
Vol.:(0123456789)1 3

Journal of Vibration Engineering & Technologies (2021) 9:215–224 
https://doi.org/10.1007/s42417-020-00220-7

ORIGINAL PAPER

A Novel Condition Indicator for Bearing Fault Detection Within 
Helicopter Transmission

Faris Elasha1   · Xiaochuan Li2 · David Mba2,3 · Adebayo Ogundare4 · Sunday Ojolo4

Received: 5 February 2020 / Revised: 9 June 2020 / Accepted: 13 June 2020 / Published online: 22 June 2020 
© Krishtel eMaging Solutions Private Limited 2020

Abstract
Background  Helicopter usage and monitoring system (HUMS) is one of the critical systems for helicopter’s safety and 
reliability. Whilst HUMS has proven to be effective in detecting gears’ defects, bearing failures are not adequately detected 
using current monitoring indicators. Detection of bearing faults in helicopter gearboxes is made challenging by the presence 
of the complicated signal transmission path attenuating the monitored signal to the receiving sensor.
Purpose  To ensure safe operation of helicopters, this research proposes a novel condition indicator to detect bearing faults 
in helicopter gearboxes.
Methods  For this purpose, vibration measurements captured from a CS-29 category ‘A’ helicopters test rig were utilized 
for detecting a bearing defect that has occurred in the epicyclic module of the main gearbox. Signals of rolling element 
bearings under various fault conditions were collected, and an adaptive filter algorithm was utilized to separate the random 
component of the signal. The resultant signatures were then further processed using wavelet analysis to extract the bearing 
signal of interest.
Results  Results showed that this new indicator successfully detect bearing faults. Besides, the impulse energy indicator 
responds consistently to the fault severity compared to the traditional indicators such as RMS and kurtosis.
Conclusion  A technique to extract frequency band corresponding to the bearing fault impulses has been developed and tested. 
The technique employs the adaptive filter signal separation, wavelet packet decomposition and the combination of RMS and 
kurtosis to select the optimum filter band.

Keywords  Bearing · Signal seperation · Vibration · Helicopter · Gearbox · Fault detection

Introduction

Helicopter HUMS is a sophisticated system developed to 
inform condition-based maintenance strategy applied to 
helicopters. It aims to ensure helicopter safe operation and 
reduce unnecessary repair cost. A typical helicopter HUMS 
system monitors the health of the rotor system, engines, 

airframe, and transmission [1, 2]. Whilst HUMS has proven 
to be effective in detecting gear defects, bearing failures were 
not adequately detected using current monitoring indicators.

This was illustrated in an accident (2009) involving 
a Super-Puma helicopter in which the deterioration of a 
planet gear bearing had caused a loss of life. Interestingly, 
the HUMS monitoring system did not show any indication 
of an incipient fault. Although there were some trends in the 
vibration condition indicators (CIs) the HUMS system did 
not generate any alerts.

Detection of bearing faults in helicopter gearboxes is 
made challenging by the presence of the complicated sig-
nal transmission path attenuating the monitored signal to 
the receiving sensor. A separation analysis is conducted to 
decompose the bearing signal into deterministic and random 
components. The former corresponds to the gear component, 
and the latter corresponds to the bearing component of the 
obtained signal. The slip experienced by the rolling elements 
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is the main reason why the bearing’s contribution to the 
measured signal is random [3–6]. Several studies for signal 
separation have been reported in the literature, each having 
relative merits and drawbacks [3, 7–9].

Linear prediction (LP) is one of the most popular meth-
ods for the separation of the deterministic component of a 
signal from the noisy random component. The drawback of 
LP is that its effectivenesss depends on the number of past 
measurements used. The higher numbers of past observation 
over-constrain the estimation and tend to reduce even the 
main components of the signature, whilst smaller numbers 
of past observation produce a poor estimation, providing 
little improvement in the signal-to-noise ratio [7, 8]. It is 
worth noting that LP has been applied only to stationary 
vibration signals.

Rolling element bearing faults can cause shocks, result-
ing in higher resonance frequencies’ excitation leading to 
amplitude-modulated depending on the loading distribution 
and transmission path [9]. As such, the analysis of a vibra-
tion signal with amplitude modulation typically involves 
the extraction of the frequency of these impulses. Methods 
such as Spectral kurtosis should be able to separate these 
impulses.

The spectral kurtosis (SK) was introduced in 1983 by 
Dwyer [10] as a spectral analysis tool to identify non-Gauss-
ian components of a signal in the frequency domain. This 
method can detect the presence of “randomly occurring sig-
nals” and identify their locations in the frequency domain. It 
has proven to be effective in detecting bearing defects even 
in the presence of strong additive noise [8, 11]. Although 
the SK has been modified using many signal processing 
techniques such as wavelet, autoregressive and kurtogram, 
it cannot offer diagnostic advantages when employed in 
systems with complex transmission paths and high-speed 
machines. This is because the kurtosis is high only if a single 
impulse is separated from the vibration signal; this will be 
the only case for a relatively very high amplitude response 
at resonance with short decay time.

Recently, cyclostationary-based tools, such as the Cyclic 
Spectral Correlation CSC and Cyclic Spectral Coherence 
CSCoh, have been used as methods for bearing diagnos-
tics of helicopter gearboxes [12, 13]. These techniques have 
been validated through experiments on a degradation dataset 
containing roller damage on a bearing mounted on a UH-60 
Blackhawk helicopter Main Gearbox (MGB). The results of 
these methods were presented on a 2D-bi variable map. One 
of the axes of this map is the spectral frequency axis, and it 
provides information about the excitation frequencies, and 
the other axis is the cyclic frequency axis, presenting the 
characteristic modulation frequency components. Integra-
tion of these two 2D matrix results in a spectrum of the 
demodulated signal used for fault detection. In non-station-
ary operation, roller element bearing produces a series of 

cyclic impacts signal locked to the shaft angle, analysis of 
such signals using frequency or time-domain methods is not 
sufficient and methods such as averaged instantaneous power 
spectrum and angular-temporal spectrum can be used instead 
[14]. These algorithms require rigorous statistical definitions 
enabling the use of estimators. Recently, a novel spectrum 
sensing technique based on the angle–time analysis has been 
developed to detect the nonstationary of a signal [15]. The 
introduced technique consists of a novel feature extractor 
to provide a generalised representation of the conventional 
cyclostationarity concept. However, interpretation of these 
results needs highly skilled expertise.

Therefore, this paper proposes a simple algorithm to 
detect bearing faults by separating the non-deterministic 
signal using an adaptive filter. The novel new condition indi-
cator uses the combination indicator to detect the bearing 
fault and was compared to well-establish indicators such as 
RMS and kurtosis.

The main contribution of this paper is the development 
of a new health indicator especially to detect the bearing 
defect in helicopter gearboxes. For this purpose, vibration 
measurements captured from a CS-29 category ‘A’ helicop-
ters test rig were utilised for detecting a bearing defect that 
has occurred in the epicyclic module of the main gearbox. 
Signals of rolling element bearings under various fault 
conditions are collected, and an adaptive filter algorithm 
is utilised to separate the random component of the signal. 
The resultant signatures were then further processed using 
wavelet analysis to extract the bearing signal of interest.

Bearing Condition Indicators

Helicopters health and usage monitoring systems (HUMS) 
are commonly used for the diagnosis of the transmission 
system; however, most HUMS condition indicators (CIs) 
used are related to gears’ faults and there is a lack of CIs to 
identify bearing failure [16].

Due to the limited ability of HUMs’ indicators to identify 
a range of bearing defect conditions in helicopter gearboxes, 
a novel condition indicator is proposed. This condition indi-
cator is based on measuring the total energy of the impulse 
bursts, using a frequency band matched to the bearing signal. 
This indicator, called the impulse energy (IE) indicator, can 
be estimated by separating the bearing signal using an adap-
tive filter algorithm described in “***Signal Separation and 
decomposition”. The non-deterministic component is further 
analysed using wavelet analysis to decompose the signal into 
certain frequency bands based on “Bark frequency scale” 
(also called “critical band rate” [17]), and then the combina-
tion indicator is estimated for the decomposed signals; the 
combination indicator aims to select one of the decomposed 
signals to estimate the impulse energy indicator. The latter 
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was estimated using Eq. (1) which is based on Parseval’s 
theorem for energy estimation. The procedure for estimating 
this metric is shown in Fig. 1.

where xt is time-domain signal with n number of samples.
The idea behind this indicator is that the bearing signal 

extracted by the signal processing procedure described in 
Fig. 1 will have high energy due to the impulses imposed 
by bearing failures. However, in the case of no damage, the 
extracted signal energy should have low energy compared 
to the faulty signal.

Signal Separation and Decomposition

The signal separation was performed with an adaptive filter 
using the fast block least mean square algorithm (FBLMS) 
described by Elasha et al. [8]. The FBLMS algorithm is a 
computationally efficient signal separation method [18] and 
as such is suitable for online bearing fault diagnosis which 
requires an immediate response. This algorithm transforms 
the time signal into the frequency domain where the filter 
coefficients are updated; details of the procedure have been 
summarised in Ferrara [19].

For the purpose of this paper, the wavelet packet decom-
position (WPD) was selected for signal decomposition due 
to its ability to detect the transient events within the signal 
and in dealing with signals captured from gearboxes with 
non-stationary characteristics. Moreover, the WPD provides 
signal analysis on the desired frequency sub-band, which 
may be used to reduce the computational burden. The wave-
let packet decompositions were obtained using a series of 
digital filters containing high- and low-pass filter to analyse 
both high and low frequency. Passing the signal in first-stage 
filters known as the first level of decomposition, in which 
the signal is decomposed into high- and low-frequency parts, 
then each part is passed through next level of filters which 
decompose the signal further. This procedure is usually 

(1)IE =

t=n
∑

t=0

[

xt
]2
dt,

repeated many times until the required number of levels has 
been achieved.

Selection of Impulse Band

In this paper, the Combination indicator is presented as the 
criterion to select the decomposed signal related to bearing 
fault. In other words, the combination indicator has been 
used to select the frequency band for the bearing signals 
from the Wavelet decomposed signals. The indicator com-
bines both Kurtosis and rms of decomposed signal. The for-
mula is presented below:

where x denotes the decomposed signal with average μ and 
standard deviation σ. N represents the total number of sam-
ples in the waveforms, xi denotes waveform samples, and 
p(x) is the probability density function.

This concept is proposed to enhance the accuracy of 
Kurtosis, when the Kurtosis fails to indicate disturbances, 
which particularly happens in the signal that contains very 
high background noise or when a non-stationary signal is 
involved. The condition indicator was estimated for the 
decomposed signals, and the signal with maximum combi-
nation indicator is then selected for impulse energy indicator 
estimation.

Root Mean Square (RMS)

One commonly used statistical feature that describes key 
condition indicators for the gearbox is the root mean square 
(RMS). RMS values of vibration signals tend to provide 
a measurement of the overall vibration level of the dam-
aged component. This is because vibration energy typically 
increases as the gearbox degrades hence higher RMS [20]. 
The RMS is given by

where xi represents waveform samples and N denotes the 
total number of samples in the waveforms. RMS monitoring 
is suitable for diagnosing slow evolving faults. However, it 
has been pointed out that RMS values do not increase with 
the isolated peaks in the signal, and as a result, this param-
eter is not very sensitive to incipient tooth failure. However, 
RMS is still one of the most frequently used health condition 
indicators.

(2)
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Fig. 1   Impulse energy indicator (IE) calculation procedure
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Kurtosis

Kurtosis can be defined as the normalised fourth popula-
tion moment about a probability density function [21, 22]:

where μ denotes the mean and σ is the standard deviation 
of the signal samples. Kurtosis widely employed in the field 
of gearbox diagnosis principally due to its ability to detect 
impulsive type signatures which can occur with bearing 
defects [9, 10, 23].

Experimental Setup

The data used in this study were captured from a CS-29 
Category ‘A’ helicopter gearbox test rig. Seeded defects 
in one of the planetary gears’ bearings of the second epi-
cyclic stage were created. The test facility was of back-to-
back rig configured and powered by two motors simulat-
ing dual-power input.

(4)
K =

∞

∫
−∞

[x − �]4p(x)dx

�4
,

CS‑29 ‘Category A’ Helicopter Main Gearbox

A CS-29 ‘Category A’ helicopter gearbox was adopted for 
the experimental tests. It is visible from Fig. 2 that the trans-
mission system of the gearbox is connected to two shafts, 
one from each of the two free turbine engines. The input 
speed specification of the MGB is around 23,000 rpm which 
is then reduced to the nominal main rotor speed of 265 rpm.

The main rotor gearbox consists of two sections, the 
main module, which reduces the input shaft speed from 
23,000 rpm to around 2,400 rpm. This section includes two 
parallel gear stages. This combined drive provides power to 
the tail rotor drive shaft and the bevel gear. The bevel gear 
reduces the rotational speed of the input drive to 2,405 rpm 
and changes the direction of the transmission to drive the 
epicyclic reduction gearbox module. The second section is 
the epicyclic reduction gearbox module which is located on 
top of the main module. This reduces the rotational speed to 
265 rpm which drives the main rotor. This module consists 
of two epicyclic gears’ stage, the first stage contains eight 
planet gears and the second stage with nine planet gears, see 
Fig. 3. Specifications of the gears are documented in Table 1.

The epicyclic module planet gears are designed as a 
complete gear and bearing assembly. The outer race of the 
bearing and the gear wheel is a single component, with the 
bearing rollers running directly on the inner circumference 
of the gear. Each planet gear is ‘self-aligning’ by the use of 

Fig. 2   Gearbox internal parts [24]
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spherical inner and outer races and barrel-shaped bearing 
rollers (see Fig. 3).

Experimental Conditions and Setup

The test procedure consists of three experimental conditions, 
including fault-free condition, minor seeded bearing damage 
and major seeded bearing defects.

The bearing defects were inserted on one of the planet 
gears of the 2nd epicyclic stage. The minor defect was simu-
lated by machining a rectangular section with 0.3 mm in 
depth and 10 mm in width as shown in Fig. 4. The major 
defect was simulated as a combination of a defected inner 
race (natural spalling around half of the circumference) and 
an outer race (around 0.3 mm in depth and 30 mm in width) 
as shown in Fig. 5. For each fault case, three loading condi-
tions were added to the test rig, 110% of maximum take-off 
power, 100% and 80% of maximum continuous power. The 
load condition characteristics were detailed as follows:

•	 110% Max take-off power: power 1760 Kw, rotor speed 
265 rpm, right input torque 368 Nm and left input torque 
368 Nm.

•	 100% Max continuous power: power 1300 Kw, rotor 
speed 265 rpm, right input torque 272 Nm and left input 
torque 272 Nm.

•	 80% Max continuous power: power 936 Kw, rotor speed 
265 rpm, right input torque 196 Nm and left input torque 
196 Nm.

Data Acquisition and Instrumentation

In this study, a triaxial accelerometer (type PCB Piezotronics 
356A03) was installed to capture MGB vibration signals. 
The accelerometer captured vibration signals at a sampling 
frequency of 51.2 kHz and was mounted on the case of the 
gearbox externally, as shown in Fig. 6. All vibration data 
were recorded using a National Instruments (NI) NI cDAQ-
9188XT CompactDAQ Chassis. A 60-s sample was recorded 
for each fault condition. The Y-axis of the tri-axial acceler-
ometer arrangement was oriented parallel to the radial direc-
tion of the gearbox, the X-axis to the tangential axis, and the 
Z-axis is the vertical axis parallel to the rotor axis, see Fig. 6.

Results

The wavelet packet with five levels and DB function was used 
to decompose the non-deterministic signal, each i decom-
position was presented as a node on the decomposition tree. 

Fig. 3   Second-stage epicyclic gears

Table 1   Tooth numbers for the gearbox gears

First epicyclic module Second epicyclic module First parallel stage Second parallel stage Bevel stage

Sun gear Sun gear Pinion teeth Pinion teeth Pinion teeth
62 68 23 35 22
Planet gear—8 gears Ring gear Planet gear—9 gears Ring gear Wheel teeth Wheel teeth Bevel teeth
34 130 31 130 66 57 45

Fig. 4   Slot across the bearing outer race



220	 Journal of Vibration Engineering & Technologies (2021) 9:215–224

1 3

Then, combination indicator was estimated for the decom-
positions on the 5th level, and an example of decomposed 
signals at nodes 5.22, 5.23, and 5.24 is shown in Fig. 7. The 
decomposition with the highest combination indicator was 
used to estimate the impulse energy indicator.

Figure 8 shows the combination indicator and kurto-
sis for the decomposed signals at level 5. Decomposition 

with the band between 18,960 and 19,750 has the highest 
combination indicator (7.4); results of kurtosis showed low 
response for this frequency range, and the maximum for 
mid-range frequencies which is not related to the excitation 
frequency. Therefore, the combination indicator is proposed 
in this paper to overcome the limitations of maximum kur-
tosis-based methods. The proposed indicator provides the 
potential of more accurate fault diagnosis by combining the 
advantages of kurtosis and RMS in one combined indicator.

Impulse Energy Condition Indicator (IE)

The results of the IE indicator showed distinctive differences 
between the healthy and faulty condition with the IE increas-
ing significantly for minor and major faults. The response of 
the IE indicator was consistent for measurements taken in all 
directions as shown in Fig. 9, and the IE indicator increased 
by more than 300% for the minor fault. In addition, distinc-
tions between minor and major fault were observed, espe-
cially for the vibration signal acquired at 100% of continuous 
power where the impulse energy indicator for major fault 
increased by 100% compared to the minor fault condition.

Root Mean Square (RMS) Indicator

The results of RMS showed the level of RMS of vibration 
signal was increased due to the bearing damage; besides, the 
level of RMS increased as the fault severity increased, the 
highest level of RMS is corresponding to the major dam-
age whilst the lowest level corresponded to fault-free con-
dition, see Fig. 10. Observation of RMS level showed the 
sensitivity of the result of the measurement direction, the Y 
and Z direction of vibration displayed consistent growth of 
RMS level as fault severity increased. Observations of RMS 
level calculated for X-direction showed a significant differ-
ence between healthy and faulty conditions; however, the X 
direction results were incapable of measuring the severity 
of bearing damage. The results showed RMS level depended 
on the load, and the RMS level increased significantly when 
the load reached 110% of rated load see Fig. 10a. However, 
there was no significant difference between rated condition 
and 80% of rated load condition, see Fig. 10b, c.

Kurtosis

The results of Kurtosis showed that this indicator was unable 
to detect the bearing defects. The kurtosis of the vibration 
signal collected at 110% load condition showed no distinc-
tive difference between fault-free and damage condition, see 
Fig. 11a. The results of 100% and 80% load condition show 
high levels of kurtosis for the fault-free condition which can 
be interpreted incorrectly as bearing damage. Therefore, 

Fig. 5   Inner race natural spalling

Fig. 6   MGB installed on the test bench
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using this indicator alone can result in decreasing the confi-
dence of the monitoring system.

Discussion

The main advantage of signal separation techniques is their 
ability to improve signal-to-noise ratio where the vibration 
signal is susceptible to background noise. This makes them 
more effective in applications where the vibration signals 
need to go through an arduous transmission path from the 
outer race through the rollers to the inner race and then the 
planet carrier. The use of signal separation has contributed 
significantly to improving the signal-to-noise ratio.

A method for filter band selection has been developed 
based on signal decomposition using wavelet packet. The 
wavelet packet decomposition provides valuable information 
toward extracting the transitory features from non-stationary 
vibration signals resulted from the defected bearing. Choos-
ing the number of levels is very crucial in band selection, 
therefore, the authors decided to choose this value based on 
two criteria; first, the number of decomposition should be 
larger than the number of levels estimated by wavelet packet 
decomposition WPD function. Also, the bandwidth of the 
last decomposition should be larger than the third harmonic 
of the bearing defect frequency, see [6]. The band selec-
tion aims to extract impulses within the non-deterministic 
signal. The method takes advantage of RMS and kurtosis 

Fig. 7   Example of the decomposed signal at node 5.22, 5.23 and 5.24 compared to the original signal

Fig. 8   Combination indicator 
Vs Kurtosis
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combination estimated for the lower level of the decom-
position tree. Employing the decomposition on one level 
provided a better computational performance compared to 
kurtogram methods. The combination indicator good perfor-
mance due to use of kurtosis and RMS together is indicative 
of maximum energy of impulsive signal.

The selected band was employed to compute the impulse 
energy indicator IE and then compared to well-establish indi-
cators such as RMS and kurtosis. The IE showed the distinc-
tive difference between healthy, minor and major fault. The 
high levels associated with the impulse indicator of minor and 
major defect cases indicate the presence of bearing defects. 
Moreover, the IE results showed consistent respondance for 
different loading conditions, especially for the data acquired 

in 100% continuous power, in which the IE increased by 
100% for the major fault case compared to the minor fault 
case. In addition, the indicator respond was independent of 
the measurement direction. The result of Kurtosis failed to 
show distinctive differences amongst all three fault cases. In 
comparison, the RMS results showed relatively higher values 
for both the minor and major fault cases. Both RMS and kur-
tosis were sensitive to the load and measurement direction. 
Furthermore, RMS showed no distinctive difference between 
minor and major faults epically for vibration data measured at 
100% and 80% of continuous power. Therefore, the results of 
IE indicator were more robust at indicating damage for both 
minor and major damage compared to the RMS and kurtosis.
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Fig. 9   IE indicator for vibration signals. a 110% max take-off power, 
b continuous power and c 80% of continuous power
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Conclusion

A technique to extract frequency band corresponding the 
bearing faults impulses has been developed. The tech-
nique employs the adaptive filter signal separation, wavelet 
packet decomposition and the combination of RMS and 
Kurtosis to select the optimum filter band.

The selected filter band was used to estimate the 
impulse energy (IE) indicator. The IE indicator has been 
tested by vibration data collected from the transmission 
system of a CS-29 ‘Category A’ helicopter gearbox under 
different bearing damage severity of the second planetary 
stage. Results showed successful in faults’ detection with 
this indicator. Also, the IE indicator responds consistently 
to the fault severity compared to the traditional indicators 
such as RMS and kurtosis.

Such an indicator has the potential to be used by heli-
copter health usage and monitoring system to detect bear-
ing faults during flight. Further investigation is required 
to decide the bearing fault locations such as the outer race 
or inner race fault.
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Fig. 11   Kurtosis of vibration signal. a 110% max take-off power, b 
continuous power and c 80% of continuous power
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