as shown in Fig. 2, the EOM can 
be written as

All other parameters, such as damper and rotor response 
of nonlinear symmetric system, CO frequencies of 

undamped nonlinear symmetric system, condition to get 
the equal CO amplitudes and optimum damping, can be 
obtained for symmetric system by using Eqs. (19), (20), 
(22), (23) and (24) after substituting fp= 1. However, a sum-
mary of optimum parameters for linear and nonlinear sym-
metric and asymmetric systems is shown in Table 1.

(21a)𝛺 =

√
f 2
p

𝛼
+ f 2 +

F̄r

𝜀d
.

(21b)
X̄d

U
= −

1

f 2
p

(
f 2
p

𝛼
+ f 2 +

F̄r

𝜀d

)
.

(22)

𝛺2

P,Q
=
1

2

(
1 + f 2 +

f 2
p

𝛼
+

F̄r

𝜀d

)
±

1

2

√√√√√
(
1 + f 2 +

f 2
p

𝛼
+

F̄r

𝜀d

)2

− 4

[(
1 −

f 2
p

2

)
f 2
p

𝛼
+ f 2 +

F̄r

𝜀d

]
.

(23)f =

√
1 −

f 2
p

𝛼

(
1 − f 2

p

)
−

F̄r

𝜀d
.

(24)
(
F̄t

𝜀d

)2

opt

= 2𝛼f 4
p
.

(25a)Msc ̈̄𝐱s + Ksc
(
𝐱̄s − 𝐱̄d

)
= Msu𝜔

2ei𝜔t,

(25b)Mdc ̈̄𝐱d − Ksc
(
𝐱̄s − 𝐱̄d

)
+ K3c𝐱̄d = 𝐅de

i𝜑d .
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Dynamic Fluid Force Calculations of SFD

For the present system, the Navier–Stokes (NS) equations 
can be reduced to Reynolds equations by making following 
assumptions.

•	 The oil film thickness is small compared to the radius of 
the journal, hence, the curvature of the oil film is negli-
gible,

•	 The pressure gradient along the oil film thickness is small 
and is neglected,

•	 The velocity gradient along the oil film thickness is small 
and is neglected,

•	 Laminar fluid flow is assumed within the clearance and
•	 Volumetric fluid force is neglected.

The average axial pressure gradient for short bearing 
approximation (SBA) including the turbulent effects can be 
written as [11, 35–37]:

where Kmom and Keng are constants derived from momen-
tum approximation and energy approximation. In the 
momentum approximation, Keng is fully convective term 
and in case of energy equation, Keng has both temporal 
(1/20) and convective contributions (27/140). In the present 
work, the corresponding values are taken as Kmom = 1/12 and 
Keng = 1/5 for momentum approximation and Kmom = 1/10 
and Keng = 17/70 for energy approximation. These values are 
suggested in Ref. [35–37]. The turbulent effect k̃z can then 
be  expressed us ing k̃z =

(
az + bz𝜀 cos 𝜃

)
 ,  where 

az = 1 + 0.00069Re0.88 and bz = 0.00061Re0.88 . Film thick-
ness ‘h’ at any given location of plain damper is given by 
h = c(1 + � cos �) . The assumed boundary conditions are 
one end sealed �P(0,t)

�z
= 0 and the other end open P(L, t) = 0 

due to submerged conditions. Integrating Eq. (26) and sub-
stituting boundary conditions, pressure distribution under 
CCO condition as given by

The components of the forces exerted by the oil fluid, 
viz. radial Fr and tangential Ft directions are obtained by 
integrating Eq. (27) along the length and circumferential 
directions. These expressions are as follows:

(26)

𝜕P(𝜃, t)

𝜕z
= 12

[
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(
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h
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]
z,

(27)P(𝜃, t) = 6
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�
+ bz𝜀

sin 𝜃 cos 𝜃

(1 + 𝜀 cos 𝜃)3

�
𝜀𝜑̇d

��

+𝜌Kmom

�
−

cos 𝜃

(1 + 𝜀 cos 𝜃)

�
𝜀𝜑̇2

d

��
− 𝜌Keng

�
sin2 𝜃

(1 + 𝜀 cos 𝜃)2

�
𝜀2𝜑̇2

d

��
⎤
⎥⎥⎥⎥⎦

�
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�
.

and

Integrals ‘I’ in Eq. (28) can be evaluated by using [38]. 
The expressions for the damping and inertial coefficients 
for a 2π-film (uncavitated) of SFD are shown in Table 2. 
Under CCO condition, all acceleration and radial velocity 
terms in Eq. (28) become zero. Final radial and tangen-
tial forces under this condition, non-dimensionalized by 
dividing with Mdc�

2
n
 and multiplying with α, are shown 

below:

Case Studies

The objective of the present work includes finding the non-
linear tuning parameters of asymmetric f lexible 
rotor–damper system. A close form solution of linear system 
was developed to find the optimum parameters to cross the 
bending critical speeds were discussed. Solution includes 
the finding conditions to get the required mass ratio, α, 
cross-over frequencies and equal amplitudes at P, Q and 
optimum damping required. A close form solution was 
developed to find the optimum tuning parameters of asym-
metric rotor mounted on rigid ball bearings on both the side 
and followed by SFD at one end. Responses of asymmetric 
linear rotor mounted on SFD are governed by the following 
parameters: f, fp, α, ξ, and Ω. Tuning criteria was made inde-
pendent from unbalance response by dividing the responses 

of the system with unbalance parameters, U. Present model 
was validated with literature problem [12] for symmetric 
rotor mounted on SFD. Figure 4 shows response of rotor, 
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(29a)F̄r = B1
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Kmom + 𝜀Keng

)
mrcen𝜀𝛺

2,

(29b)F̄t = −Bbtt𝜀𝛺.
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(
�̄s

U

)
 , at various operating conditions given as, f = 0.1, 

U = 0.05, α = 0.333 at various values of B = 0.1,0.3,0.6,1.0. 
Results are in good agreement with literature problem, 
Fig. 4b of Ref. [12].

(a) Case Study 1: Analysis of a Linear Asymmetric 
Rotor–Damper System: Present case study deals with the 
analysis of a linear asymmetric rotor–damper system. To 
calculate the results of a linear asymmetric system, the vari-
ous rotor and damper parameters considered here are stiff-
ness K1 = K2 = K3 = 27,680 N/m, model stiffness of shaft, 
Ks = K1 + K2, the disc mass Ms= 1.1072 kg, f = 0.8165 and 
fp= 0.7071. The value of α = 0.75, which is calculated using 
Eq.  (9) for tuning condition of above parameters. The 
required optimum damping calculated using Eq.  (10) is 
�opt = 0.5 and corresponding Cd = 158 N s/m. Three different 
damping ratios are considered here to plot the response of 
asymmetric rotor and damper. These are under damping 
case, where �1 = 0.5�opt , optimum damping case, �opt and 
over-damping case, where �2 = 1.5�opt . Cross-over frequen-
cies are calculated using Eq.  (7) as ΩP = 0.752 and 
ΩQ = 1.330. The CO amplitudes at P and Q points are 
obtained for undamped response of the system using Eq. (3a) 
as 2.65. Figure 5a shows response of rotor, 

(
�̄s

U

)
 , for five 

different conditions. These are the responses of a rigid rotor, 
undamped tuned rotor, tuned optimum damping, tuned under 
damping and tuned over damping conditions. The figure also 
shows the cross-over frequency and amplitudes of the 
rotor–damper system. Similarly, Fig. 5b shows the response 

Fig. 4   Responses of nonlinear symmetric rotor [12], (f = 0.1, 
U = 0.05, α = 0.333 at various values of B = 0.1, 0.3, 0.6, 1.0)

Table 1   Comparison of tuning criteria of various rotor-support models

Model type Cross-over frequencies at P, Q Condition for equal cross-over 
points

Optimum damp-
ing (with main 
system mass)

Vibration model [1]
�2
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=
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of the damper, 
(

�̄d

U

)
 , at four different conditions. These are 

again the responses of undamped tuned damper, tuned opti-
mum damping, tuned under-damping and tuned 

over-damping conditions. Over-damping or under damping 
conditions led to the increase in rotor and damper ampli-
tudes; whereas, optimum damping only can lead to lower 
amplitude of the rotor–damper system during crossing over 
of bending critical speeds.

(b) Case Study 2: Analysis of a Linear Symmetric Sys-
tem: Above calculations are modified to find the optimum 
parameters required for a symmetric system. The various 
rotor and damper parameters considered here are, the stiff-
ness Ks = K1 = K2 = K3 = 27,680 N/m, the disc mass of 
Ms= 0.5536 kg. Both the values f and α are unity for sym-
metric system. The required optimum damping is calculated 
as �opt = 0.5 and the corresponding damping, Cd as 175 N-s/
m. As above, three different damping ratios are considered 

Table 2   Damping and inertial coefficients of 2π-film (uncavitated)

Coef-
ficient

Integral coefficients 2π film

btt −
(
azI

20
3

+ bz�I
21
3

)
−az�

[
1

(1−�2)
3
2

]
− bz

�

�2

[
(2−3�2)

(1−�2)
3
2

− 2

]

mrcen KmomI
02
1

+ KengI
21
2
(�) Kmom

2�

�2

�
1√
1−�2

− 1
�
+ Keng

2�

�2

�
(�2−2)√
1−�2

+ 2
�

Fig. 5   Results of Case Study-1: a responses of linear asymmetric rotor and b damper (f = 0.8165, fp= 7071 and α = 0.75)

Fig. 6   Results of Case Study-2: a responses of linear symmetric rotor and b damper (f = 1, α = 1)
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here to plot the rotor–damper response. These are, under-
damping case �1 = 0.5�opt , case of optimum damping �opt 
and over-damping case �2 = 1.5�opt . Cross-over frequencies 
are ΩP = 0.618 and ΩQ = 1.618. The corresponding rotor 
amplitude at cross-over points is 1.732, for undamped sys-
tem obtained by using Eq. (3a).

Compared to asymmetric system, optimum damping 
required for symmetric system will be higher. Along the line 
of Case Study 1, Fig. 6a shows response of symmetric rotor (
�̄s

U

)
 at five different conditions. These are, the response of 

a rigid rotor, the undamped tuned rotor, the tuned optimum 
damping, the tuned under-damping and the tuned over-
damping conditions. It also shows the cross-over frequency 
and amplitudes of the rotor and damper system. Similarly, 
Fig. 6b shows the response of the damper 

(
�̄d

U

)
 at four dif-

ferent conditions. These are, undamped tuned damper, tuned 
optimum damping, tuned under-damping and tuned over-
damping conditions. As shown, over-damping or under-
damping conditions led to the increase in rotor and damper 
amplitudes. Only tuned damping leads to lower amplitude 
of the rotor and damper during crossing over of bending 
critical speeds.

Parametric study by varying various parameters like ‘n’, 
CO amplitude, α and ξopt, shows that ‘n’ plays an impor-
tant role in tuning of asymmetric system unlike symmetric 
system. Figure 7 shows that increase in ‘n’ reduce the CO 
amplitude of rotor. Optimum damper mass increases with 
increase in the value of ‘n’ and then reduces by increas-
ing the value of ‘n’. ξopt increases with the increase in ‘n’. 
The CO amplitude of rotor and tuned damper mass reduce 
with the decrease in support stiffness, whereas required 
ξopt increases with the decrease in support stiffness. The 
above discussion holds good for symmetric system, which 

is a special case of asymmetric system where n = 1. Fig-
ure 8 shows the plot of ‘α’ vs splitting frequencies at (P, 
Q). Difference between split frequencies increase with the 
increase in fp. Symmetric system is a special case of asym-
metric system with fp= 0.7071 at α = 0.5. CO amplitudes of 
asymmetric system are higher than the symmetric system. 
Differences between two CO frequencies of asymmetric 
system are lower than symmetric rotor. However, reduction 
in retainer spring stiffness causes increase in the difference 
between CO frequencies and decrease in the CO amplitude 
of both the symmetric and asymmetric systems. 

(c) Case Study 3: Analysis of Nonlinear Asymmetric 
Rotor and Damper System: Uncavitated film with 2π film 
approximation is used to find tangential and radial forces 
with viscous, inertial, temporal contributions under lami-
nar and turbulent conditions. Both momentum and energy 
approximations are used to resolve the temporal and con-
vective contributions in the theoretical model. It leads 
to constants Kmom = 1/12 and Keng = 1/5 for momentum 
approximation and Kmom = 1/10 and Keng = 17/70 for energy 
approximation [10–21]. Nonlinear fluid forces are obtained 
by synchronous circular centric-orbit (CCO) motion of the 
system for a given unbalance. To demonstrate the results 
of a nonlinear asymmetric system, some of the parameters 
are taken as: f = 0.8165, fp= 0.7071 and n = 1. The value 
of α obtained using Eq. (28) is 0.75 for Ω = 0. Unbalance 
parameter U = 0.13 is considered to get the CCO condi-
tion. The response of rotor and damper are presented after 
normalizing with U. The required optimum damping is cal-
culated using Eq. (29) for an optimum value of B = 0.177 
for laminar flow without inertial contribution. As earlier, 
three different damping ratios are considered here to plot 
the rotor and damper responses. These are, under-damping 

Fig. 7   Result of Case Study-2: ‘n’ vs cross-over amplitude, α and ξopt 
(linear asymmetric system) Fig. 8   Result of Case Study-2: α vs cross-over frequencies, Ω(P,Q)
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case �1 = 0.5B , optimum damping, B and over-damping 
case, �2 = 1.5B . Cross-over frequencies are obtained from 
Eq.  (27) as ΩP = 0.6278 and ΩQ = 1.275. Amplitude at 
cross-over points can be obtained from undamped response 
of the system by using Eq. (25) and is calculated as 2.70.

Figure 9a shows response of a nonlinear asymmetric rotor 
for five different conditions. These are (i) response of a rigid 
rotor, (ii) undamped tuned rotor, (iii) tuned optimum damp-
ing (B = 0.177), (iv) tuned under-damping (B = 0.0885) and 
(v) tuned over-damping (B = 0.2655) conditions. Similarly, 
Fig. 9b shows response of damper, at four different condi-
tions, which includes tuned undamped damper response, 

tuned optimum damper response, tuned under-damping 
and tuned over-damping conditions. Figure 10a shows the 
response of a nonlinear symmetric rotor for five different 
conditions discussed above. These are tuned optimum damp-
ing (B = 0.884), tuned under-damping (B = 0.442), tuned 
over-damping conditions (B = 1.326). Similarly, Fig. 10b 
shows the response of the damper, at four different condi-
tions as discussed in asymmetric system. Not many changes 
in rotor and damper responses are observed due to consid-
eration of momentum and energy approximations in non-
linear fluid model. As the present case study deals with a 

Fig. 9   Results of Case Study-3: a responses of nonlinear asymmetric rotor and b damper (f = 0.8165, fp= 7071 and α = 0.75)

Fig. 10   Results of Case Study-3: a responses of nonlinear symmetric rotor and b damper (f = 1 and α = 1)
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low Reynolds number, contribution of inertia effect also is 
negligible in present analysis.

Discussion and Conclusions

Present work shows the development of a close form solu-
tion to find out the tuning parameters of an asymmetric flex-
ible rotor with SFD system to cross over the bending critical 
speeds. Both linear and nonlinear models are considered to 
find the responses of rotor and damper for both symmetric 
and asymmetric rotor system. Theoretical modeling of SFD 
forces is carried out which includes viscous, inertial and 
temporal contributions under laminar and turbulent condi-
tions. Reynolds equation with short damper approximation is 
used to derive the SFD coefficients. Calculations of damper 
forces are done using 2π film approximation with turbulent 
conditions. Results show that tuning criteria of symmetric 
rotor is different from asymmetric rotor. Table 2 shows the 
summary of all the tuning parameters of symmetric, asym-
metric linear and nonlinear systems. Some of the conclu-
sions drawn from the present work are as follows.

Symmetric System

For a symmetric system, tuning criteria has to satisfy f = 1. 
In case of nonlinear system, physical mass of damper needs 
to be reduced to take into account the contribution of addi-
tional fluid film damper mass. Damper mass increases with 
the increase in retainer spring stiffness to keep the frequency 
ratio as one.

Required damping is underestimated if calculated using 
linear system, in comparison to nonlinear system. However, 
this difference reduces at higher operating speed.

Cross-over amplitude is one in case of zero stiffness of 
retainer spring. However, it increases with the increase in 
retainer spring stiffness.

Optimum damping depends on mass ratio of rotor and 
damper.

Asymmetric System

Higher the fp, higher the difference in cross-over frequencies 
and lower the cross-over amplitudes.

Increase in the value of ‘n’ reduces the cross-over ampli-
tudes of the rotor at fixed retainer spring stiffness. However, 
the cross-over amplitude decreases with the decrease in 
retainer spring stiffness.

Required optimum damping increases with the increase 
in the value of ‘n’ and decrease the value of retainer spring 
stiffness.

Optimum damping depends on stiffness of shaft and mass 
ratio.

References

	 1.	 Den Hartog JP (1985) Mechanical vibrations, 4th edn. Dover, New 
York

	 2.	 Randall SE, Halsted DM, Taylor DL (1981) Optimal vibration 
absorbers for linear damper systems. J Mech Design 103:908–913

	 3.	 Liu K, Liu J (2005) The damped dynamic vibration absorbers: 
revisited and new result. J Sound Vibrat 284:1181–1189

	 4.	 Febbo M, Vera SA (2008) Optimization of a two degree of free-
dom system acting as a dynamic vibration absorber. J Vibrat 
Acoust 130:1–11

	 5.	 Gunter EJ (1970) Influence of flexibly mounted rolling element 
bearings on rotor response, part I linear analysis. J Lubricat Tech-
nol 92:59–69

	 6.	 Kirk RG, Gunter EJ (1972) The effect of support flexibility and 
damping on the synchronous response of single mass flexible 
rotor. J Eng Ind 94(1):221–232

	 7.	 Cunningham RE, Cunningham DP, Gunter EJ (1975) Design of 
a squeeze-film dampers for a multi-mass flexible rotor. J Eng Ind 
97(4):1383–1389

	 8.	 Pilkey WD, Wang BP, Vannoy D (1976) Efficient optimal 
design of suspension systems for rotating shafts. J Eng Ind 
98(3):1026–1029

	 9.	 Jawaid II-H (2005) Bifurcations of a flexible rotor response in 
squeeze-film dampers without centering springs. Chaos Sol Fract 
24:583–596

	10.	 Jawaid II-H (2009) Bifurcations in the response of a flexible rotor 
in squeeze-film dampers with retainer springs. Chaos Sol Fract 
39:519–532

	11.	 Rao JS (2018) Rotor dynamics, 3rd edn. New age International 
publications, Bengaluru

	12.	 Rabinowitz MD, and Hahn EJ (1977) Steady state performance 
of squeeze film damper supported flexible rotors. J Eng Power 
552–558

	13.	 Rabinowitz MD, Hahn EJ (1983) Optimal design of squeeze film 
supports for flexible rotors. J Eng Power 105:487–494

	14.	 Rabinowitz MD, Hahn EJ (1983) Experimental evaluation of 
squeeze film supported flexible rotors. J Eng Power 105:495–503

	15.	 McLean LJ, Hahn EJ (1983) Unbalance behavior of squeeze film 
damped multi-mass flexible rotor bearing systems. J Lubricat 
Technol 105:22–27

	16.	 McLean LJ, Hahn EJ (1985) Stability of squeeze film damped 
multi-mass flexible rotor bearing systems. J Tribol 107:402–409

	17.	 Chen WJ, Rajan M, Rajan SD, Nelson HD (1988) The optimal 
design of squeeze film dampers for flexible rotor systems. J Mech 
Trans Automat Design 110:166–174

	18.	 Zhu CS, Robb DA, Ewins DJ (2002) Analysis of the multiple-
solution response of a flexible rotor supported on non-linear 
squeeze film dampers. J Sound Vibrat 252(3):389–408

	19.	 EI-Shafei A, Yakoub RYK (2002) Optimum design of squeeze 
film dampers supporting multiple mode rotors. J Eng Gas Turb 
Power 124:992–1001

	20.	 Pietra LD, Adiletta G (2002) The squeeze film damper over four 
decades of investigations. Part I: characteristics and operating 
features. Shock Vibr Dig 34:3–26

	21.	 Adiletta G, Pietra LD (2002) The squeeze film damper over four 
decades of investigations. Part II: rotor dynamic analyses with 
rigid and flexible rotors. Shock Vibr Dig 34:97–126

	22.	 Qingchang T, Chang Y, Wang L (1997) Effect of a circumferen-
tial feeding groove on fluid force in short squeeze film dampers. 
Tribol Int 30:409–416

	23.	 Qingchang T, Xiaohua L (1999) Analytical study on effect of a 
circumferential feeding groove on unbalance response of a flexible 
rotor in squeeze film damper. Tribol Int 32:559–566



339Journal of Vibration Engineering & Technologies (2021) 9:325–339	

1 3

	24.	 Rezvani MA, Hahn EJ (1996) An experimental evaluation of 
squeeze film dampers without centralizing springs. Tribol Int 
29(1):51–59

	25.	 Rezvani MA, Hahn EJ (2000) Floating ring squeeze film damper: 
theoretical analysis. Tribol Int 33:249–258

	26.	 Hai-Lun Z, Gui-Huo L, Guo C, Fei W (2013) Analysis of the non-
linear dynamic response of a rotor supported on ball bearings with 
floating-ring squeeze film dampers. Mech Mach Theory 59:65–77

	27.	 Giovanni A (2015) Bifurcating behaviour of a rotor on two-lobe 
wave squeeze film damper. Tribol Int 92:72–83

	28.	 Wang J, Feng N, Meng G, Hahn EJ (2006) Vibration control of 
rotor by squeeze film damper with magnetorheological fluid. J 
Intell Mater Syst Struct 17:353–357

	29.	 Jaroslav Z, Petr F, Paola F (2017) A new mathematical model of a 
short magnetorheological squeeze film damper for rotordynamic 
applications based on a bilinear oil representation—derivation of 
the governing equations. Appl Math Model 52:558–575

	30.	 Siva Srinivas R, Tiwari R, Kannababu Ch (2018) Application 
of active magnetic bearings in flexible rotordynamic systems—a 
state-of-the-art review. Mech Syst Signal Process 106:537–572

	31.	 Heidari HR, Safarpour P (2016) Design and modeling of a novel 
active squeeze film damper. Mech Mach Theory 105:235–243

	32.	 Zhifei H, Qian D, Wei Z (2019) Dynamical analysis of an elas-
tic ring squeeze film damper-rotor system. Mech Mach Theory 
131:406–419

	33.	 Wei Z, Bingbing H, Xiang L, Jianqiao S, Qian D (2019) Multiple-
objective design optimization of squirrel cage for squeeze film 
damper by using cell mapping method and experimental valida-
tion. Mech Mach Theory 132:66–79

	34.	 Muszynska A (1986) Whirl and whip rotor/bearing stability prob-
lems. J Sound Vibrat 110(3):443–462

	35.	 Zhang J, Ellis J, Roberts JB (1993) Observations on the nonlinear 
fluid forces in short cylindrical squeeze film dampers. ASME J 
Tribol 115:692–698

	36.	 Shaik K, Dutta BK, Gouthaman G (2019) Experimental and ana-
lytical investigation of short squeeze-film damper (SFD) under 
circular-centered orbit (CCO) motion. J Vibrat Eng Technol. https​
://doi.org/10.1007/s4241​7-019-00100​-9

	37.	 Ku C-P, Tichy JA (1987) Application of the k − ϵ turbulence 
model to the squeeze film damper. ASME J Tribol 109:164–168

	38.	 Booker JF (1965) A table of the journal bearing integral. ASME 
J Basic Eng 1965:533–535

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

https://doi.org/10.1007/s42417-019-00100-9
https://doi.org/10.1007/s42417-019-00100-9

	Tuning Criteria of Nonlinear Flexible Rotor Mounted on Squeeze Film Damper Using Analytical Approach
	Abstract
	Purpose 
	Methods 
	Conclusion 

	Introduction
	Linear Modeling of Flexible Rotor–Damper System to Find Tuning Conditions
	Nonlinear Modeling of Flexible Rotor Damper System to Find Tuning Conditions
	Dynamic Fluid Force Calculations of SFD
	Case Studies
	Discussion and Conclusions
	Symmetric System
	Asymmetric System

	References




