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Abstract
Purpose  This project aims to design a novel passive quasi-zero stiffness vibration isolator (QZS-VI) and analyze the static 
and dynamic mechanical properties of the QZS-VI.
Methods  First, a novel combination of V-shaped lever, plate spring and cross-shaped structure (VL-PS-CS) vibration isola-
tion platform is designed, and a nonlinear QZS-VI is built by parallel connecting VL-PS-CS and coil spring. Second, the 
static and dynamic modeling of QZS-VI are derived considering the geometrical nonlinearity of V-shaped lever and the large 
deflection of plate spring, and the average method is applied to obtain the displacement transmissibility. Third, the effects of 
different structural parameters (e.g., the lengths of long arm and short arm of V-shaped lever, the assembly angle between 
two arms, the thickness of plate spring) on the static mechanical and equivalent nonlinear friction properties of QZS-VI 
are thoroughly investigated. Finally, the vibration isolation performance of the designed QZS-VI is compared with another 
QZS-VI of buckled beam mechanism and traditional linear vibration isolator.
Results  The QZS-VI with VL-PS-CS fully explores the nonlinear advantages of plate spring and V-shaped lever and can 
achieve excellent high static and low dynamic stiffness and nonlinear friction properties. The superior static mechanical 
properties and nonlinear friction of QZS-VI can be tuned with different structural parameters. The designed QZS-VI exhibits 
much smaller resonant frequency, lower peak value and more stability property at the peak frequency than other isolators 
due to its special nonlinear friction and stiffness properties.
Conclusions  The designed QZS-VI is practical, novel and suitable for low-frequency vibration isolation. The innovative 
structure provides novel insights into the design of passive vibration isolators and has great potential for application in 
engineering practice.
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Introduction

Aerospace equipment, high-precision instruments, vehicles 
and construction machines, etc., are inevitably accompanied 
by various vibrations during operation which generate from 
self-excitation or their surroundings [1–4]. Most of vibra-
tions are undesirable and destructive to the precision and 
safety of mechanical equipment. They can aggravate wear 
and fatigue of structures, cause discomfort and even mental/

physical damages to the drivers of vehicles and the operators 
of construction machines.

It is known that there are two ways to protect equipment 
from vibration hazards: (1) eliminating vibration sources, 
and (2) isolating vibrations during propagation. Limited by 
the accuracy of equipment manufacturing and the complex-
ity of the surroundings, it is difficult to eliminate the vibra-
tion source thoroughly. Therefore, isolating the equipment 
from the vibration source by installing a vibration isolator 
becomes an alternative and effective way to protect the 
equipment from vibration hazards. In general, the vibration 
isolators are not effective until the excitation frequencies 
are larger than 

√
2 times of the isolators’ natural frequency 

( �n =
√
k∕m ), which are mainly affected by the stiffness (k) 

of the isolator and the mass (m) of payload [5]. This feature 
makes it difficult for traditional linear mass-spring-damper 
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vibration isolators to realize low-frequency isolation while 
maintaining sufficient load capacity with small deformation.

Fortunately, the nonlinear isolators with beneficial high 
static and low dynamic stiffness (HSLDS), namely quasi-
zero stiffness vibration isolators (QZS-VI), have emerged to 
cope with the dilemma along with linear isolator, in which 
low dynamic stiffness causes lower resonant frequency, 
while high static stiffness means large load capacity with 
small deformation. The obvious advantages of nonlinear 
isolators have attracted widespread attention in numerous 
studies of vibration isolation systems [6].

As a typical case of using inherent geometric nonlin-
earity of structures to realize the characteristics of high 
static and low dynamic stiffness, the vibration isolator with 
X-shaped structure has been widely concerned and studied 
in many researches. Sun and Jing et al. [7–11] conducted a 
series of researches on the vibration isolation performance 
of X-shaped structure isolators. The results indicate that 
the X-shaped structure isolator with inherent nonlinearity 
of equivalent stiffness and damping can achieve superior 
vibration isolation performance and have the potential to 
be employed in various engineering practices. In addition, 
in order to take full use of the nonlinear stiffness, damping 
and inertia characteristics, a lever-type isolation system was 
connected in parallel with an X-shaped supporting structure 
to constitute a new isolator. The new isolator can achieve 
adjustable ultra-low resonant frequency and profitable anti-
resonance properties [12–14].

Another more common and attractive method of con-
structing the QZS-VI is adding negative stiffness structure 
(NSS) to positive stiffness supporting platform. Up to now, 
a variety of QZS-VI containing NSS have been constructed 
and studied. Waters et al. [15, 16] conducted the static and 
dynamic analysis of a passive QZS-VI, in which two oblique 
springs acting as NSS were connected in parallel with one 
vertical positive stiffness spring. Similarly, Hu et al. [17] 
developed another QZS-VI, in which the above mentioned 
two oblique springs were replaced by two oblique rigid rods 
which were hinged with two horizontal springs. Yang et al. 
[18] designed and analyzed a QZS system, in which the NSS 
was constructed by connecting four horizontal springs with 
nonlinear lever-shaped structure. Zhou et al. [19] and Liu 
et al. [20] constructed the physical prototype of the QZS-
VI with the cam–roller–spring mechanisms that served as 
NSS and conducted analytical, simulation and experimental 
studies on its vibration isolation performance. The results 
showed that the QZS-VI outperforms the linear counterpart, 
specifically the QZS-VI’s peak transmissibility and starting 
frequency of isolation were lower than those of the linear 
counterpart. Furthermore, Sun et al. [21] developed the 
QZS-VI with parabolic-cam-roller that served as NSS and 
the asymmetric X-shaped structure as positive stiffness sup-
porting platform. The research results indicated that adding 

a NSS to the support platform with asymmetric stiffness 
characteristics can improve the vibration isolation effect.

The nonlinear isolators mentioned above are all con-
structed by combining various geometrically nonlinear 
structures and linear elastic elements such as linear springs. 
The physical nonlinear elements such as magnetic springs 
and Euler buckled beams can also be used to construct 
nonlinear vibration isolators. Zhou et al. [22] proposed a 
HSLDS vibration isolator, which is constructed by con-
necting a mechanical spring in parallel with a magnetic 
spring. Specifically, the mechanical spring is a structural 
beam which exhibits stiffness hardening characteristic, and 
the magnetic spring is constructed by a permanent magnet 
and a pair of electromagnets which exhibit variable stiffness 
characteristic. Yan et al. [23] developed a bi-stable nonlinear 
vibration isolator consisting of several permanent magnet 
elements and a linear mass-spring-damper, in which the per-
manent magnet elements provide nonlinear magnetic force 
and act as a negative stiffness corrector. Xu et al. [24], Wu 
et al. [25] and Su et al. [26] also presented the QZS-VI with 
the magnetic spring served as the negative stiffness element. 
Except the above mentioned magnetic springs, Euler buckled 
beams are another common physical nonlinear elements in 
QZS-VI. Huang et al. [27] utilized Euler buckled beams as 
negative stiffness corrector to construct the nonlinear isola-
tor, which makes the starting frequency of isolation lower 
than that of the linear counterpart. Fulcher et al. [28] and 
Oyelade et al. [29] presented different types of nonlinear 
vibration isolators where Euler bending beams served as 
the NSS.

Numerous studies have proven that the nonlinear QZS-
VI with HSLDS exhibits superior vibration isolation per-
formance than linear counterpart in terms of isolation fre-
quency and vibration transmissibility. Inspired by the above 
researches, we design a vibration isolation platform by com-
bining V-shaped lever, plate spring and cross-shaped struc-
ture (VL-PS-CS), and build a nonlinear QZS-VI by parallel 
connecting VL-PS-CS with coil spring. In the QZS-VI, the 
stiffness of VL-PS-CS platform changes nonlinearly from 
positive to negative with the increase of its deformation, 
and the coil spring serves as positive stiffness component 
to offset the negative stiffness of VL-PS-CS platform so as 
to maintain the stability of the isolation system. The non-
linearity of the VL-PS-CS platform is produced by combin-
ing the physical nonlinear stiffness of plate spring and the 
geometrical amplification effect of V-shaped lever, which 
fully explores the nonlinear advantages of each component 
and renders the QZS-VI achieving excellent high-static and 
low-dynamic stiffness.

Considering the physical and geometrical nonlinearity 
of plate spring and V-shaped lever, the static and dynamic 
modeling of the isolator is established and the effects of 
different parameters on the static mechanical and nonlinear 
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friction properties of the isolator are thoroughly investigated. 
The average method is used to seek the analytical solution 
of dynamic equation of QZS-VI. The superior isolation per-
formance of the proposed QZS-VI is validated by compar-
ing with another QZS-VI of buckled beam mechanism and 
traditional linear mass–spring-damper isolator. The main 
contributions of this study are as follows: (a) A novel pas-
sive QZS-VI with the VL-PS-CS is proposed for the first 
time, which exhibits profitable high-static and low-dynamic 
stiffness and advantageous vibration isolation performance 
compared to another QZS-VI of buckled beam mechanism 
and traditional linear isolator; (b) the nonlinear properties 
of the VL-PS-CS platform are very beneficial to vibration 
isolation, which can be designed easily by tuning structure 
parameters; (c) the effects of different structural parameters 
on the mechanical properties of the nonlinear isolator are 
thoroughly investigated, which provides useful guidance for 
engineering practices.

The rest of this paper is organized as follows: First, the 
design of QZS-VI with VL-PS-CS is introduced in sec-
tion “Design of QZS-VI”. Second, the static mechanical and 
dynamic modeling of the isolator based on physical and geo-
metrical nonlinearity is established in section “The Mode-
ling of QZS-VI”. Third, the effect of different parameters on 
the static mechanical and nonlinear friction properties of the 
QZS-VI is analyzed in sections “Effect of Different Param-
eters on Static Mechanical Properties” and Effect of Differ-
ent Parameters on Equivalent Friction Properties”. Then, 
the superior vibration isolation performance of the proposed 
QZS-VI is validated by comparing with another QZS-VI of 
buckled beam mechanism and traditional linear vibration 
isolator in section “Performance Comparison with Existing 
Isolators”. Finally, for verification of analytical method, the 
simulation study subject to harmonic excitation is conducted 
in section “Simulation Study Subject to Harmonic Excita-
tion” and a conclusion is given in section“Conclusion”.

Design of QZS‑VI

The QZS-VI subject to base excitation is designed as shown 
in Fig. 1, which mainly comprised one VL-PS-CS and one 
positive stiffness coil spring. The VL-PS-CS is composed 
of two V-shaped levers, one plate spring, one cross-shaped 
structure (CS) and one payload platform, which is expected 
to combine the benefits of nonlinear stiffness of plate spring 
and the advantages of geometrical nonlinearity of V-shaped 
lever. As shown in Fig. 1, the CS is composed of one vertical 
guiding shaft and two horizontal supporting shafts, which 
provide support and guidance for the operation of the iso-
lator. Among them, two parallel horizontal shafts are fix-
edly connected with the vertical shaft by cross hinges. To 
improve the stiffness of the horizontal shafts, both ends of 

the horizontal shafts are connected to the top end of vertical 
shaft by two square pipes, respectively. The two square pipes 
are redundant which can be designed with other shapes. The 
bottom end of vertical shaft is fixed to the midpoint of the 
plate spring and then fixed to the base. Two V-shaped levers 
are symmetrically mounted on both sides of the CS. Each 
long-arm end of two levers is hinged to the bottom of pay-
load platform which can slide along the vertical shaft of 
the CS through one linear bearing. Correspondingly, each 
short-arm end of two levers is hinged to each connector, 
which can slide along the horizontal shafts of the CS through 
four linear bearings. Each middle fulcrum of two levers is 
supported on the upper surface of the plate spring through 
rolling bearings.

The plate spring can be made up of a linear elastic mate-
rial such as spring steel with a uniform rectangular cross 
section, which is easy to be manufactured. Both sides of 
the plate spring are in cantilever states. In initial state, the 
working surface of the plate spring is parallel to the hori-
zontal shafts of the CS. While after bearing payload, the 
plate spring undergoes large deflection which exhibits non-
linear stiffness characteristic. Combine with the V-shaped 
lever, the nonlinear stiffness of the plate spring is magnified, 
which shows fascinating characteristics of high-static and 
low-dynamic stiffness. To offset the negative stiffness of the 
VL-PS-CS, a coil spring with positive stiffness is mounted 
vertically between the payload platform and the cross hinges 
of CS. The coil spring can be chosen to make its stiffness 
equal to the absolute value of VL-PS-CS’s minimum stiff-
ness, so as to achieve the quasi-zero dynamic stiffness of 
QZS-VI.

The Modeling of QZS‑VI

The flat schematic of the QZS-VI is depicted in Fig. 2, with 
clear designation of the structural parameters. To facilitate 
discussion, the upper parts of the CS including the upper 

Fig. 1   Physical model of the vibration isolator
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part of vertical shaft (acting as guidance) and two oblique 
square pipes (acting as reinforcement) are ignored and not 
drawn in the flat schematic. As depicted in Fig. 2, the lengths 
of the long and short arms of the V-shaped levers are l1 and 
l2 , respectively. The angle between the long arm and the 
short arm of the V-shaped lever is � . The effective distance 
between the undeformed plate spring and the horizontal 
shafts of CS is l3 . The stiffness of the coil spring is marked 
as kl . The absolute displacement of the isolated mass and the 
base excitation are defined as z and y, respectively, with the 
downward positive direction.

In Fig. 2, the highest position (dashed line) of the pay-
load platform represents the initial state of the isolator with 
no payload. After loading the mass M, the coil spring is 
compressed, while the payload platform combining with the 
endpoints of two levers’ long arms moves down along the 
vertical shaft, and the endpoints of two levers’ short arms 
move away from the symmetry center of CS along two hori-
zontal shafts. At the same time, the V-shaped levers rotate 
around the endpoints of the short arms, and the plate spring 
is forced to bend. When the total reaction force of coil spring 
and the VL-PS-CS are balanced with the weight of payload, 
the isolator reaches the static equilibrium position (solid 
line) as shown in Fig. 2.

The VL‑PS‑CS

It is profitable to start with establishing the static modeling 
of the VL-PS-CS. Benefit from the structural symmetry of 
VL-PS-CS, only one side of the center of symmetry is drawn 
to illustrate the relationship between the acting force and the 
deformation of the VL-PS-CS, as shown in Fig. 3 (Figs. 4, 
5): 

(1)	 The deformation of VL-PS-CS
	   The O- × 1- × 2 coordinate system is defined as shown 

in Fig. 3, in which the origin of the coordinate system 
is on the working surface of the plate spring and verti-
cally below the end point of the lever’s long arm, and the 
positive directions of horizontal ( x1 ) and vertical ( x2 ) axes 

Fig. 2   Flat schematic of QZS-
VI

Fig. 3   The schematic of half of VL-PS-CS
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are defined as right and downward, respectively. In the 
initial state, no payload is acted on the platform of VL-
PS-CS and the plate spring is not bent as shown (dotted 
line) in Fig. 3. The endpoints of two arms of the V-shaped 
lever are marked as A and D, and the middle fulcrum of 
V-shaped lever is marked as C. When the isolated mass 
M is loaded, the isolator reaches the static equilibrium 
position, while the V-shaped lever slides and rotates, 
plate spring bends to supporting payload, two endpoints 
and the middle fulcrum of the V-shaped lever move to 
new position, marked as A’, D’ and C’, respectively. The 

angle between the long arm of the lever and the vertical 
direction changes from � to �′ . The relative displacement 
between payload and the base is defined as ẑ = z − y . 
The coordinates of point C’ in the coordinate system of 
O − × 1 − × 2 are set to be ( x1c , x2c).

	   According to the geometric trigonometric relation-
ship of VL-PS-CS, as shown in Fig. 3, it can be derived 
that

	   where A = l2
1
+ l2

2
− 2l1l2cos� , B = l1cos� − l3.

	   For the convenience of expression, we define that

	   Combining Eqs. (1)–(5), the horizontal and vertical 
coordinates of point C’ can be, respectively, expressed 
as follows.

	   .

	   where C = l2
1
− l2

2
+ l2

3
+ A.

(1)l1sin�
� = x1c

(2)l2cos(θ − ��) = l3 + x2c

(3)l1cos�
� = x2c + l1cos� − ẑ

(4)l2sin(θ − ��) =

√
A − (B − ẑ)

2
− x1c,

(5)f3 =

√
A − (B − ẑ)

2

(6)

x
1c = f

2
=

1

2f
3

[C − 2
(
B − ẑ

)
f
1
−
(
l
1
cos� − ẑ

)2
−
(
B − ẑ

)2
]

Fig. 4   The force and deforma-
tion of (a) V-shaped lever and 
(b) plate spring

Fig. 5   The function values of 
√
sinβ and 

√
β with respect to β
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(2)	 Moment balance of V-shaped lever
	   According to the moment balance principle, the 

equation which represents the moment acting on the 
endpoint ( D′ ) of V-shaped lever’s short arm can be 
derived as follows:

where Fn is the force acting on the VL-PS-CS, Fc is 
the force from the bending of the plate spring, �c is 
the angle between the remaining uncurved surface of 
plate spring and the horizontal direction, as depicted 
in Fig. 4a.

(3)	 Large deflection of plate spring
	   The plate spring with large deflection forced by the 

V-shaped lever can be approximated as a cantilever 
beam. The Bernoulli–Euler bending moment–curva-
ture relationship for the plate spring can be written as 
follows [30–32]:

	   where E is the elastic modulus of the plate spring, I 
is the moment of inertia of the leaf spring cross section 
about the neutral axis, dβ

ds
 and M are the curvature and 

the bending moment at any point of the plate spring, 
respectively.

	   As shown in Fig. 4b, the coordinates of an arbitrary 
point E of the plate spring are set as ( x1 , x2 ), the arc 
length of the plate spring between the fixed end O and 
point E is set as s, the force acting on the plate spring 
at C′ is F′

c
 . Using the Newton’s third law of motion, 

regardless of the direction of the force, we can get 
F�
c
= Fc . Differentiating Eq. (9) with respect to s, get-

ting that

	   Among Eq. (10), the bending moment of the plate 
spring at point E is

(7)
x
2c = f

1
= −

1

A

(
l
1
cos� − ẑ

)
f 2
3
+

1

2A

(
B − ẑ

)[
C − A + f 2

3
−
(
l
1
cos� − ẑ

)2]

+
1

2A
{[2

(
l
1
cos� − ẑ

)
f 2
3
−
(
B − ẑ

)[
C − A + f 2

3
−
(
l
1
cos� − ẑ

)2]
]
2

− A

[
C − A + f 2

3
−
(
l
1
cos� − ẑ

)2]2

−4A
[(
l
1
cos� − ẑ

)2
− l2

1

]
f 2
3
}

1

2

(8)1

2
Fn[l1sin�

� + l2sin
(
θ − ��

)
] + Fcsinβcl2cos(θ − ��) = Fccosβcl2sin(θ − ��)

(9)EI
dβ

ds
= M

(10)EI
d2β

ds2
=

dM

ds

(11)M = F�
c
cosβc

(
x1c − x1

)
+ F�

c
sinβc

(
x2c − x2

)
,

where βc is the angle between the free end of plate 
spring and the horizontal direction. Substituting 
Eq. (11) into Eq. (10), we can get that

	   Equation (12) can be written as another form

	   Equation (13) can be directly integrated, considering 
that at free end �(L) = βc , and

where L is the arc length of plate spring between points 
O and C′ . Definite integrating Eq. (13) with respect 
to s, in which the integral interval is s-L, it can be 
obtained that

	   Project the arc length ds to the horizontal and vertical 
coordinates, respectively, getting that

(12)EI
d2β

ds2
+ F�

c
cosβccosβ + F�

c
sinβcsinβ = 0

(13)

d

ds

[
1

2
EI

(
d�

ds

)2

+ F�
c
cosβcsinβ − F�

c
sinβccosβ

]
= 0

(14)
(
d�

ds

)

s=L

= 0,

(15)ds =

�
EI

2F�
c

dβ√
sin(βc − β)

(16)dx1 =

�
EI

2F�
c

cosβdβ√
sin(βc − β)

(17)dx2 =

�
EI

2F�
c

sinβdβ√
sin(βc − β)
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	   Equations (16) and (17) can be integrated with 
respect to β from 0 to βc , respectively, for finding the 
coordinate values of free end point C′ of plate spring. 

where 
√
sinβ is approximated to be 

√
β , in the expres-

sion of definite integral ∫ βc
0

√
sinβdβ . The function 

values of 
√
sinβ and 

√
β with respect to β in the whole 

integral range are depicted in Fig. 5. From the figure, it 
can be seen that the errors between two function values 
along the whole integral range are small enough, which 
can guarantee the accuracy of calculation results.

(4)	 Summarize

Combining Eqs. (6) (7) (8) (18) and (19), the relation-
ship between the applied force ( Fn ) and the relative dis-
placement ( ̂z  ) can be obtained.

where

Furthermore, the nonlinear stiffness ( kn ) of VL-PS-CS 
can be obtained by differentiating the force ( Fn ) with respect 
to the relative displacement ( ̂z):

x1c =

�
EI

2F�
c

�
2cosβc

√
sinβc + sinβc∫

βc

0

√
sinβdβ

�

(18)≈

�
EI

2F�
c

�
2cosβc

√
sinβc +

2

3
β

3

2

c sinβc

�

x2c =

�
EI

2F�
c

(2sinβc
√
sinβc − cosβc ∫

βc

0

√
sinβdβ)

(19)≈

√
EI

2F�
c

[
2
(
sinβc

) 3

2 −
2

3
β

3

2

c cosβc

]
,

(20)

Fn

(̂
z
)
=

1

f3

[
−2Fc(βc −

1

6
β3
c
)(l3 + f1) + 2Fc(1 −

β2
c

2
)(f3 − f2)

]
,

(21)βc = −2
f2

f1
+

√
4(
f2

f1
)
2

+ 6

(22)Fc =
EIβc

2f2
2
(2 −

1

3
β2
c
−

1

9
β4
c
)
2

where

(23)

kn = −2
1

f
3

�F
c

�ẑ

(
β
c
−

β3
c

6

)(
l
3
+ f

1

)

+ 2
1

f
3

�Fc

�ẑ

(
1 −

β2
c

2

)(
f
3
− f

2

)

−
2

f
3

F
c

�β
c

�ẑ

(
1 −
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2

)(
l
3
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1

)

−
2

f
3

2
F
c

(
β
c
−
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c

6

)[
f
3

�f
1

�ẑ
−
(
l
3
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1

)�f
3

�ẑ

]

−
2

f
3

F
c
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�ẑ
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(
f
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2
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+
2

f
3

F
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−
�f

2

�ẑ
+

f
2

f
3

�f
3

�ẑ

)
,

(24)

�F
c

�ẑ
= −EI

1

f 3
2

�f
2

�ẑ

�
2

√
β
c
−

1

3
β

5

2

c −
1

9
β

9

2

c

�2

+
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f
2

2
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c

�ẑ

�
2

√
β
c
−

1

3
β

5

2

c −
1

9
β

9

2

c

�

�
1√
β
c

−
5

6
β

3

2

c −
1

2
β

7

2

c
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(25)
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�ẑ
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(
�f2

�ẑ

1
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�f1

�ẑ

f2

f 2
1
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4
(

f2
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(
�f2

�ẑ

f2

f 2
1
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�ẑ

f 2
2

f 3
1
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(26)

�f1

�ẑ
=

1

A
f 2
3
−

2

A

�
l1cos� − ẑ
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f3
�f3

�ẑ
−

1
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3
−
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+
1
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(f3
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1
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−
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C − A + f 2
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−
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The QZS‑VI

The VL-PS-CS serving as supporting structure is unstable 
due to its negative stiffness characteristic. So it is necessary 
to add a positive stiffness coil spring to the VL-PS-CS to 
obtain a stable QZS-VI. Based on the superposition principle 
of forces acting on parallel elastic structure, the relationship 
between the total exerting force and the deformation of the 
QZS-VI becomes

where kl is the stiffness of coil spring, F
(
ẑ
)
 is the total force 

acting on the QZS-VI and Fn

(
ẑ
)
 is the component force act-

ing on the VL-PS-CS, whose exact expression is showed in 
Eq. (20).

Differentiating Eq. (32), the total equivalent stiffness of 
the isolator becomes

where kn(̂z) is the nonlinear stiffness of VL-PS-CS, which is 
described in Eq. (23).

Dynamic modeling of the QZS‑VI

It is worth mentioning that the moving parts of the isola-
tor, including two V-shaped levers and two connectors, 
can be constructed of low-density, high-strength materials 
(e.g., aluminum alloy or carbon fiber, etc.). In addition, two 
arms of each V-shaped lever can be designed with hollow 
rods to reduce potential inertia and flexibility influence on 
dynamic response of the system. During dynamic analysis 
of the isolator, the inertia impacts of two V-shaped levers 
and two connectors are ignored, and only viscous friction 
force is considered. The equivalent vertical friction forces 

(29)f6 = −2f 2
3
+ 4

(
l1cos� − ẑ

)
f3
�f3

�ẑ
+
[
C − A + f 2

3
−
(
l1cos� − ẑ

)2]
−
(
B − ẑ

)[
2f3

�f3

�ẑ
+ 2

(
l1cos� − ẑ

)]

(30)
�f2

�ẑ
=

1

f3

[
−
�f1

�ẑ

(
B − ẑ

)
+ f1 + l1cos� − 2̂z + B

]
−

1

2f 2
3

[
C − 2f1

(
B − ẑ

)
−
(
l1cos� − ẑ

)2
−
(
B − ẑ

)2]�f3
�ẑ

(31)
�f3

�ẑ
=

B − ẑ√
A − (B − ẑ)

2

(32)F
(̂
z
)
= kl̂z + Fn

(̂
z
)
,

(33)k
(̂
z
)
= kl + kn (̂z)

of one vertical slider of payload platform, two horizontal 
sliders and four rotation joints of both ends of two V-shaped 
levers are considered and, respectively, represented as Fc1, 
Fc2 and Fc3 . Fc1 is the linear viscous friction force which can 
be expressed as Linear viscous friction

where �̇z = d(�z)∕dt and c1 is the friction resistance constant 
of the vertical slider.

The horizontal friction force of each horizontal slider can 
be obtained as follows:

where c2 is the friction resistance constant of each horizontal 
slider. So the equivalent vertical friction force Fc2 can be 
deduced as follows:

The rotational friction force of each rotation joint can be 
expressed as follows:

where c3 is the friction resistance constant of each rotation 
joint.

From Eq. (1), it can be derived that

(34)Fc1 = c1�̇z,

(35)Fh = c2
B −�z√

A −
(
B,−�z

)2 ⋅ �̇z

(36)Fc2 = 2tan𝛼Fh = 2c2

(
B −�z

)2

A −
(
B −�z

)2�̇z

(37)F𝜑 = c3

(
d𝜑

�

d�z

)
⋅ �̇z

Fig. 6   The simplified dynamic model of QZS-VI



233Journal of Vibration Engineering & Technologies (2021) 9:225–245	

1 3

Then

where the exact expressions of x1c and �f2
�ẑ

 are showed in 
Eqs. (6) and (30), respectively. The equivalent horizontal 
friction force acting on two horizontal sliders which derived 
from the rotational friction of long arm end of two V-shaped 
levers is F�h = 2F�(B − ẑ) , and the equivalent vertical fric-
tion force acting on vertical slider which derived from the 
rotational friction of short arm end of two V-shaped levers 
is F�v = 2F�

√
A −

(
B − ẑ

)2 . So the equivalent vertical fric-
tion force Fc3 can be obtained as follows:

where A = l2
1
+ l2

2
− 2l1l2cos� , B = l1cos� − l3 . Then, the 

total equivalent vertical friction force is obtained and defined 
as follows:

where fc = fc1 + fc2 + fc3 ,  fc1 = c1 ,  fc2 = 2c2
(B−ẑ)

2

A−(B−ẑ)
2  , 

fc3 =
2A√

A−(B−ẑ)
2

c3√
l2
1
−x1c

2

�f2
�ẑ

.

The QZS-VI with payload and under base excitation is 
simplified as a second-order nonlinear system with one 
degree of freedom, as depicted in Fig. 6. Using the Newton’s 
second law of motion, the dynamic equation of the isolator’s 
payload mass can be expressed as follows:

(38)�� = arcsin
x1c

l1

(39)F𝜑 = c3
1√

l2
1
− x1c

2

𝜕f2

𝜕�z
.�̇z,

(40)Fc3 = F𝜑v +
B −�z√

A −
(
B −�z

)2F
𝜑h

=
2A√

A −
(
B −�z

)2
c3√

l2
1
− x1c

2

𝜕f2

𝜕�z
∙ �̇z,

(41)Fc = fc�̇z

(42)Mz̈ + fc�̇z + F
(
�z
)
= Mg

where M is the mass of payload, z is the absolute displace-
ment of payload mass, ẑ = z − y is the relative displacement 
between payload platform and the base. F

(̂
z
)
 is the equiva-

lent spring force provided by the nonlinear stiffness of the 
QZS-VI, whose exact expression is showed in Eq. (32).

Introducing the base excitation, both hand sides of 
Eq. (42) are simultaneously subtracted by Mÿ:

where y is the absolute displacement of base excitation.
Assuming that under the gravity of payload, the vibration 

isolator reaches the static equilibrium position with the defor-
mation of ẑ0 , it can be obtained that Mg = F

(̂
z0
)
 . F

(̂
z
)
 and fc 

are highly nonlinear functions of ̂z , which can be expanded by 
Taylor series at static equilibrium position ẑ0 as

(43)M�̈z + fc�̇z + F
(
�z
)
−Mg = −Mÿ

(44)F
(̂
z
)
= F

(̂
z0
)
+ F�

(̂
z0
)(̂
z − ẑ0

)
+

F��
(̂
z0
)

2

(̂
z − ẑ0

)2
+

F���
(̂
z0
)

6

(̂
z − ẑ0

)3
+ o

Fig. 7   Comparisons of the 
approximate and exact solutions 
of function f

c
 (a) and restoring 

force F
(̂
z
)
 (b)

Fig. 8   The relative error between the approximate force and the exact 
force
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w h e r e  F�
(̂
z0
)
= k = kl + kn

(̂
z0
)
 ,  F��

(̂
z0
)
=

�k

�ẑ
||(̂z0)  , 

F���
(̂
z0
)
=

�2k

�ẑ2
||(̂z0) , fc�

(̂
z0
)
=

�fc
�ẑ
||(̂z0) , fc��

(̂
z0
)
=

�2fc
�ẑ2

||(̂z0) , o 
is the sum of higher order infinitesimal terms greater than 
the third order. The detailed expressions of �k

�ẑ
 and �

2k

�ẑ2
 are 

listed in “Supplementary Material”.
For the case l3=100 mm, l2=175 mm, l1=350 mm, �=75◦ , 

h = 1.5 mm, kl = 2.44 N cm−1, c1 = 0.6Nsm−1 , c2 = 0.8Nsm−1 
and c3 = 0.2Nsm−1 , the approximated third-order Taylor 
series expansion and exact solutions of the function fc and 
the total restoring force F

(̂
z
)
 are compared in Fig. 7a, b. It 

can be revealed that the approximate curve of fc can fit the 
exact curve along the whole displacement range very well, 
and the approximate curve of F

(̂
z
)
 can fit the exact curve very 

well near the static equilibrium position ( ̂z0=58 mm), while 
the error between the approximate force and the exact force 
increases as the displacement from the static equilibrium posi-
tion increased. This can be quantified by the relative error δ 
which defined as follows:

where Fapproximate is given by Eq. (44) and Fexact is given by 
Eq. (32). The relative error is plotted in Fig. 8. It can be 
seen that when the distance from the equilibrium position is 
small, the error value is correspondingly small enough. So it 
is reasonable to analyze the vibration isolation characteris-
tics of the isolator through Taylor approximation, when the 
amplitude of vibration near the static equilibrium position 
is small.

Substitute Eqs. (44) and (45) into Eq. (43), where o is omit-
ted, and specify the equilibrium position ẑ = ẑ0 as the origin 

(45)fc = fc
(̂
z0
)
+ fc

�
(̂
z0
)(̂
z − ẑ0

)
+

fc
��
(̂
z0
)

2

(̂
z − ẑ0

)2
+ o,

(46)δ =
|||||
1 −

Fapproximate

Fexact

|||||
× 100%,

where ̇(⋅) = d(⋅)∕dt . Using average method [33] for approxi-
mated analytical results, the displacement of base excita-
tion and the solution of Eq. (47) can be, respectively, set as 
follows:

where Ye is the displacement amplitude of excitation, � is 
the angular frequency of excitation, a is the amplitude of har-
monic terms and � is the phase angle. a and � are slowly vary-
ing functions of time t. Differentiating Eq. (49) with respect to 
t, the following can be obtained: 

Combining Eqs. (49) and (50), and substituting them into 
Eq. (47), we can get that the following:

where

Assuming that a and � remain constant in one cycle, 
Eqs. (51) and (52) can be averaged as follows:

Therefore, derived from Eqs. (53) and (54), and the con-
dition sin2� + cos2� = 1 , the amplitude-frequency equation 
can be achieved as follows:

(48)y = Yecosωt

(49)
{

�u = acos(𝜔t + 𝜑)

�̇u = −a𝜔sin(ωt + 𝜑),

(50)

{
�̇u =

da

dt
cos(𝜔t + 𝜑) − a(𝜔 +

d𝜑

dt
)sin(𝜔t + 𝜑)

�̈u = −
da

dt
𝜔sin(𝜔t + 𝜑) − a𝜔(𝜔 +

d𝜑

dt
)cos(𝜔t + 𝜑)

(51)
da

dt
= −

1

Mω
sin(�t + �)Π

(52)
d�

dt
= −

1

Ma�
cos(�t + �)Π,

Π = Ma�2
cos(�t + �) +MYe�

2
cos�t

+
[
�
0
+ �

1
acos(�t + �) + �

2
a2cos2(�t + �)

]
a�sin(�t + �) − �

1
acos(�t + �)

− �
2
a2cos2(�t + �) − �

3
a
3
cos

3(ωt + �)

(53)da

dt
= −

�

2�∫
2�

�

0

1

M�
Πsin(�t + �)dt = −

1

2M
(MYe�sin� + a�0 +

1

4
�2a

3)

(54)d�

dt
= −

�

2�∫
2�

�

0

1

Ma�
Π cos(�t + �)dt = −

1

2Ma�

[(
Ma�2 − �1a

)
+MYeω

2cos� −
3

4
�3a

3
]

of a new relative displacement coordinate û ( ̂u = ẑ − ẑ0 ). By 
introducing the following parameters: �0 = fc

(̂
z0
)
 , �1 = fc

�
(̂
z0
)
 , 

�2 =
fc
��(̂z0)
2

 , �1 = F�
(̂
z0
)
 , �2 =

F�� (̂z0)
2

 and �3 =
F��� (̂z0)

6
 , the 

dynamic Eq. (43) can be rewritten as

(47)
M�̈u + (𝜀0 + 𝜀1�u + 𝜀2�u

2
)�̇u + 𝜇1�u + 𝜇2�u

2
+ 𝜇3�u

3
= −Mÿ
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The absolute displacement transmissibility Td of the isola-
tor can be obtained as follows:

(55)
�2(aε0 +

1

4
�2a

3)
2

+ (−Ma�2 + �1a +
3

4
�3a

3)
2

= M2Ye
2�4

(56)Td =

||||||||

√
a2 + Y2

e
+ 2aYecos�

Ye

||||||||

Effect of Different Parameters on Static 
Mechanical Properties

The structural parameters of the QZS-VI can be designed for 
different nonlinear stiffness characteristics. The parameters 
(including the lengths of long arm l1 and short arm l2 of 
V-shaped lever, the angle between two arms of each lever � , 
the distance between the undeformed plate spring and the 
horizontal shaft of CS l3 , the thickness of plate spring h, the 
stiffness of coil spring kl ) are considered as structural param-
eters to be designed for different nonlinear stiffness. And 
other parameters are supposed to be fixed in this research 
such as the width of plate spring settings b = 45 mm. In addi-
tion, the flexibility of the V-shaped lever and the CS is 
ignored. For the facility of analysis, the minimum stiffness 
of VL-PS-CS is marked as kmin , which occurs on the static 
equilibrium position ẑ0 . And the dimensionless parameters 
which reflect the structural size relationship of different 

Fig. 9   The static force–displacement (a) and stiffness-displacement (b) curves of VL-PS-CS with different ζ; the static force–displacement (c) 
and stiffness-displacement (d) curves of QZS-VI with different ζ and kl

Table 1   The static equilibrium 
position and the minimum 
stiffness with different ζ

ζ ẑ
0
(mm) kmin (N cm−1)

1.5 69 -1.35
1.75 58 -2.44
2 49 -4.43
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components of the QZS-VI are defined as follows: (1) ζ = l2
/l3 , the ratio of the short-arm length of each lever to its initial 
vertical maximum moving distance; (2) ξ = l1/l2 , depicts the 
length ratio of the long arm to the short arm of each 
V-shaped lever. It is worth noting that for successful imple-
mentation of the designed nonlinear QZS-VI, the boundary 
conditions of the structural parameters are l3 < l2 < l1 and 
cos−1(

l3

l2
)<𝜃 <

𝜋

2
 . The force–displacement relationships 

ob t a ined  by  Eqs .   (20)  and  (32) ,  and  t he 

stiffness–displacement relationships obtained by Eqs. (23) 
and (33) can be used to reflect the static mechanical proper-
ties of VL-PS-CS and QZS-VI, respectively.

Effect of ζ

For l3 = 100 mm, ξ = 2, �=75◦ and h = 1.5mm , the static 
force and stiffness properties of VL-PS-CS with different ζ 
are shown in Fig. 9a, b, respectively. It is known from Fig. 9a 
that to reach the same deformation of VL-PS-CS, the larger 
ζ is, the greater the force is needed to act on the VL-PS-CS. 
From Fig. 9b, it can be seen that with the ratio ζ increasing, 
the deformation of VL-PS-CS becomes smaller when the 
stiffness reaches zero, and the value of minimum stiffness 
becomes smaller. The specific static equilibrium position ẑ0 
and the minimum stiffness of VL-PS-CS with different ζ are 
shown in Table 1.

Parallel connecting the coil spring whose stiffness is 
equal to the absolute value of kmin as shown in Table 1, the 

Fig. 10   The static force–displacement (a) and stiffness–displacement (b) curves of VL-PS-CS with different ξ; the static force–displacement (c) 
and stiffness–displacement (d) curves of QZS-VI with different ξ and kl

Table 2   The static equilibrium 
position and the minimum 
stiffness with different ξ

ξ ẑ
0
(mm) kmin (N cm−1)

1.5 48 − 8.35
2 58 − 2.44
2.5 67 − 0.93
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QZS-VI can achieve high-static and low-dynamic stiffness 
characteristic. The static force and stiffness characteristics 
of QZS-VI with different ζ and kl are shown in Fig. 9c, d, 
respectively. From Fig. 9c, d, it can be deduced that the 
larger ζ, the higher the static bearing capacity of the isolator, 
and the smaller the quasi zero stiffness displacement range. 
In a word, the larger the ζ, the stronger the nonlinear stiff-
ness of the VL-PS-CS and the QZS-VI. In order to improve 
the static bearing capacity with small deformation, while 

achieving high-static and low-dynamic stiffness, improving 
ζ is helpful.

Effect of ξ

For l3=100 mm, ζ = 1.75, �= 75◦ and h = 1.5 mm, the static 
force and stiffness properties of VL-PS-CS with different 
ξ are shown in Fig. 10a, b, respectively. It is known from 
Fig. 10a that to reach the same deformation of VL-PS-CS, 
the smaller the ξ, the greater the force is needed to act on the 
VL-PS-CS. From Fig. 10b, it can be seen that with the ratio 
ξ increasing, the deformation of VL-PS-CS becomes larger 
when the stiffness reaches zero, and the value of minimum 
stiffness becomes larger. The specific static equilibrium 
position ẑ0 and the minimum stiffness of VL-PS-CS with 
different ξ are shown in Table 2.

Parallel connecting the coil spring whose stiffness is 
equal to the absolute value of kmin as shown in Table 2, the 

Fig. 11   The static force–displacement (a) and stiffness–displacement (b) curves of VL-PS-CS with different � ; the static force–displacement (c) 
and stiffness–displacement (d) curves of QZS-VI with different � and kl

Table 3   The static equilibrium 
position and the minimum 
stiffness with different �

� ẑ
0
(mm) kmin (N cm−1)

70
◦ 40 − 6.74

75
◦ 58 − 2.44

80
◦ 80 − 1.14
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QZS-VI can achieve high-static and low-dynamic stiffness 
characteristic. The static force and stiffness characteristics 
of QZS-VI with different ξ and kl are shown in Fig. 10c, 
d, respectively. From Fig. 10c, d, it can be inferred that 
the smaller theξ, the higher the static bearing capacity of 
the isolator, and also the smaller the quasi zero stiffness 
displacement range. In a word, the smaller ξ, the stronger 
the nonlinear stiffness of the VL-PS-CS and the QZS-VI. 
To improve the static bearing capacity with small defor-
mation, while achieving high-static and low-dynamic stiff-
ness, reducing ξ is beneficial.

Effect of �

For l3=100 mm, ζ = 1.75, ξ = 2 and h = 1.5 mm, the static 
force and stiffness characteristics of VL-PS-CS with differ-
ent � are shown in Fig. 11a, b, respectively. It is known from 
Fig. 11a that to reach the same deformation of VL-PS-CS, 
the smaller the � , the greater the force is needed to act on the 
VL-PS-CS. From Fig. 11b, it can be seen that with the angle 
� increasing, the deformation of VL-PS-CS becomes larger 
when the stiffness reaches zero, and the value of minimum 
stiffness becomes larger. The specific static equilibrium 
position ẑ0 and the minimum stiffness of VL-PS-CS with 
different � are shown in Table 3.

Parallel connecting the coil spring whose stiffness is 
equal to the absolute value of kmin as shown in Table 3, the 
QZS-VI can achieve high-static and low-dynamic stiffness 
properties. The static force and stiffness characteristics of 
QZS-VI with different � and kl are shown in Fig. 11c, d, 

Fig. 12   The static force–displacement (a) and stiffness–displacement (b) curves of VL-PS-CS with different h; the static force–displacement (c) 
and stiffness–displacement (d) curves of QZS-VI with different h and kl

Table 4   The static equilibrium 
position and the minimum 
stiffness with different h

h(mm) ẑ
0
(mm) kmin (N cm−1)

1.2 58 − 1.25
1.5 58 − 2.44
1.9 58 − 4.96
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respectively. From Fig. 11c, d, it can be deduced that the 
smaller the � , the higher the static bearing capacity of the 
isolator, and the smaller the quasi zero stiffness displace-
ment range. In a word, the smaller the � , the stronger the 
nonlinear characteristics of the VL-PS-CS and the QZS-
VI. In order to improve the static bearing capacity with 
small deformation, while achieving high-static and low-
dynamic stiffness, reducing � is profitable.

Effect of h

It is noted that the moment of inertia (I) is the function 
of the thickness (h) and width (b) of plate spring’s cross 
section, whose specific expression is I = 1

12
bh3 . In this sec-

tion, the width (b) of plate spring is set to be 45 mm and 
the thickness (h) is chosen to be of different values, which 
reflect the equivalent bending stiffness of plate spring.

For l3=100 mm, ζ = 1.75, ξ = 2 and �=75◦ , the static 
force and stiffness characteristics of VL-PS-CS with dif-
ferent h are shown in Fig. 12a, b, respectively. It is known 
from Fig. 12a that to reach the same deformation of VL-
PS-CS, the larger h, the greater the force needed to act on 
the vibration isolator; From Fig. 12b, it is observed that 
the larger h, the smaller the value of minimum stiffness. It 
is worth noting that the deformations of VL-PS-CS keep 
constant when the zero stiffness and the minimum stiff-
ness occur. The specific static equilibrium position ẑ0 and 
the minimum stiffness of VL-PS-CS with different h are 
shown in Table 4.

Parallel connecting the coil spring whose stiffness is 
equal to the absolute value of kmin as shown in Table 4, the 
QZS-VI can achieve high-static and low-dynamic stiffness 
properties. The static force and stiffness characteristics of 
QZS-VI with different h and kl are shown in Fig. 12c, d, 
respectively. It can be inferred from Fig. 12c, d that the 
larger the h, the higher the static bearing capacity of the iso-
lator. In a word, the larger the h, the stronger the nonlinear 
characteristics of the VL-PS-CS and the QZS-VI. In order 
to improve the static bearing capacity with small deforma-
tion, while achieving high-static and low-dynamic stiffness, 
increasing h is instructive.

Based on above results, it can be concluded that the QZS-
VI can be well designed by properly tuning several structural 
parameters to obtain practical nonlinear high-static and low-
-dynamic stiffness. For example, if one wants to increase the 
bearing capacity, while keeping the shape and size of the 
QZS-VI unchanged, the thickness of plate spring and the 
stiffness of coil spring should be increased, respectively; 
if one wants to achieve quasi-zero dynamic stiffness with 
smaller deformation of isolator, decreasing the ratio ξ and/or 
decreasing the assembly angle � and/or increasing the ratio 
ζ are helpful; if one wants to reduce structural size, while 
remaining the vibration isolation performance and loading 
capacity unchanged, decreasing effective distance l3 , and 
lengths of long-arm l1 and short-arm l2 of V-shaped lever, 
and maintaining the parameter ζ, ξ, � and h unchanged is 
profitable. Overall, redundant structural parameters can be 
used to tune the vibration isolation performance of QZS-VI 

Fig. 13   Friction coefficients f
c
2 , f

c3
 and f

c
 with different length ratio ζ when ξ = 2 and �=75◦
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Fig. 14   Friction coefficients f
c2

 , f
c3

 and f
c
 with different length ratio ξ when ζ = 1.75 and � =75◦

Fig. 15   Friction coefficients f
c2

 , f
c3

 and f
c
 with different angle � when ζ = 1.75 and ξ = 2
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in practice, which has a wide range of options in practical 
applications.

Effect of Different Parameters on Equivalent 
Friction Properties

In the designed QZS-VI, there are one vertical slider, two 
horizontal sliders and some rotation joints of V-shaped 
levers which provide nonlinear friction force to the vibration 
isolation structure. It is essential to analyze the nonlinear 
friction properties and their effect on the vibration isolation 
performance. This section focuses on the effect of differ-
ent structural parameters on the equivalent friction coeffi-
cients of VL-PS-CS. The length ratioζ and ξ, and the angle 
between two arms of each lever � are changed to investigate 
the effect of different structure on the friction coefficients of 
the designed vibration isolation structure. Other parameters 
are set to be l3=100 mm and h = 1.5mm . The physical mean-
ings of fc2 , fc3 and fc are described in Eq. (41). fc2 and fc3 
are related to the friction damping effect of the horizontal 
sliders and the rotational joints, respectively. fc is the total 
nonlinear friction coefficient. Setting c1 = 0.6 , c2 = 0.8 and 
c3 = 0.2 (ensuring friction coefficients fc2 , fc3 and fc in the 
same scale) for comparison, the relationship between dif-
ferent coefficients and relative displacement ẑ  can be seen 
in Figs. 13–15.

Figure 13 shows that the friction coefficients fc2 , fc3 and 
fc change differently when the value of ẑ  changes from 0 to 
100 mm. The values of fc2 , fc3 and fc are always positive and 
decrease nonlinearly as the increase of ẑ  . A bigger length 
ratio ζ leads to a larger nonlinear friction effect fc2 and fc3 , 
which causes the increase of the total friction coefficient 
fc , correspondingly . The total friction coefficient fc can be 
changed from a very small value to a much bigger value 

around the equilibrium position, which means the QZS-VI 
can dissipate more energy in the resonant amplitude peak.

Figure 14 displays the effect of the length ratio ξ on the 
friction coefficients. The nonlinear friction properties are 
displacement-dependent with respect to different length 
ratio. It is noticed that increasing ξ leads to the increasing 
of all friction coefficients fc2 , fc3 and fc . The effect of the 
assembly angle � of the V-shaped lever is shown in Fig. 15. 
It can be seen that a bigger assembly angle leads to a much 
smaller friction effect in the QZS-VI, and the total friction 
effect tends to be a constant as the assembly angle enlarged, 
while a smaller assembly angle yields much more nonlinear 
friction effect and a significant varying range.

In general, by increasing ζ and/or ξ, and/or decreasing � , 
the total friction coefficient fc can be increased rapidly. To 
obtain nonlinear and significant damping effect, the angle 
� between the long arm of the lever and the vertical direc-
tion should be smaller. Therefore, by adjusting structural 
parameters l1 , l2 , l3 and � , and designing friction constant c1 , 
c2 and c3 , the friction properties of the QZS-VI can be tuned 
for better vibration isolation performance.

Performance Comparison with Existing 
Isolators

As the designed quasi-zero stiffness vibration isolator 
(D-QZS-VI) is the combination of nonlinear geometrical 
structure with plate spring (acting as buckled beam), it is 
beneficial to reveal the vibration isolation performance of 
our designed isolator by comparing its performance with 
existing quasi-zero stiffness vibration isolator which is 
equipped with buckled beam. An existing quasi-zero stiff-
ness vibration isolator (E-QZS-VI) with Euler buckled beam 
as negative stiffness corrector is studied in [25, 34]. The 

Fig. 16   The equivalent restoring force and stiffness properties of three isolators



242	 Journal of Vibration Engineering & Technologies (2021) 9:225–245

1 3

dynamic modeling of the E-QZS-VI in [25, 34] is given as 
follows:

where m is the mass of payload, c is the linear damping 
constant, k is the stiffness of linear spring, y is the relative 
displacement between the payload and the base, 

∼
y= y∕L is 

the non-dimensional relative displacement, L is the length 
of the beam before buckling, � =

a

L
= cos� reflects the initial 

inclined angle of the beam, kL(�
∼
y
3

+
√
1 − �2) is the Taylor 

approximation of the restoring force and � is the coefficient 
of the cubic term about 

∼
y , whose exact expression is listed 

as follows:

where 
∼
q
0 = q0∕L , q0 is the initial imperfection of the beam.

To compare the vibration isolation performance between 
two kinds of QZS-VI, the parameters of two isolators are 
chosen to make them possess the same bearing capacity 
with the specific deformation. Given the mass of payload 
as 3.4 kg, the two isolators all reach equilibrium position 
with the deformation of 58mm . The structural parameters of 
the E-QZS-VI are set to be: k = 5.745 N cm−1, � = 0.9862 , 
L = 350  mm, 

∼
q
0 = 0.03 , c = 1.6364  Nsm−1 . Similarly, 

the structural parameters of the D-QZS-VI are specified 

(57)

mÿ + cẏ + kL

�
𝛼
∼
y
3

+
√
1 − 𝛾2

�
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⎟⎟⎟⎟⎠

as: kl = 2.44 N cm−1, l3=100 mm, ζ = 1.75, ξ = 2, �=75◦ , 
h = 1.5 mm, c1 = 0.6Nsm−1 , c2 = 0.8Nsm−1 , c3 = 0.2Nsm−1.

For comparison, a typical linear mass-spring-damper 
vibration isolator (MSD-VI) with similar parameter setting is

For the three isolation systems, the linear components 
of passive damper are set to be equal. For the D-QZS-VI, 
the friction force is Fc = (1.6364 − 9.8�u + 65�u

2
)�̇u and the 

restoring force is F = 33.32 + 0.17û − 17û
2
+ 35474û

3 . For 
the E-QZS-VI, the friction force is Fc = 1.6364ẏ and the 
restoring force is F = 33.32 + 2041y3 . For the MSD-VI, 
the friction force is Fc = 1.6364ẏ and the restoring force is 
F = 33.32 + 574.5y . The equivalent restoring force and stiff-
ness properties of the three isolators are shown in Fig. 16. 
From Fig. 16, the equivalent stiffness property of D-QZS-VI 
is very close to or even better than that of E-QZS-VI, both of 
which exhibit much softer than the MSD-VI.

The absolute displacement transmissibility of the D-QZS-
VI solved

 by Eq. (56) is used to reflect the vibration isolation per-
formance. The same method is used to obtain the displace-
ment transmissibility of E-QZS-VI and MSD-VI. Under 
the same displacement amplitude ( Z0 = 5mm ) of harmonic 
excitation, the comparison of displacement transmissibil-
ity is shown in Fig. 17. It can be obtained that the dynamic 
property of the designed QZS-VI (without any extra damp-
ers) behaves much better than other two isolators due to its 
special nonlinear friction and stiffness properties (lower 
peak value, smaller resonant frequency and more stability 
property at the peak frequency). By adjusting proper struc-
tural parameters of the designed QZS-VI, the amplitude of 
displacement transmissibility can be suppressed obviously 
compared with the other two isolators.

In Fig. 17, the comparison of displacement transmissibil-
ity between the designed QZS-VI and the existing QZS-VI 
is conducted with the same restoring force and the same 
linear components of damper. It is depicted that the designed 
QZS-VI and the existing QZS-VI have the same resonant 
frequency which is much smaller than that of MSD-VI. Due 
to the friction of links and sliders, the displacement trans-
missibility of D-QZS-VI is larger than that of E-QZS-VI at 

(58)mÿ + cẏ + ky = m𝜔2Z0cos𝜔t

Fig. 17   Displacement transmissibility of three isolators with respect 
to different exciting frequency
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lower frequency, while being smaller than that of E-QZS-
VI at resonant frequency. Although the rigid motion of the 
D-QZS-VI caused by equivalent nonlinear friction force can-
not be avoided, the resonant peak is suppressed and the sta-
bility is improved, which largely improves the performance 
of vibration isolation.

Simulation Study Subject to Harmonic 
Excitation

In order to verify the vibration isolation property of the 
QZS-VI more intuitively, the nonlinear dynamic mod-
eling is solved by 4-order Runge–Kutta algorithm and 
the time domain response of the designed QZS-VI 
with payload under fixed-frequency harmonic excita-
tion are simulated. In the simulation, the parameters of 

Fig. 18   The absolute displace-
ment response (dashed line) of 
QZS-VI under the base excita-
tion (solid line) with frequency 
of (a) 0.1 Hz, (b) 0.2 Hz, (c) 
0.5 Hz and (d) 1 Hz
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QZS-VI are set to be l3=100 mm, ζ = 1.75, ξ = 2, �=75◦ , 
h = 1.5 mm, kl = 2.44 N cm−1, M = 3.4 kg, c1 = 0.6Nsm−1 , 
c2 = 0.8Nsm−1 and c3 = 0.2Nsm−1 , which are same as the 
settings in Sect. 6. Under the harmonic vibration excitation 
with the fixed displacement amplitude (5 mm) and different 
forcing frequencies, the absolute displacement response of 
QZS-VI is researched and the results are shown in Fig. 18. 
It can be seen that under the frequency of 0.1 Hz, the dis-
placement response slightly amplifies the displacement of 
vibration excitation due to the resonance effect. When the 
forcing frequencies are, respectively, set to be 0.2 Hz, 0.5 Hz 
and 1 Hz, vibration isolation phenomenon occurs and the 
isolation effect becomes more and more prominent with the 
increase of forcing frequency. The numerical simulation 
results are consistent with the approximated solution of dis-
placement transmissibility obtained in Sect. 6, which verifies 
the accuracy of analytical solution based on average method.

Conclusion

A novel passive nonlinear QZS-VI with VL-PS-CS is pro-
posed and studied. The VL-PS-CS takes an ingenious com-
bination of plate spring and V-shaped lever and facilitates 
the QZS-VI achieving quasi-zero stiffness property and 
superior nonlinear vibration isolation performance. The 
isolator can be well designed by properly tuning several 
structural parameters (e.g., l1 , l2 , l3 , θ, h, kl ) to obtain practi-
cal high-static and low-dynamic stiffness, which presents the 
possibility for different stiffness and damping design. It also 
indicates that some optimization process can be employed 
for a detailed engineering practice (taking into account the 
actual requirements on performance, weight, size, loading 
capacity and others). Compared with another QZS-VI of 
buckled beam mechanism and traditional linear vibration 
isolator, the designed QZS-VI exhibits smaller resonant fre-
quency, lower peak value and more stable property at the 
peak frequency while possessing the same loading capac-
ity. The innovative structure provides novel insights into the 
design of passive vibration isolators and has great potential 
for application in engineering practice.

The QZS-VI can be further developed by considering 
mass and moment of inertia of V-shaped levers in system 
modeling and verifying the theoretical results with a practi-
cal experimental prototype. Moreover, the application of the 
innovative structure to many practical engineering issues can 
also be investigated.
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