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Abstract
Purpose  The purpose of this paper is to study detection, microstretch function, temperature distribution function and ther-
moelastic damping analysis due to thermal variations and stretch forces in homogeneous, isotropic microstretch, generalized 
thermoelastic thin circular plate.
Method  This theory is based on the Kirchho-Love plate theory assumptions. The governing equations for the transverse 
vibrations of microstretch thermoelastic thin circular plate have been derived. The analytical expressions for detection, micro-
stretch function, temperature distribution function and thermoelastic damping have been numerically analyzed for clamped 
and simply supported boundary conditions in case of both non-Fourier and Fourier microstretch thermoelastic circular plate 
with the help of MATLAB programming software.
Results  Finally the analytical development for thermoelastic damping have been illustrated numerically for Silicon-like 
material. The computer simulated results have been presented graphically under different boundary conditions.
Conclusion  It leads to the conclusion that thermal relaxation time and microstretch parameters contribute to an increase in 
the magnitude of the critical value of damping.

Keywords  Microstretch · Circular plate · Thermoelastic damping · Bessel functions · Clamped · Simply supported

Introduction

The theory of micropolar elasticity for solids perhaps estab-
lished by Eringen [5], which provides a model that can sup-
port body and surface couples by including the intrinsic 
rotation of microstructures. Eringen [6] extended his work 
to include the effect of axial stretch during rotation of mol-
ecules and developed theory of microstretch by considering 
microstructure expansions and contractions. Eringen [7] also 
extended the theory of microstretch elastic solids to include 
the effect of heat conduction. Eringen [8] gave an exposition 
of the development in the microcontinuum field theories for 
solids (micromorphic, microstretch, and micropolar) includ-
ing electro magnetic and thermal effects.

Micro-electro-mechanical resonators have high sensitivity 
along with rapid-response and are frequently used such as 
sensors, communicators and modulators. Many researchers 
have stated various dissipation mechanism in MEMS, such 
as support-related losses, thermoelastic damping, as well 
as the radiation of energy away from the resonators into its 
surroundings. Thermoelastic damping (TED) arises from 
thermal currents generated by contraction/extension in elas-
tic media. Zener [31] first identified the existence of ther-
moelastic damping as a significant dissipation mechanism in 
flexural resonators. This work was experimentally described 
by Berry [1] for �-brass, in which the damping factor was 
measured as a function of frequency at room temperature. 
Lifshitz and Roukes [15] studied TED and derived quality 
factor for a beam with rectangular cross section. Nayfeh and 
Younis [17] developed analytical expressions for the quality 
factor of micro-plates of general shapes due to thermoe-
lastic damping. Wong et al. [30] considered thermoelastic 
damping of the in-plane vibration of thin silicon rings. Sun 
and Tohmyoh [26] discussed thermoelastic damping analy-
sis of the axisymmetric vibration of circular plate. Sun and 
Saka [27] studied the damping analysis of the vibrations in 
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arbitrary direction in a coupled thermoelastic circular plate. 
Kumar and Ray [13] investigated the active constrained layer 
damping of smart laminated composite sandwich plates 
using the vertically reinforced 1–3 piezoelectric composite 
materials. Biswas and Ray [2] investigated the active con-
strained layer damping of geometrically nonlinear vibrations 
of rotating laminated composite beams using the vertically 
reinforced 1–3 piezoelectric composite materials. Sharma 
and Grover [25] discussed thermoelastic vibrations in micro- 
and nano-plate resonators with voids. Grover [9, 10] studied 
transverse vibrations in viscothermoelastic beam and in thin 
circular viscothermoelastic plate, respectively. Grover and 
Seth [11, 12] discussed analytical expressions for thermoe-
lastic damping and frequency shift of dual-phase-lagging 
generalized viscothermoelastic thin beam and circular 
plates, respectively. Alghamdi [18] discussed analysis and 
numerical results for the thermoelastic of an isotropic homo-
geneous, thermally conducting, Kelvin–Voigt-type circular 
micro-plate in the context of Kirchhoff’s Love plate theory.

The present paper is devoted to study deflection, micros-
tretch function, temperature distribution function and ther-
moelastic damping due to thermal variations and stretch 
forces in homogeneous, isotropic thin circular plate. The 
obtained expressions for clamped and simply supported cir-
cular plate have also been computed numerically by using 
MATLAB programming software. The numerically illus-
trated results have been presented graphically for compari-
son and for explanation of analytical expressions of TED.

Model Description and Problem Formulation

In this section, the governing equations for microstretch 
thermoelastic coupling problem of thin circular plate are 
derived. To analysis the derivation for thin circular plate, the 
following basic hypotheses, involving the Kirchhoff–Love 
plate theory, are employed in this analysis: 

	 (i)	 Normal stress �zz can be neglected relative to the 
principal stresses, i.e. �zz = 0.

	 (ii)	 The rectilinear element normal to the middle sur-
face before deformation remains perpendicular to the 
strained surface after deformation and their elonga-
tion can be neglected, i.e. erz = e�z = 0.

	 (iii)	 For small deformation vibration, the deformation 
along the middle surface can be neglected, i.e. ezz = 0

.

Equations of Transverse Motion for Thin Circular 
Plate

Now here, we consider a thin circular plate with uniform 
thickness h and radius a. A cylindrical coordinate system 

(r, �, z) is employed with its origin at the center of the plate. 
The (r, �) plane is kept on the neutral surface of the plate and 
the z axis is perpendicular to the neutral surface. In equi-
librium, the plate is unstrained, unstressed and kept at the 
uniform temperature T0 everywhere.

We define ur(r, �, z, t), u�(r, �, z, t) and uz(r, �, z, t) to be dis-
placement components along with the radial, circumferential 
and axial directions, respectively, �∗(r, �, z, t) and T(r, �, z, t) 
are microstretch and temperature distribution functions of the 
field. By above hypothesis, the strain-displacement relations 
can be written as follows by [3, 14, 24, 28]

where �ij = �ji, (i, j = 1, 2, 3) represent the mechanical strain 
components.

By integration of �uz
�z

= 0 provides us

Also, the integration for �rz, ��z as mentioned in equation(1), 
give us

Therefore, strain components written in equation(1) are 
given by

Now, stress components for microstretch thermoelastic 
media are given by

where �,�,K are material constants and �∗ = 2� + K.
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Thus, the expressions for radial moment Mrr , tangential 
moment M�� and twisting moment Mr� of thin circular plates 
are evaluated as follows [14, 22]

where M�∗ = ∫ h

2

−h

2

�∗zdz and MT = ∫ h

2

−h

2

Tzdz , are denoted as 

the moments of thin circular plate due to the presence of 
microstretch and thermal effects, respectively.

The equation of transverse motion of thin circular plate can 
be derived in polar coordinates by considering the dynamic 
equilibrium of the element. Moment equilibrium about the 
tangential � direction is given by

Moment equilibrium about the radial r direction

Force equilibrium in the z direction

By solving system of Eqs. (7)–(9), the transverse motion 
equation for a thin circular plate can be obtained as

Now, by substituting Eq. (6) into Eq. (10), the equation of 
motion for circular plate in the absence of body force (f = 0) 
is given by
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Equations of Microstretch Thermoelastic Media

Consider a homogeneous, isotropic, microstretch, thermally 
conductive media in the context of generalized thermoelas-
ticity (LS model). The microstretch and heat conduction 
equations in the absence of stretch forces and heat sources 
are given by [19–21]:

Here, K∗ is the thermal conductivity, Ce is the specific heat 
at constant strain, � is the density of medium, T is the tem-
perature change and T0 is initial uniform temperature, t0 is 
thermal relaxation time, �1 = (3� + 2� + K)�t1 and 
�2 = (3� + 2� + K)�t2 , �t1 , �t2 are coefficients of linear ther-
mal expansion, �0, �0, �1 are microstretch constants, j0 is the 
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Using Eq. (4) in Eqs. (12)–(13), we get

In summary, Eqs. (11) and (14)–(15) makes the governing 
equation of this problem.

Introducing non-dimensional quantities by [19, 20] as 
follows:
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Upon utilizing these non-dimensional expressions in Eq. 
(11) and Eqs. (14)–(15), the following system of equations 
are given by

(After dropping the superscript for conveniences)
where
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Boundary Conditions

The following two types of boundary conditions are consid-
ered by [22] as below:

Case I: The Plate is Clamped at the edge, i.e.

Case II: The Plate is Simply Supported at the edge, i.e.

Analytical Solution

To analyze microstretch thermoelastic coupling effect on 
vibrations of thin circular plate, we solve the system of Eqs. 
(17)–(19). For this, consider harmonic vibration solution of 
the circular plate as follows

where �nm is the frequency, n = 0, 1, 2, 3, .... represents the 
number of nodal diameters and m = 1, 2, 3, .... represents the 
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To evaluate approximate solution under some assumptions 
and uncoupled system(v̄ = 0 ) of above Eqs. (24)–(25) and 
also there is no flow of heat and microstretch parameters on 
the upper and lower surfaces of the circular plate 
(i.e.�Φ
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=
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= 0 at z = ±

1

2
 ). Thus, the trial solution of 

resulting system of equations are given as follows:

where the values of p and q are still subjected to 
modifications.

Now by substituting expression (28) in Eqs. (24)–(25), 
we obtained

where

Now from Eq. (27),

with the help of Eq. (29), we get that

(28)

Θnm(r, z) =
𝜀T

𝛽A2
R

(
z −

sin pz

p cos(
p

2
)

)
∇∗2

1
Wnm

Φ∗
nm
(r, z) =

p0𝛿
∗
2

𝛽A2
R
(p1𝛿

∗
2
−

𝜔2
nm

𝛿2
2

)

(
z −

sin qz

q cos(
q

2
)

)
∇∗2

1
Wnm

(29)

∇∗2

1
Φ∗

nm
= −

⎡
⎢⎢⎢⎣

p0𝛿
∗
2
q∗

𝛽

�
p1𝛿

∗
2
−

𝜔2
nm

𝛿2
2

� sin qz

q cos(
q

2
)
+

v̄𝛿∗
2
𝜀
T

𝛽A2

R

×

�
z −

sin pz

p cos(
p

2
)

��
∇∗2

1
W

nm

∇∗2

1
Θ

nm
= −

⎡⎢⎢⎢⎣

𝜀
T
p∗

𝛽

sin pz

p cos(
p

2
)
−

v̄𝜀̄
T
i𝜔

nm
𝜏0

𝛽A2

R

p0𝛿
∗
2�

p1𝛿
∗
2
−

𝜔2
nm

𝛿2
2

�

×

�
z −

sin qz

q cos(
q

2
)

��
∇∗2

1
W

nm
,

p∗ = p2 +
c̄i𝜔nm𝜏0

A2
R

, q∗ = q2 +

(
p1𝛿

∗
2
−

𝜔2
nm

𝛿2
2

)

A2
R

MΦ∗
nm
= ∫

1

2

−1

2

Φ∗
nm
zdz and MΘnm

= ∫
1

2

−1

2

Θnmzdz

where

Eliminating MΦ∗
nm

 and MΘnm
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)
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1
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Therefore, by substituting Eq. (34) in Eq. (31), we obtained

where

Here �� and �T  describe the elasto-stretch and thermo-
mechanical coupling constants of the circular plate respec-
tively. As the gradient of microstretch element and thermal 
gradient along the axial length of the circular plate quite 
small as compared to that along its thickness direction. 
Therefore, under these assumptions, we have

Therefore the result mentioned in Eq. (28) represent the 
result of coupled Eqs. (24)–(25) with modified values of p 
and q given by Eq. (37).

Now Eq. (35) can be written as follows

(34)

F(�nm) ≃ �T [1 + f (�nm)]∇
∗2

1

G(�nm) ≃ −

⎛
⎜⎜⎜⎝

p0�
∗
2

p1�
∗
2
−

�2
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�2
2

⎞
⎟⎟⎟⎠
[1 + g(�nm)]∇

∗2

1

(35)D�nm
∇∗2

1
∇∗2

1
Wnm − 12A2

R
�2
nm
Wnm = 0,

(36)

D�nm

=

�
2��∗ + �∗2

(�c2
1
)2

+
�∗

�c2
1

�
�T (1 + f (�nm)) − ��(1 + g(�nm))

��
,

�T =
�2
1
T0

�2Cec
2
1

and �� =

⎛
⎜⎜⎜⎝

p2
0
�∗
2

p1�
∗
2
−

�2
nm

�2
2

⎞
⎟⎟⎟⎠

(37)

p2 =
−i𝜔nm𝜏0c̄

A2
R

⎡
⎢⎢⎢⎣
1 −

v̄p0𝛿
∗
2

p1𝛿
∗
2
−

𝜔2
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𝛿2
2

⎤⎥⎥⎥⎦
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(p1𝛿
∗
2
−

𝜔2
nm

𝛿2
2

)

A2
R

�
1 +

v̄𝜀T

p0

�

(38)∇∗2

1
∇∗2

1
Wnm − �4Wnm = 0 where �4 =

12A2
R
�2
nm

D�nm

(39)(∇∗2

1
− �2)(∇∗2

1
+ �2)Wnm = 0

Equation(39) can be rewritten as

The solution of Eq. (40) can be obtained from [29] as

where Jn and Yn are bessel functions of first and second kind, 
In and Kn are modified Bessel functions of first and second 
kind of order n respectively and cs

i
 are arbitrary constants.

Now, because solution Wnm must be finite at all points 
within the plate. This makes constants c2 and c4 van-
ish since the Bessel functions of second kind Yn and Kn 
become infinite at r = 0 ([23, 27]). Therefore,

Upon using Eq. (42) in Eq. (28), we obtained Microstretch 
function and Temperature distribution function of thin cir-
cular plate as follows:

Now by substituting expression (42) into boundary condi-
tions (21) and (22), we obtained the following characteristics 
equations

The solution of characteristics Eq. (44) as � =
√
qnm where 

the value of qnm(n = 0, 1, 2;m = 1, 2, 3) are listed in Table 1 
for clamped and simply supported plates which coincides 
with the available results [14] and [10].

(40)

{[
r2

d2

dr2
+ r

d

dr
−
(
�2r2 + n2

)]

[
r2

d2

dr2
+ r

d

dr
+
(
�2r2 − n2

)]}
Wnm = 0

(41)Wnm = c1Jn(�r) + c2Yn(�r) + c3In(�r) + c4Kn(�r)

(42)Wnm(r) = c1Jn(�r) + c3In(�r)

(43)

Φ∗
nm
(r, z) =

p0𝛿
∗
2
𝜂2

𝛽A2
R
(p1𝛿

∗
2
−

𝜔2
nm

𝛿2
2

)

(
z −

sin qz

q cos(
q

2
)

)
[c3In(𝜂r) − c1Jn(𝜂r)]

Θnm(r, z) =
𝜀T𝜂

2

𝛽A2
R

(
z −

sin pz

p cos(
p

2
)

)
[c3In(𝜂r) − c1Jn(𝜂r)]

(44)
CaseI ∶ Jn(�)In+1(�) + In(�)Jn+1(�) = 0

CaseII ∶ Jn(�)In(�) = 0

Table 1   Values of 
q
nm
(n = 0, 1, 2;m = 1, 2, 3) for 

clamped and simply supported 
circular plates

Case I: clamped Case II: simply supported

n q
n1 q

n2 q
n3 q

n1 q
n2 q

n3

0 10.2158 39.7711 89.1041 5.7832 30.4713 74.8870
1 21.2604 60.8287 120.0792 14.6820 49.2185 103.4995
2 34.8770 84.5826 153.8151 26.3746 80.8500 135.0207
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Thermoelastic Damping

Now, the vibration frequency of the circular plate consid-
ering microstretch, thermoelastic coupling effect can be 
obtained as

where

and the values of �2
nm

 are mentioned in Table 1 for n = 0, 1, 2 
and m = 1, 2, 3.

Noting that 𝜀𝜙 ≪ 1, 𝜀T ≪ 1 for silicon material, therefore 
we can replace f (�nm) with f (�0) and g(�nm) with g(�0) 
and expand Eq. (45) into a series up to first order. Then Eq. 
(45) becomes

Here, the values of parameters p and q given by Eq. (37) are 
complex, therefore, using Euler’s theorem and transforming 
�nm with �0 , we obtain

where

On using Eqs. (47)–(48) in Eq. (46) and simplifying Eq. 
(46), we obtain

where

(45)

�nm =
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nm

2
√
3AR

�
D�nm
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�
1 +

�c2
1

2� + �∗
[�T (1 + f (�nm)) − ��(1 + g(�nm))]
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�2
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2
√
3AR

�
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1
)2

(46)
�nm =�0
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1 +
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1

2(2� + �∗)
[�T (1 + f (�0))

−��(1 + g(�0))]
}

(47)p = poo

(
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(
�1

2

)
− i sin

(
�1

2

))
, q = iqoo,

(48)

poo =
1

AR

�������𝜔0r1c̄
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1 −
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2
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−
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�
,
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�

1

𝜔0t0

�
, r1 =

�
1 + 𝜔2

0
t2
0

(49)�nm = �R
nm

+ i�I
nm

and

The thermoelastic damping arises from thermal currents 
generated due to contraction and expansion of elastic struc-
tures. Thus, for thin choice of the value of characteristic 
time, we take relaxation times (due to stretch and thermal 
effects) as tR = t0 = �−1 . Therefore Eqs. (47)–(48) becomes

where

Therefore we get the expression for thermoelastic damping 
in circular plate as given by

where
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In the absence of thermal relaxation time, i.e when(t0 → 0) 
for coupled thermoelasticity, we have

where

Therefore, thermoelastic damping for coupled thermoelastic-
ity plate is given by

where
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√
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Validation of the Analytical Results

In this section, we will discuss one special case to inves-
tigate our results.

For Thermoelastic Plate

In absence of microstretch effects, elasto-stretch coupling 
constants are zero i.e.(�� = 0) then

which completely agrees for dimensional case of generalized 
thermoelastic ( t0 ≠ 0 ) circular plate as well as for coupled 
thermoelastic ( t0 = 0 ) circular plate [10]. Thus Thermoelas-
tic damping for both generalized and coupled thermoelastic-
ity is reduced to analytic expressions discussed below

Numerical Simulations and Graphical 
Illustrations

With the aim to analyze the theoretical results obtained in 
the previous sections, we present some numerical simula-
tions under this section. The material of the plate structure 
for this purpose has been taken as Silicon. Here, the physi-
cal parameters for Silicon material are as follows [4, 27]
(under the temperature T0 = 293◦ K)

D�nm
=

{
4�(� + �)

(�c2
1
)2

+
2�

�c2
1

[�T (1 + f (�nm))]

}

(for non dimensional parameters)
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��������

� = 2.33 × 103 Kg/m3, � = 38.354 × 109N/m2,� = 69.99 × 109N/m2, K = 1.0 × 1010N/m2,

j0 = 0.185 × 10−19 m2, �1 = 6.6056 × 105 N/m2 deg, �2 = 2.0 × 106N∕m2,

K∗ = 156 J∕m s deg, Ce = 0.713 × 103 J∕Kg deg

and the value of relevant stretch parameters are taken as

�0 = 0.5 × 1010 N/m2, �1 = 0.5 × 1010 N/m2, �0 = 0.779 × 10−9N
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As thermoelastic damping is an important design variable 
in plate resonators development. The dependency of ther-
moelastic damping factor on the plate dimensions, boundary 
conditions, microstretch effect, thermal relaxation time and 
vibration modes for silicon MEMS devices are discussed. 
The computer simulated results have been presented graphi-
cally in Figs. 1, 2, 3 and 4.

First, we consider the case of a circular plate with fixed 
radius a = 500 �m and varying thickness h for vibration 
modes(1, 1), (1, 2), (2, 1). Figure 1 depicts the behavior 
of TED in case of clamped plate although Fig. 2 depicts 
the behavior of TED in case of simply supported plate. 
According to these figures, the thermoelastic damping on 
vibration modes (1, 1), (1, 2), (2, 1) increases first and 

then decreases with increasing value of thickness. Thus, 
there exists a critical thickness for which the maximum 
value of the damping factor occurs. The value of damp-
ing factor of vibration modes is observed to have greater 
value in case of the Fourier (coupled) microstretch ther-
moelastic plate in comparison to non-Fourier (generalized) 
microstretch thermoelastic circular plate in both clamped 
and simply supported cases. It is also mentioned that for 
(1, 1) and (2, 1) modes, the value of thermoelastic damping 
is greater in case of clamped circular plate in comparison 
to simply supported circular plate where as for (1, 2) mode 

Fig. 1   Variation of TED of few modes in a clamped circular plates for 
a non-Fourier (generalized) and Fourier (coupled) microstretch ther-
moelastic plate with thickness(h) for fixed radius ( a = 500 �m )

Fig. 2   Variation of TED of few modes in a simply supported cir-
cular plates for a non-Fourier (generalized) and Fourier (coupled) 
microstretch thermoelastic plate with thickness(h) for fixed radius 
( a = 500 �m )

Fig. 3   Variation of TED of few modes in a clamped axisymmetric 
circular plates for a non-Fourier (generalized) and Fourier (coupled) 
microstretch thermoelastic plate with thickness(h) for fixed radius 
( a = 500 �m )

Fig. 4   Variation of TED of few modes in a simply supported axisym-
metric circular plates for a non-Fourier (generalized) and Fourier 
(coupled) microstretch thermoelastic plate with thickness(h) for fixed 
radius ( a = 500 �m )
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the value of thermoelastic damping is greater in case of 
simply supported circular plate in comparison to clamped 
circular plate.

In Figs. 3 and 4, the variation of thermoelastic damp-
ing in clamped and simply supported axisymmetric circular 
microstretch thermoelastic plates are described. Here, it is 
also observed that the damping factor firstly increases and 
then decreases in the considered range of thickness. The 
value of damping factor of vibration modes is observed to 
have greater magnitude in case of the Fourier (coupled) 
microstretch thermoelastic plate in comparison to non-
Fourier (generalized) microstretch thermoelastic plate in 
both clamped and simply supported cases. It is also noticed 
that for (0, 1) and (0, 2) modes, the value of thermoelastic 
damping is higher in case of clamped circular plates in com-
parison to simply supported circular plate although for (0, 3) 
mode the value of thermoelastic damping is greater in case 
of simply supported circular plate in comparison to clamped 
circular plate.

Conclusion

It leads to the conclusion that thermal relaxation time and 
microstretch parameters contribute to increase in the mag-
nitude of critical value of damping. For fixed radius and 
varying thickness, thermoelastic damping is higher in case 
of Fourier (coupled) microstretch thermoelastic in compari-
son to non-Fourier (generalized) microstretch thermoelastic 
case for both clamped and simply supported circular plate. 
It is also observed that the thermoelastic damping on vibra-
tion modes (1, 1), (1, 2), (2, 1) and for axisymmetric modes 
(0, 1), (0, 2), (0, 3) have symmetric behavior with different 
value of critical thickness.
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