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Abstract
Background  Since combinations of the Newton’s method and the harmonic balance (HB) method require, at each itera-
tion step, calculating the first or the first- and second-order derivatives of the restoring force function, and expanding the 
function, its first- and second-order derivatives into Fourier series, the procedural costs are high and sometimes difficult to 
achieve algebraically. It is thus preferable to avoid expensive re-linearization or computation of the second-order derivative.
Purpose  A new approach is proposed to construct accurate analytical approximation solutions to strongly nonlinear con-
servative oscillators with odd nonlinearities.
Methods  The approach is based on a combination of a modified Newton method and the HB method. For the modified New-
ton method, two simplified Newton steps are taken between each Newton step where only one linearization of the restoring 
force function is required. The resulting equations are solved by applying the HB method appropriately.
Results  Using only one modified Newton iteration step may achieve highly accurate analytical approximation solutions to 
the strongly nonlinear oscillators. Three examples with physical implications are used to illustrate the proposed method.
Conclusion  Through the modified Newton iteration step, the multiple cumbersome linearizations of the restoring force 
function are replaced by only one linearization, and the corresponding governing equations can be properly solved by the 
HB method. The current work is expected to extend to the study of other nonlinear oscillations.

Keywords  Nonlinear oscillation · Analytical approximation · Modified Newton method · Harmonic balance · Odd 
nonlinearity

Introduction

For nonlinear dynamical systems in various engineering 
applications, accurate analytical approximate solutions have 
been constantly in pursuit in research because these solutions 
are explicitly expressed and they allow direct discussion of 
the influence of parameters. In this respect, the perturbation 
methods [1–3] have been well known as some of the most 
established approaches in the various studies of nonlinear 
problems. Almost all perturbation methods require the pres-
ence of a small parameter in the governing equation. Such 

a small-parameter assumption greatly restricts the appli-
cations of perturbation techniques. The problem becomes 
most severe for strongly nonlinear problems because no such 
small parameter does exist. To overcome the shortcomings 
of classical perturbation methods, new analytical techniques 
for accurate approximate solutions should be developed.

The harmonic balance (HB) method [1–5] uses a trun-
cated Fourier series to determine analytical approximation 
solutions. However, the method is difficult to use for con-
structing higher order accurate analytical approximation 
solutions because it in turn requires analytical solution of 
a set of complicated nonlinear algebraic equations. Lau 
and Cheung [6] improved the HB method and put forward 
an incremental HB (IHB) method. The latter is a mixture 
of analytical and numerical techniques. The IHB method, 
however, is not self-starting, i.e., it is unable to create an 
initial solution by itself. In addition, the periodic solution is 
expressed in a truncated Fourier series where coefficients of 
harmonics can only be obtained by numerical method and 
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the solution is not represented by oscillation amplitude. Its 
applicability in analytical investigation is rather restricted.

For improving the solution methodology, an analytical 
approximation technique for strongly nonlinear conservative 
oscillators with odd nonlinearities was proposed by Wu et al. 
[7]. The method is based on combining the Newton’s method 
and the HB method. Complexity of the classical HB method 
was thus significantly simplified. For strongly nonlinear con-
servative single-degree-of-freedom oscillators with general 
nonlinearities, Sun and Wu [8] proposed an approach to con-
struct the analytical approximation solutions by introducing two 
nonlinear oscillators with odd nonlinearities in Wu and Lim [9] 
and applying the analytical approximation technique in [7]. For 
generalization and applications of these methods, the readers 
are referred to some published papers [10–13]. Recently, Wu 
et al. [14] presented an approach for solving strongly nonlinear 
conservative symmetric oscillators. This method associates the 
second-order Newton iteration and the HB method. With only a 
single iteration, the analytical approximations provide explicit 
and brief expressions that yield excellent convergent and accu-
rate results. However, the method of Wu et al. [7] requires, at 
each iteration step, linearizing the restoring force and expanding 
the function and its first derivative into Fourier series. While in 
Wu et al. [14] it is necessary to calculate the first- and second-
order derivatives of the restoring force function, and expanding 
the function, its first- and second-order derivatives into Fourier 
series. The procedural costs are high and sometimes difficult to 
achieve algebraically. It is thus preferable to avoid expensive re-
linearization [7] or computation of the second-order derivative 
[14], in each iteration and this is exactly what we will achieve 
in this paper.

For iterative solution of nonlinear algebraic equations 
in several variables, the modified Newton method was pre-
sented where the G-derivative of an n-dimensional function 
was re-evaluated in every m-steps [15]. The iteration may 
be considered as the composition of one Newton step with 
m − 1 simplified Newton steps. It should be noted that the 
Newton iteration has a property of quadratic convergence, 
while the modified Newton iteration exhibits convergence of 
order m + 1 . It represents a simple way of generating higher 
order approximations [15].

The modified Newton method has received little attention 
for determining the periodic solutions of nonlinear oscilla-
tors. In this paper, a new efficient alternative, as compared to 
the published methods [7, 14], is presented to establish accu-
rate analytical approximation solutions to strongly nonlinear 
conservative single-degree-of-freedom oscillators with odd 
nonlinearities. This new alternative is based on a modified 
Newton method and the HB approach. Each modified Newton 
iteration step may be considered as the composition of one 
Newton step with two simplified Newton steps without further 
linearization. The modified Newton iteration equations are 
established and, subsequently, the HB method is appropriately 

applied to solve these equations. The classical HB method is, 
therefore, greatly simplified. The proposed method is self-
starting, i.e., it can supply an initial solution by itself. Using 
only one modified Newton iteration step, we establish analyti-
cal, approximate explicit expressions in terms of oscillation 
amplitude. These expressions are with very high accuracy. 
Finally, three representative examples with physical implica-
tions are used to describe the solution methodology and to 
show the effectiveness of the new method.

Solution Methodology

Consider a single-degree-of-freedom nonlinear oscillator 
governed by

where g(x) is an odd nonlinear function [i.e., g(−x) = −g(x) ] 
that satisfies xg(x) > 0 for x ∈ [−A, A], x ≠ 0 . Note that 
x = 0 is the equilibrium position and the system will oscil-
late in the symmetric interval [−A, A] . The corresponding 
period and periodic solution depend on the oscillation ampli-
tude A.

Introducing the oscillator angular frequency � , setting 
� = �t and defining x� = dx∕d� and � = �2 , one can trans-
form Eq. (1) into

First, the single-term HB expression

is used to construct the initial approximation to Eq. (2). 
Since g(−x) = −g(x) , one can expand g

(
x0(�)

)
 into the Fou-

rier series as:

Note that all the coefficients �2j−1(A)(j = 1, 2,⋯) 
are dependent on the oscillation amplitude A . Setting 
x(�) = x0(�) in Eq. (2), using Eqs. (3) and (4), and equating 
coefficient of cos � to zero result in

The initial approximate frequency �0 can then be 
expressed as:

The initial approximate period and periodic solution are

(1)d
2x

dt2
+ g(x) = 0, x(0) = A,

dx

dt
(0) = 0,

(2)�x�� + g(x) = 0, x(0) = A, x�(0) = 0.

(3)x0(�) = A cos �,

(4)

g
(
x0(�)

)
=

∞∑
j=1

�2j−1(A) cos[(2j − 1)�],

�2j−1(A) =
4

� ∫
�∕ 2

0

g
(
x0(�)

)
cos[(2j − 1)�]d�

.

(5)�1(A) − A� = 0.

(6)
�0(A) =

√
�0(A), �0(A) =

�1(A)

A
.

(7)
T0(A) =

2�√
�0(A)

, x0(t) = A cos �, � =
√
�0(A) t.
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Next, the modified Newton technique is incorporated with 
the HB method to solve Eq. (2). The solution to Eq. (2) can 
be formulated as:

Substituting Eq. (8) into Eq. (2), expanding in a Taylor’s 
series about x0 and �0 , and neglecting terms of second order 
and above in Δx10 and Δ�10 lead to

where gx = dg∕dx . Note that the correction terms Δx10 
and Δ�10 are assumed to be smaller than the previously 
determined ones so that the dynamical equations may be 
linearized.

Subsequently, the HB method will be used to solve 
Eq. (9). Since g(−x) = −g(x) , gx

(
x0(�)

)
 can be expanded 

into the following Fourier series:

Note that all the coefficients �2i(A)(i = 0, 1,⋯) are related 
to the oscillation amplitude A . The term Δx10(�) satisfies the 
initial condition in Eq. (9) and it can be written as:

Substituting Eqs. (3), (4), (6), (10) and (11) into Eq. (9), 
expanding the resulting expression into Fourier series and 
equating the coefficients of cos � and cos 3� to zero, respec-
tively, yield

Solving Eq. (12) for y10 and Δ�10 gives

It should be verified that ||y10|| and Δ�10 are smaller than 
A and �0 , respectively, i.e., the corrections have a smaller 
amplitude than that determined in the previous steps such 
that the linearization in Eq. (9) is justified.

Using Eqs. (3), (6), (8), (11) and (13) produces the ana-
lytical approximate period as

(8)x = x0 + Δx10, � = �0 + Δ�10.

(9)
Ω0x

��
0
+ g(x0) + Ω0Δx

��
10
+ ΔΩ10x

��
0
+ gx(x0)Δx10 = 0,

Δx10(0) = 0, Δx�
10
(0) = 0,

(10)

gx
(
x0(�)

)
=

�0(A)

2
+

∞∑
i=1

�2i(A) cos (2i�),

�2i(A) =
4

� ∫
�∕ 2

0

gx
(
x0(�)

)
cos (2i�)d�.

(11)Δx10(�) = y10(cos � − cos 3�).

(12)
2�1 − 2A�0 +

(
�0 − �4 − 2�0

)
y10 − 2AΔ�10 = 0,(

�2 + �4 − �0 − �6 + 18�0

)
y10 + 2�3 = 0.

(13)

y10(A) = −
2A�3(A)

A
[
�2(A) + �4(A) − �0(A) − �6(A)

]
+ 18�1(A)

Δ�10(A) = −
�3(A)

{
A
[
�0(A) − �4(A)

]
− 2�1(A)

}

A
{
A
[
�2(A) + �4(A) − �0(A) − �6(A)

]
+ 18�1(A)

} .
.

(14)TN1(A) =
2�√
�N1(A)

, �N1(A) = �0(A) + Δ�10(A),

and the periodic solution as

These are the approximate solutions from the first Newton 
step.

Based on the result above, the solution to Eq. (2) can be 
further expressed as

Substituting Eqs. (16) into (2), expanding in a Taylor 
series about xN1 and �N1 and neglecting terms of second 
order and above in Δx20 and Δ�20 lead to

To avoid costly and cumbersome computations of the 
derivative of gx

(
xN1

)
 and its Fourier series expansion, we 

replace �N1 , x′′N1 and gx
(
xN1

)
 in the later three terms in 

Eq. (17) with �0 , x′′0  and gx
(
x0
)
 , respectively, and obtain

which is the governing equation for the first simplified New-
ton step.

The HB method is again applied to solve Eq. (18) for 
Δx20 and Δ�20 . The Fourier series expansion of g

(
xN1

)
 can 

be expressed as

The term Δx20(�) that satisfies the initial condition in 
Eq. (18) is set as

Substituting Eqs. (3), (6), (10), (13)-(15), (19) and (20) 
into Eq. (18), expanding in a Fourier series and equating the 
coefficients of cos �, cos 3� and cos 5� to zero, respectively, 
generate three relations for unknowns z1 , z2 and Δ�20 as:

(15)
xN1(t) =

�
A + y10(A)

�
cos � − y10(A) cos 3�, � =

√
�N1(A) t.

(16)x = xN1 + Δx20,� = �N1 + Δ�20.

(17)

�N1x
��
N1

+ g
(
xN1

)
+�N1Δx

��
20
+ Δ�20x

��
N1

+ gx
(
xN1

)
Δx20 = 0,

Δx20(0) = 0, Δx�
20
(0) = 0.

(18)

�N1x
��
N1

+ g
(
xN1

)
+�0Δx

��
20
+ Δ�20x

��
0
+ gx

(
x0
)
Δx20 = 0,

Δx20(0) = 0, Δx�
20
(0) = 0,

(19)

g
(
xN1(�)

)
=

∞∑
j=1

�2j−1(A) cos
[
(2j − 1)�

]
,

�2j−1(A) =
4

� ∫
�∕ 2

0

g
(
xN1(�)

)
cos

[
(2j − 1)�

]
d�.

(20)Δx20(�) = z1(cos � − cos 3�) + z2(cos 3� − cos 5�).

(21)
2�1 − 2

(
A + y10

)
ΩN1 +

(
�0 − �4 − 2Ω0

)
z1 +

(
�2 − �6

)
z2

− 2AΔΩ20 = 0,

(22)
2�3 + 18y10�N1 +

(
�2 + �4 − �0 − �6 + 18�0

)
z1 −

(
�2 + �8 − �0 − �6 + 18�0

)
z2 = 0,

(23)
2�5 +

(
�4 + �6 − �2 − �8

)
z1 +

(
�2 + �8 − �0 − �10 + 50�0

)
z2 = 0.
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The solution to Eqs. (21)–(23) is

where

Consequently, from Eqs. (13)–(16), (20) and (24)–(26), 
the analytical approximate period and periodic solution for 
the first simplified Newton step are

and

The solution to Eq. (2) can be further expressed as:

Like the derivation of the first simplified Newton step, we 
can obtain the governing equation for the second simplified 
Newton step as follows:

The HB method may again be applied to solve Eq. (30) 
for Δx21 and Δ�21 . The term Δx21(�) that satisfies the initial 
condition in Eq. (30) is set as:

(24)z1(A) =
2
(
−�2 − �8 + �0 + �10 + 50�0

)(
9y10�N1 + �3

)
+ 2�5

(
�2 + �8 − �0 − �6 + 18�0

)
E

,

(25)z2(A) =
−2

(
−�2 + �4 + �6 − �8

)(
9y10�N1 + �3

)
+ 2�5

(
�2 + �4 − �0 − �6 + 18�0

)
E

,

(26)Δ�20(A) =
F

AE
,

F(A) =
(
−A�N1 − y10�N1 + �1

)
E −

(
9y10�N1 + �3

)(
�2 − �6

)(
−�2 + �4 + �6 − �8

)
+

�5
(
�2 − �6

)(
�2 + �4 − �0 − �6 + 18�0

)
+ �5

(
−2�0 + �0 − �4

)(
�2 + �8 − �0 − �6 + 18�0

)
+(

9y10�N1 + �3
)(
−2�0 + �0 − �4

)(
�2 + �8 − �0 − �10 + 50�0

)
,

E(A) = −
(
�2 + �4 − �0 − �6 + 18�0

)(
�2 + �8 − �0 − �10 + 50�0

)
+(

�2 + �8 − �0 − �6 + 18�0

)(
�2 − �4 − �6 + �8

)
.

(27)

TSN1(A) =
2�√

�SN1(A)
,�SN1(A) = �N1(A) + Δ�20(A),

(28)

xSN1(t) =
�
A + y10(A) + z1(A)

�
cos �+�

z2(A) − y10(A) − z1(A)
�
cos 3� − z2(A)cos5�,

� =
√
�SN1(A) t.

(29)x = xSN1 + Δx21,� = �SN1 + Δ�21.

(30)

�SN1x
��
SN1

+ g
(
xSN1

)
+�0Δx

��
21

+ Δ�21x
��
0
+ gx

(
x0
)
Δx21 = 0,

Δx21(0) = 0, Δx�
21
(0) = 0.

(31)
Δx21(�) =w1(cos � − cos 3�) + w2(cos 3� − cos 5�)

+ w3(cos 5� − cos 7�).

The unknowns Δx21 and Δ�21 may be determined using 
a method similar to that of the first simplified Newton step. 
The details of solution process are omitted here for brevity. 
Using Eqs. (27)–(29) and (31) yields the analytical approxi-

mate period and periodic solution for the second simplified 
Newton step:

and

In fact, many more harmonics can be included in 
Eqs.  (11), (20) and (31) where the initial conditions in 
Eqs.  (9), (17) and (30) can be satisfied, respectively. 
Finally, the higher order analytical approximations can be 
constructed using the last approximations xSN2 and �SN2 in 
place of x0 and �0 , respectively, and repeating the modified 
Newton iteration step as before. In the next section, we will 
use three practical examples to show that using only a sin-
gle modified Newton iteration step, it is possible to derive 
highly accurate analytical approximations to the period and 
periodic solutions of the strongly nonlinear oscillators. Fur-
thermore, these solutions are explicit and expressed in terms 
of the oscillation amplitude.

(32)

TSN2(A) =
2�√

�SN2(A)
, �SN2(A) = �SN1(A) + Δ�21(A),

(33)

xSN2(t) =
�
A + y10(A) + z1(A) + w1(A)

�
cos �+�

z2(A) + w2(A) − y10(A) − z1(A) − w1(A)
�
cos 3�+�

w3(A) − z2(A) − w2(A)
�
cos5� − w3(A)cos7�,

� =
√
�SN2(A) t.
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Illustrative Examples

In this section, three examples of practical interests are pre-
sented to illustrate the solution step, accuracy and effective-
ness of the proposed method.

Example 1  The Duffing oscillator.

Consider the following Duffing oscillator with initial con-
ditions (a ≥ 0)

For this oscillator, the Fourier series expansions of g
(
x0
)
 

and gx
(
x0
)
 are given in Eqs. (4) and (10), respectively, where

Based on Eqs. (6), (7), (13)–(15) and (35), the analytical 
approximate periods and periodic solutions for the initial and 
the first Newton step can be expressed as:

and

Let a = 1 in Eq. (34), Figs. 1 and 2 show the ratios of 
y10(A) , Δ�10(A) in Eq.  (13) to A and �0(A) in Eq.  (6), 
respectively. Furthermore, we have

(34)d
2x

dt2
+ ax + bx3 = 0, x(0) = A,

dx

dt
(0) = 0.

(35)
�1(A) = aA +

3bA3

4
, �3(A) =

bA3

4
,

�0(A) = 2a + 3bA2, �2(A) =
3bA2

2
.

(36)
T0(A) =

2�√
a +

3

4
bA2

,

(37)x0(t) = A cos �, � =

√
a +

3bA2

4
t,

(38)

TN1(A) =
2�√
�N1(A)

, �N1(A) =
128a2 + 192abA2 + 69b2A4

128a + 96bA2
,

(39)

xN1(t) =

�
32aA + 23bA3

32a + 24bA2

�

cos � +

�
bA3

32a + 24bA2

�
cos 3�,

� =
√
�N1(A) t.

lim
bA2

→+∞

y1(A)

A
≈ −0.0416667, lim

bA2
→+∞

Δ�10(A)

�0(A)
≈ −0.0416667.

From Eq. (11), Figs. 1 and 2 and the two limits above, 
it can be observed that the correction terms Δx10(A) and 
Δ�10(A) are smaller than the previously determined ones for 
bA2 ∈ (−1,+∞) except those value of bA2 near −1 , which 
confirms the justifiability of the linearization in Eq. (9).

The Fourier series expansion for g
(
xN1(�)

)
 is given by 

Eq. (19) where

Fig. 1   Variation of ratio y10(A)
/
A with bA2 for a = 1 in Example 1

Fig. 2   Variation of ratio Δ�10(A)
/
�0(A) with bA2 for a = 1 in Exam-

ple 1

�1(A) =

(
65536Aa4 + 194560A3a3b + 215040A5a2b2 + 104976A7ab3 + 19113A9b4

)

1024
(
4a + 3A2b

)3 ,
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Based on Eqs. (6), (7), (13)–(15), (24)–(28), (35) and 
(40), the analytical approximate period and periodic solution 
for the first simplified Newton step are

and

where

Finally, using Eqs.  (6), (7), (13)–(15), (24)–(28), 
(30)–(33), (35) and (40) yields the analytical approximate 
period and periodic solution for the second simplified New-
ton step as:

and

where P1, P2, P3, P4, P�, PD are listed in the appendix.
Let a = 1 in Eq. (34), Table 1 lists the ratios of analyti-

cal approximate periods T0(A) , TN1(A) , TSN1(A) and TSN2(A) 

�3(A) =
A3b

(
2304a3 + 5184A2a2b + 3870A4ab2 + 959A6b3

)

128
(
4a + 3A2b

)3 ,

(40)�5(A) =
3A5b2

(
32a + 23A2b

)

256
(
4a + 3A2b

)2 .

(41)TSN1(A) =
2�√

�SN1(A)
,

(42)
xSN1(t) = L(A) cos � +M(A) cos 3� + N(A) cos 5�, � =

√
�SN1(A) t,

(43)

�SN1(A) =
128a2 + 192A2ab + 69A4b2

128a + 96A2b
−

3A8b4
(
2560a2 + 3936A2ab + 1513A4b2

)

2048
(
4a + 3A2b

)4(
32a + 23A2b

)

L(A) =
32768Aa4 + 96256A3a3b + 105984A5a2b2 + 51823A7ab3 + 9491A9b4

16
(
4a + 3A2b

)3(
32a + 23A2b

)

M(A) =
A3b

(
4096a3 + 9216A2a2b + 6984A4ab2 + 1783A6b3

)

512
(
4a + 3A2b

)4

N(A) =
A5b

(
4096a3 + 9088A2a2b + 6792A4ab2 + 1711A6b3

)

512
(
4a + 3A2b

)4(
32a + 23A2b

) .

.

(44)

TSN2(A) =
2�√

�SN2(A)
,

�SN2(A) =
128a2 + 192A2ab + 69A4b2

128a + 96A2b

−
3A8b4

�
2560a2 + 3936A2ab + 1513A4b2

�

2048(4a + 3A2b)
4
(32a + 23A2b)

+
P�

4PD

,

(45)
xSN2(t) =

1

PD

�
P1 cos � + P2 cos 3�

+P3 cos 5� + P4 cos 7�
�
, � =

√
�SN2(A) t,

in Eqs. (36), (38), (41) and (44), respectively, to the exact 
period Te(A) [7]. For comparison, the corresponding ratio 
of the third approximate period TW3(A) in Eq. (42) in [7] 
to Te(A) is also presented in Table 1. It is observed that 
Eqs. (41) and (44) give very good approximations to the 
periods for both small and large values of bA2 . Furthermore, 
for all a ≥ 0 in Eq. (34), referring to Wu et al. [7], one has

Further referring to Wu et al. [7], Eqs. (41) and (44) lead to
(46)

lim
bA2

→+∞

T0(A)

Te(A)
≈ 0.978277, lim

bA2
→+∞

TN1(A)

Te(A)
≈ 0.999318.

(47)

lim
bA2

→+∞

TSN1(A)

Te(A)
=

⎛⎜⎜⎜⎝
1

�

�
912599

317952 ∫
�

2

0

1�
1 − 1∕2 sin2 t

dt

⎞⎟⎟⎟⎠

- 1

≈ 1.00015,

Note that the limits in Eqs. (46)–(49) are independent 
on the value of a . From Table 1 and Eqs. (47) and (48), it is 
concluded that the proposed approximations to the period 
converge very fast for both small as well as large oscillation 
amplitudes.

(48)

lim
bA2→+∞

TSN2(A)

Te(A)
=

⎛
⎜⎜⎜⎝

1

�

�
2392173303659990607455

833239679719213891584 ∫
�

2

0

1�
1 − 1∕2 sin2 t

dt

⎞
⎟⎟⎟⎠

- 1

≈ 1.00003,

(49)

lim
bA2

→+∞

TW3

Te
=

⎛⎜⎜⎜⎝
2

�

�
65856986475

91739270448 ∫
�

2

0

1�
1 − 1

�
2 sin

2 t

dt

⎞⎟⎟⎟⎠

−1

≈ 0.999929.
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For a = 1 , b = −1 , A =
√
0.9 and a = 1 , b = +1 , 

A =
√
10 , the periodic solution xe(t) obtained using 

numerical integration to Eq. (34) and the analytical approx-
imate solutions xN1(t),  xSN1(t) and xSN2(t) calculated using 
Eqs. (39), (42) and (45), respectively, as well as their abso-
lute errors are presented in Figs. 3, 4, 5 and 6. The corre-
sponding results of the third approximate periodic solutions 
xW3 in Eq. (43) in Wu et al. [7] are also presented in these 
figures for comparison purposes. These figures indicate that, 
for both soft and hard nonlinear oscillators, Eqs. (42) and 
(45) provide fast-convergent analytical approximate periodic 
solutions.   

Example 2  An oscillator with fractional-power restoring 
force.

Table 1   Comparison of approximate periods and exact period for 
Example 1 (a = 1)

bA2 T0
/
Te TN1∕Te TSN1

/
Te TSN2

/
Te TW3

/
Te

− 0.9 0.888201 0.980695 0.994290 0.997538 0.996238
− 0.7 0.973202 0.998957 0.999986 0.999985 0.999859
− 0.5 0.992390 0.999917 1.00001 1.00000 0.999990
− 0.3 0.998238 0.999996 1.00000 1.00000 0.999999
− 0.1 0.999863 1.00000 1.00000 1.00000 1.00000
0.5 0.998446 0.999997 1.00000 1.00000 1.00000
1 0.996145 0.999979 1.00000 1.00000 0.999998
5 0.986679 0.999745 1.00006 1.00001 0.999973
10 0.983249 0.999596 1.00009 1.00001 0.999957
50 0.979437 0.999390 1.00013 1.00002 0.999937
100 0.978869 0.999355 1.00014 1.00002 0.999933
500 0.978398 0.999326 1.00014 1.00003 0.999930
1000 0.978338 0.999322 1.00015 1.00003 0.999930
5000 0.978289 0.999319 1.00015 1.00003 0.999930

Fig. 3   Comparison of analytical approximations and numerical solu-
tion for a = 1 , b = −1 and A =

√
0.9 in Example 1

Fig. 4   Absolute error of analytical approximations for a = 1 , b = −1 
and A =

√
0.9 in Example 1

Fig. 5   Comparison of analytical approximations and numerical solu-
tion for a = 1 , b = 1 and A =

√
10 in Example 1

Fig. 6   Absolute error of analytical approximations for a = 1 , b = 1 
and A =

√
10 in Example 1
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The oscillator with restoring force expressed by a frac-
tional power [16–18] can be represented by the following 
differential equation with initial conditions:

For this oscillator, we have g(x) = x1∕3 and gx(x) =
1

3x2∕3
 . 

The Fourier series expansion of g
(
x0
)
 are given in Eq. (4) 

where

Based on Eqs.  (6), (7) and (51), the initial analytical 
approximations to the period and periodic solution are

Furthermore, we have

where

Substituting Eqs. (3), (4), (11) and (53) into Eq. (9) and 
setting the coefficients of cos � and cos3� to zero yield two 
linear equations in terms of unknowns y10 and Δ�10 . These 
equations can be solved to obtain:

(50)d
2x

dt2
+ x1∕3 = 0, x(0) = A,

dx

dt
(0) = 0.

(51)

�1(A) =
2A1∕3G1√

�
, �3(A) = −

3A1∕3G2

5
√
�

, �5(A) =
3A1∕3G2

10
√
�

,

�7(A) = −
21A1∕3G2

110
√
�

, �9(A) =
3A1∕3G2

22
√
�

, �11(A) = −
39A1∕3G2

374
√
�

,

�13(A) =
78A1∕3G2

935
√
�

, G1 = �

�
7

6

��
�

�
5

3

�
,G2 = �

�
7

6

��
�

�
2

3

�
.

(52)

T0(A) =
2�√
�0(A)

,�0(A) = 2A−2∕3G1

�√
� ≈ 1.15960A−2∕ 3,

x0(t) = A cos �, � =
√
�0t.

(53)

gx(x0)Δx10 =
y10(cos � − cos 3�)

3(A cos �)2∕3
=

2y10(A cos �)1∕3(1 − cos 2�)

3A

=
2y10

3A

(
�1 cos � + �3 cos 3� +⋯

)
(1 − cos 2�)

= �1 cos � + �3 cos 3� +⋯ ,

�1(A) =

(
�1 − �3

)
y10

3A
, �3(A) = −

(
�1 − 2�3 + �5

)
y10

3A
.

(54)

y10(A) =
3A�3(A)

−26�1(A) − 2�3(A) + �5(A)
,

ΔΩ10(A) =
�3
[
2�1(A) + �3(A)

]

A
[
26�1(A) + 2�3(A) − �5(A)

] .

Using Eqs. (6), (51) and (54), we can derive that

which indicates that the correction terms Δx10(A) and 
Δ�10(A) are smaller than the previously determined ones for 
any oscillation amplitude A > 0 , the linearization in Eq. (9) 
is thus justified.

Using Eqs. (14), (15), (51), (52) and (54) gives the ana-
lytical approximate period and periodic solution for the first 
Newton step as:

and

The Fourier series expansion of g(xN1) is given by 
Eq. (19) where

In addition, we have

where

Substituting Eqs. (3), (19), (20), (51), (57) and (58) into 
Eq. (18) and setting the coefficients of cos � , cos3� and cos5� 

y10(A)
/
A ≈ 0.0235294,Δ�10(A)

/
�0(A) ≈ −0.0141176,

(55)
TN1(A) =

2�√
ΩN1(A)

,

ΩN1(A) ≈ 1.14323
�
A2∕3,

(56)
xN1(t) ≈ 1.02353A cos � − 0.0235293A cos 3�,

� ≈
(
1.06922

/
A1∕3

)
t.

(57)
�1(A) ≈ 1.17032A1∕3, �3(A) ≈ −0.245242A1∕3,

�5(A) ≈ 0.119994A1∕3.

(58)

gx
(
x0
)
Δx20 =

z1(cos � − cos 3�) + z2(cos 3� − cos 5�)

3(A cos �)2∕ 3

=
2

3A
(A cos �)1∕ 3

[
z1(1 − cos 2�)

+z2(−1 + 2 cos 2� − cos 4�)
]

=
2

3A

(
�1 cos � + �3 cos 3� +⋯

)
[
z1(1 − cos 2�) + z2(−1 + 2 cos 2� − cos 4�)

]

= �1 cos � + �3 cos 3� + �5 cos 5� +⋯ ,

�1(A) =
�1 − �3

3A
z1 +

�3 − �5

3A
z2,

�3(A) =
−�1 + 2�3 − �5

3A
z1 +

�1 − 2�3 + 2�5 − �7

3A
z2,

�5(A) =
−�3 + 2�5 − �7

3A
z1 +

−�1 + 2�3 − 2�5 + 2�7 − �9

3A
z2.
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to zero gives three linear equations in terms of z1 , z2 and 
Δ�20 . These equations can be solved to obtain:

Based on Eqs. (27), (28), (51), (54), (55) and (59), the 
analytical approximation period and periodic solution for 
the first simplified Newton step are

and

The coefficients of the Fourier series expansion of 
g
(
xSN1(�)

)
 are

and

where

(59)
z1(A) ≈ −0.00386852A, z2(A) ≈ −0.00421486A,

ΔΩ20(A) ≈ 0.00337946∕A2∕3.

(60)
TSN1(A) = 2�

�
�SN1(A), �SN1(A) =

√
ΩSN1(A),

ΩSN1(A) ≈ 1.14660∕A2∕3.

(61)
xSN1(t) ≈ 1.01966A cos � − 0.0238758A cos 3�

+ 0.00421486A cos 5�, � ≈ 1.07080t.

(62)
�1(A) ≈ 1.16903A1∕ 3,�3(A) ≈ −0.245679A1∕ 3,

�5(A) ≈ 0.122106A1∕ 3,�7(A) ≈ −0.0767870A1∕ 3,

(63)

gx
(
x0
)
Δx21

=
w1(cos � − cos 3�) + w2(cos 3� − cos 5�) + w2(cos 5� − cos 7�)

3(A cos �)2∕ 3

=
2

3A
(A cos �)1∕ 3

[
w1(1 − cos 2�) + w2(−1 + 2 cos 2� − cos 4�)

+w3(1 − 2 cos 2� + 2 cos 4� − cos 6�)
]

= �1 cos � + �3 cos 3� + �5 cos 5� + �7 cos 7�⋯ ,

�1(A) =
�1 − �3

3A
w1 +

�3 − �5

3A
w2 +

�5 − �7

3A
w3,

�3(A) =
−�1 + 2�3 − �5

3A
w1 +

�1 − 2�3 + 2�5 − �7

3A
w2+

�3 − 2�5 + 2�7 − �9

3A
w3,

�5(A) =
−�3 + 2�5 − �7

3A
w1 +

−�1 + 2�3 − 2�5 + 2�7 − �9

3A
w2+

�1 − 2�3 + 2�5 − 2�7 + 2�9 − �11

3A
w3,

�7(A) =
−�5 + 2�7 − �9

3A
w1 +

−�3 + 2�5 − 2�7 + 2�9 − �11

3A
w2+

−�1 + 2�3 − 2�5 + 2�7 − 2�9 + 2�11 − �13

3A
w3.

Substituting Eqs. (3), (31), (62) and (63) into Eq. (30) and 
setting the coefficients of cos � , cos3� , cos5� and cos7� to 
zero give four linear equations in unknowns w1 , w2 , w3 and 
Δ�21 . These equations can be solved to yield

Finally, using Eqs. (32), (33), (51), (54), (59) and (64) 
produces the analytical approximation period and periodic 
solution for the second simplified Newton step as:

and

For the exact period Te(A) of this oscillator, we refer read-
ers to Eq. (72) in Wu et al. [7].

Table 2 shows the ratios of the approximate periods T0 , 
TN1 , TSN1 , TSN2 to the exact period Te . For comparison, the 
ratio of the third approximate period TW3 in Eq. (70) in [7] 

(64)
w1 ≈ 0.00126150A, w2 ≈ 0.00131078A, w2

≈ 0.00131078A, w3 ≈ 0.00136572A.

(65)
TSN2(A) = 2�

�
�SN2(A), �SN2(A) =

√
ΩSN2(A),

ΩSN2(A) ≈ 1.14554
�
A2∕3,

(66)
xSN2(t) ≈ 1.02092A cos � − 0.0238265A cos 3�

+ 0.00426981A cos 5� − 0.00136572A cos 7�

� ≈ 1.07030t.

Table 2   Ratios of the approximate periods to the exact solution for 
Example 2

T0
/
Te TN1∕Te TSN1

/
Te TSN2

/
Te TW3

/
Te

0.994062 1.00115 0.999677 1.00014 0.999692

Fig. 7   Comparison of analytical approximations and numerical solu-
tion for A = 1 in Example 2
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to Te is also given in Table 2. It is clear that Eqs. (60) and 
(65) provide fast-convergent and excellent approximations 
to the exact period.

For A = 1 , the exact periodic solution xe(t) obtained 
by numerically integrating Eq. (50) and the approximate 
periodic solutions xN1(t) , xSN1(t) and xSN2(t) computed by 
Eqs. (56), (61) and (66), respectively, as well as their abso-
lute errors are shown in Figs. 7 and 8. The third approximate 
periodic solutions xW3(t) in Eq. (71) in [7] are also presented 
in these figures for comparison. The figure indicates that 
analytical approximations from the first and second simpli-
fied Newton steps well approach the exact periodic solution.

Example 3  A finite extensibility nonlinear oscillator

The non-dimensional equation of motion governing a 
finite extensibility nonlinear oscillator [19, 20] and the ini-
tial conditions are

where 0 < A < 1.
Before applying the proposed method to Eq. (67), we 

rewrite it in a form that gets rid of the fractional term, as

Using a new independent variable � = �t , we can write 
Eq. (68) as

where � = �2 . Substituting Eq. (3) into Eq. (69), expand-
ing the resulting expression into a Fourier series and setting 
the coefficient of cos � to zero, yield � as function of A as:

(67)d
2x

dt2
+

x

1 − x2
= 0, x(0) = A,

dx

dt
(0) = 0,

(68)
(
1 − x2

)d2x
dt2

+ x = 0, x(0) = A,
dx

dt
(0) = 0.

(69)
(
1 − x2

)
�x�� + x = 0, x(0) = A, x�(0) = 0,

Substituting Eq. (8) into Eq. (69) and neglecting terms of 
the second order and above in Δx10 and Δ�10 lead to

Combining Eqs. (11) and (70) with Eq. (71), expand-
ing in a Fourier series and setting the coefficients of cos � 
and cos 3� to zero yield two linear equations in terms of 
unknowns y10 and Δ�10 . These equations can be solved to 
obtain:

(70)

T0(A) =
2�√
Ω0(A)

,Ω0 =
4

4 − 3A2
, x0(t) = A cos �, � =

√
Ω0t.

(
1 − x2

0

)
x��
0
�0 + x0 +

(
1 − x2

0

)
(
Δ�10x

��
0
+�0Δx

��
10

)
− 2x��

0
x0�0Δx10 + Δx10 = 0,

(71)Δx10(0) = 0, Δx�
10
(0) = 0.

(72)

y10 = −
4A3 − 3A5

128 − 160A2 + 43A4
,ΔΩ10

= −
20A4

−512 + 1024A2 − 652A4 + 129A6
.

Fig. 8   Absolute errors of analytical approximations for A = 1 in 
Example 2

Fig. 9   Variation of ratio y10(A)
/
A with A in Example 3

Fig. 10   Variation of ratio Δ�10(A)
/
�0(A) with A in Example 3
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For this example, the ratios of y10(A) , Δ�10(A) in Eq. (13) 
to A and �0(A) in Eq. (6), respectively, are displayed in 
Figs. 9 and 10. These figures demonstrate that the correc-
tion terms Δx10 and Δ�10 are smaller than the previously 
determined ones for A ∈ (0, 1) except those values of A near 
A = 1 , which verifies the justifiability of the linearization 
in Eq. (9).

Substituting Eqs. (70) and (72) into Eqs. (14) and (15) 
gives analytical approximations to the period and periodic 
solution for the first Newton step as:

and

Substituting Eq. (16) into Eq. (69), following the similar 
steps for deriving Eqs. (17) and (18), we obtain the govern-
ing equation for unknowns Δx20 and Δ�20 in the first simpli-
fied Newton step as follows:

Combining Eqs. (20), (70), (73) and (74) with Eq. (75), 
expanding in a Fourier series and setting the coefficients of 
cos �, cos 3� and cos 5� to zero gives three linear equations 
in terms of z1 , z2 and Δ�20 . These equations can be solved 
to obtain:

where

(73)

TN1(A) =
2�√
�N1(A)

, �N1

=
4

4 − 3A2
+

20A4

−512 + 1024A2 − 652A4 + 129A6
,

(74)

xN1(t) =
128A − 164A3 + 46A5

128 − 160A2 + 43A4
cos � +

4A3 − 3A5

128 − 160A2 + 43A4
cos 3�,

� =
√
�N1(A) t.

(75)

(
1 − x2

N1

)
x��
N1
�N1 + xN1 +

(
1 − x2

0

)
(
Δ�20x

��
0
+�0Δx

��
20

)
− 2x��

0
x0�0Δx20 + Δx20 = 0,

Δx20(0) = 0, Δx�
20
(0) = 0.

(76)z1 =
8K1(A)

3H(A)
, z2 =

K2(A)

3H(A)
,ΔΩ20 =

4KΩ(A)

H(A)
.

K1(A) = 1476395008A
5 − 8476688384A

7

+ 21170749440A
9 − 30115528704A

11

+ 26818781184A
13 − 15460840448A

15

+ 5752485184A
17 − 1327830128A

19

+ 171976252A
21 − 9488865A

23
,

Using Eqs. (27), (28) and (76) yields analytical approxi-
mations to the period and periodic solution for the first sim-
plified Newton step as:

and

where
S1(A) = A + y10(A) + z1(A), 

S2(A) = z2(A) − y10(A) − z1(A) and S3(A) = −z2(A).

Similarly, the governing equation for the second simpli-
fied Newton step is

Substituting Eqs. (31), (70), (78) into Eq. (79), expand-
ing in a Fourier series and setting the coefficients of cos � , 
cos3� , cos5� and cos7� to zero give four linear equations in 
terms of w1 , w2 , w3 and Δ�21 . These equations can be solved 
to obtain:

K2(A) = 11811160064A
5 − 68014833664A

7

+ 170882236416A
9

− 245278703616A
11 + 221025558528A

13 − 129193627648A
15

+ 48740967488A
17 − 11362056352A

19 + 1467812432A
21

− 78387621A
23
,

K�(A) = −536870912A6 + 1954545664A8 − 2900885504A10+

2281373696A12 − 1046603264A14 + 294179584A16−

50428732A18 + 4263597A20,

H(A) =
(
128 − 160A

2 + 43A
4
)4

(
−4096 + 7296A

2 − 3744A
4 + 445A

6
)
,

(77)
TSN1(A) = 2�

/
�SN1(A), �SN1(A) = �N1(A) + Δ�20(A),

(78)
xSN1(t) = S1(A) cos � + S2(A) cos 3� + S3(A) cos 5�, � =

√
�SN1(A) t,

(
1 − x2

SN1

)
x��
SN1

�SN1 + xSN1 +
(
1 − x2

0

)(
Δ�21x

��
0
+�0Δx

��
21

)

− 2x��
0
x0�0Δx21 + Δx21 = 0,

(79)Δx21(0) = 0, Δx�
21
(0) = 0.

(80)

w1 = −

(
3A2 − 4

)
R1(A)

12DSN2(A)
, w2 =

(
3A2 − 4

)
R2(A)

12DSN2(A)
, w3

= −

(
3A2 − 4

)
R3(A)

12DSN2(A)
,

Δ�21 = −
R�(A)

ADSN2(A)
,
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where R1, R2, R3, R�, DSN2 are listed in the appendix.
Finally, using Eqs. (32), (33), (72), (76) and (80) yields 

analytical approximations to the period and periodic solution 
for the second simplified Newton step as:

and

On the other hand, the exact period is [18]

For comparison, the second-order approximation to the 
period and periodic solution given by Beléndez et al. [20] 
using a harmonic balance method (HBM) without lineariza-
tion are listed as follows:

and

where

The ratios of the approximate periods TN1 , TSN1 , TSN2 and 
TB2 to the exact period Te are listed in Table 3. Note that for 
A < 0.5 , all the period ratios are very close to 1, hence the 
details are omitted. For A = 0.9 , numerical solution xe(t) 

(81)
TSN2(A) = 2�

/
�SN2(A), �SN2(A) = �SN1(A) + Δ�21(A),

(82)

xSN2(t) =
�
A + y10(A) + z1(A) + w1(A)

�
cos �+�

z2(A) + w2(A) − y10(A) − z1(A) − w1(A)
�
cos 3�+�

w3(A) − z2(A) − w2(A)
�
cos5� − w3(A)cos7�,

� =
√
�SN2(A) t.

(83)Te = 4∫
A

0

dx√
ln
[(
1 − x2

)/(
1 − A2

)] .

(84)

�B2(A) =
2√

4 − 3A2 − 5Ac1(A) − 30c2
1
(A)

, TB2(A) =
2�

�B2(A)
,

(85)xB2(t) = A cos � + c1(cos 3� − cos �), � = �B2 t,

c1(A) =
8192A3 − 12288A5 + 6512A7 − 1217A9

8
(
32768 − 65536A2 + 52096A4 − 19383A6 + 2811A8

) .

obtained by integrating Eq. (67) and its analytical approxi-
mations xN1(t) , xSN1(t) , xSN2(t) and xB2(t) computed by 
Eqs. (74), (78), (82) and (85), respectively, are presented in 
Figs. 11 and 12. Table 3, Figs. 11 and 12 illustrate clearly 
again that analytical approximations from the first and sec-
ond simplified Newton steps yield very accurate period and 
periodic solution.

Table 3   Comparison of the period and its approximations in Example 
3

A TN1∕Te TSN1
/
Te TSN2

/
Te TB2∕Te

0.5 1.00003 1.00000 1.00000 0.999948
0.6 1.00015 1.00002 0.999999 0.999839
0.7 1.00062 1.00012 0.999988 0.999624
0.8 1.00274 1.00067 0.999901 0.999707
0.9 1.01544 1.00493 0.999196 1.00599
0.95 1.04815 1.01976 0.999102 1.03014
0.97 1.08794 1.04235 1.00381 1.06346

Fig. 11   Comparison of analytical approximations and numerical solu-
tion for A = 0.9 in Example 3

Fig. 12   Absolute error of analytical approximations for A = 0.9 in 
Example 3
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Concluding Remarks

A new, efficient and highly accurate alternate approach has 
been developed for deriving analytical approximate solutions 
to strongly nonlinear conservative single-degree-of-freedom 
oscillators with odd nonlinearities. Through the modified 
Newton iteration step, the multiple cumbersome lineariza-
tions of the restoring force function are replaced by only one 
linearization, and the corresponding governing equations 
can be properly solved by the harmonic balance method. 
This improvement is not only accurate, but is generally 
preferred when it is difficult to obtain the linearizations of 
the restoring force function, and the corresponding Fourier 
series expansions. The current work is expected to extend 
to the study of analytical approximate solutions of general 
strong nonlinear conservative oscillators, harmonically 
forced nonlinear oscillators and other nonlinear problems.
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Appendix

The expressions of P1, P2, P3, P4, P�, PD are as follows.

P1 = A(4835703278458516698824704a18

+ 64450857758204917876523008A2a17b

+ 405627669046088175630417920A4a16b2

+ 1601728426736958931994673152A6a15b3

+ 4446974127479403668997931008A8a14b4

+ 9218243172947523910489866240A10a13b5

+ 14785841346111404889052545024A12a12b6

+ 18763524784922459763638272000A14a11b7

+ 19097688409745225496597102592A16a10b8

+ 15706504179898943441370873856A18a9b9

+ 10462605459329565715349897216A20a8b10

+ 5631582647280319099400355840A22a7b11

+ 2431167864190925491283165184A24a6b12

+ 830354811239768360374763520A26a5b13

+ 219441322192563605505425408A28a4b14

+ 43298251336294969181174272A30a3b15

+ 6006532208423496497883712A32a2b16

+ 522786540947589345532344A34ab17

+ 21485079498804067272519A36b18),

P2 = 151115727451828646838272A3a17b

+ 1905474875837901843726336A5a16b2

+ 11309108495780967390117888A7a15b3

+ 41958844166223266993668096A9a14b4

+ 108994977581964717830701056A11a13b5

+ 210370424231974451810402304A13a12b6

+ 312399213313109590649339904A15a11b7

+ 364578510827628201919905792A17a10b8

+ 338516618651629734938542080A19a9b9

+ 251508624790868463311650816A21a8b10

+ 149524255540205269240774656A23a7b11

+ 70726792708396755185565696A25a6b12

+ 26291888445896461967163392A27a5b13

+ 7520040035850389352161280A29a4b14

+ 1598200207932246614587392A31a3b15

+ 237821684972978253124992A33a2b16

+ 22124179993691481314304A35ab17

+ 968822190832147158876A37b18,

P3 = 4722366482869645213696A5a16b2

+ 56004315007782198706176A7a15b3

+ 311498637957687129669632A9a14b4

+ 1078614993058995309117440A11a13b5

+ 2602451747004176945643520A13a12b6

+ 4639338980186234088849408A15a11b7

+ 6321057386653510862372864A17a10b8

+ 6714526431619256808374272A19a9b9

+ 5619858774906742100721664A21a8b10

+ 3718495779890683638185984A23a7b11

+ 1938655501211025962696704A25a6b12

+ 788025466700714743824384A27a5b13

+ 244828243490659897270272A29a4b14

+ 56204195663850721290240A31a3b15

+ 8991209738990145619840A33a2b16

+ 895544245281147035584A35ab17

+ 41838930607835396004A37b18,
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and

The expressions of R1, R2, R3, R�, DSN2 are as follows.

P4 = 147573952589676412928A7a15b3

+ 1639454379550936399872A9a14b4

+ 8504309305950292934656A11a13b5

+ 27323998716602209009664A13a12b6

+ 60811895858419925516288A15a11b7

+ 99305437243272100577280A17a10b8

+ 122919731096436997095424A19a9b9

+ 117436631194839132667904A21a8b10

+ 87312998556222355406848A23a7b11

+ 50518231926325423112192A25a6b12

+ 22560699826636333907968A27a5b13

+ 7637023311131482243072A29a4b14

+ 1896881805586013365760A31a3b15

+ 326363394510536538304A33a2b16

+ 34780496959236928136A35ab17

+ 1730732174725245369A37b18,

P� = 3A8b4(442721857769029238784a15

+ 5102830579389904715776A2a14b

+ 27312638386542166933504A4a13b2

+ 90077300039570776129536A6a12b3

+ 204746874013667683205120A8a11b4

+ 339795427352756527038464A10a10b5

+ 425361925658199361323008A12a9b6

+ 408978801242226020057088A14a8b7

+ 304485598886042791837696A16a7b8

+ 175505115520599790190592A18a6b9

+ 77662337412392581988352A20a5b10

+ 25901296598274638692352A22a4b11

+ 6299629977693939730944A24a3b12

+ 1054263188601994088768A26a2b13

+ 108476685824622319800A28ab14

+ 5168358617143777623A30b15),

PD =134217728
(
4a + 3A2b

)12(
32a + 23A2b

)3
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