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Abstract
Purpose  The geometrically non-linear free and forced vibrations of a multi-span beam resting on an arbitrary number of 
supports and subjected to a harmonic excitation force is investigated.
Methods  The theoretical model developed here is based on the Euler–Bernoulli beam theory and the von Kármán geo-
metrical non-linearity assumptions. Assuming a harmonic response, the non-linear beam transverse displacement function 
is expanded as a series of the linear modes, determined by solving the linear problem. The discretised expressions for the 
beam total strain and kinetic energies are then derived, and by applying Hamilton’s principle, the problem is reduced to a 
non-linear algebraic system solved using an approximate method (the so-called second formulation). The basic function 
contribution coefficients to the structure deflection function and the corresponding backbone curves giving the non-linear 
amplitude-frequency dependence are determined. Considering the non-linear forced response, an approximate multimode 
approach has been used in the neighbourhood of the predominant mode, to obtain numerical results, for a wide range of 
vibration amplitudes.
Results  The effects on the non-linear forced dynamic response of the support number and locations, the excitation frequency 
and the level of the applied harmonic force (a centered point force or a uniformly distributed force) have been investigated 
and illustrated by various examples.

Keywords  Geometrical non-linearity · Forced vibration · Multimode approach

Introduction

Linear analysis is very commonly used in the practice of 
structural dynamics given its relative simplicity and low 
calculation cost compared to non-linear analyses. How-
ever, the assumed linear behaviour is just an approxima-
tion of the reality, which involves always to some extent 
various non-linear effects, making the linear theories valid 
only in a restricted domain, beyond which they lead to 
inaccurate results. This occurs in the case of large dis-
placements caused by several dynamic operational condi-
tions. Despite its complexity, and the lack of a unified and 
complete analytic model allowing a systematic study of 

the aforementioned phenomenon, non-linear analyses are 
becoming currently used in different fields such as civil, 
mechanical or aerospace engineering, to design economic, 
lightweight, resistant, flexible, and increasingly slender 
structures. The transverse vibration of multi-span beams 
carrying concentric elements (rigid and flexible supports, 
concentric and inertial masses ...), has been the subject 
of numerous linear studies corresponding to different end 
conditions [1–5] but relatively less research considers the 
geometrical non-linearity in the vibration analysis. The 
steady-state harmonic response of multi-span beams has 
been studied in Ref. [6], with consideration of the effect of 
geometrical non-linearity on the beam dynamic behaviour. 
The mathematical approach was based on the finite ele-
ment method, the von Karman theory, the Lagrangian for-
mulation and the Ritz method and the obtained non-linear 
system was solved iteratively. The utility of the method 
was validated through numerous examples and com-
parisons with previous works. The perturbation method 
was used in Ref. [7] to describe the non-linear dynamic 
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behaviour of beams and the results were identical to those 
obtained by the harmonic balance method. The perturba-
tion technique was also used in Refs. [8, 9], allowing cal-
culation of the eigenfrequencies and determination of the 
mode shapes and the non-linear frequencies, taking into 
account the applied force and the damping effects. For the 
same purpose, in Ref. [10] the problem of free vibrations 
of an Euler–Bernoulli beam resting on intermediate sup-
ports, considering the geometric non-linearity, was inves-
tigated using Hamiltons principle and spectral analysis. 
The analysis performed led to determination of non-linear 
modes and the amplitude-frequency dependence. In Ref. 
[11], an Euler–Bernoulli beam resting on an arbitrary 
number of supports was examined and the forced case was 
tackled by adopting the single-mode approach. This made 
it possible to predict the non-linear frequency response 
in the vicinity of the mode considered but provided no 
information on the mode amplitude dependence, necessary 
to estimate the non-linear stress distributions and predict 
the fatigue life of the studied structure. The present work 
deals with the problem of geometrically non-linear free 
and forced vibrations of multi-span Bernoulli beams rest-
ing on multiple supports. The theoretical model is based 
on the Euler–Bernoulli beam theory and the von Kármán 
geometrical non-linearity assumptions. Harmonic motion 
is assumed and the beam transverse displacement function 
is expanded into a series of the linear modes, determined 
first by solving the linear problem. After discretising the 
expressions for the beam total strain and kinetic energies, 
and applying Hamilton’s principle, the problem is reduced 
to a non-linear algebraic system solved using an approxi-
mate method (the so-called second formulation) [12]. 
Using an approximate multimode approach in the neigh-
bourhood of the predominant mode, numerical results are 
obtained for a wide range of vibration amplitudes show-
ing the effect of the rigid supports and their positions and 
number on the dynamic behaviour of the structure. The 
frequency response function was examined in the non-lin-
ear regime for increasing levels and two types of excitation 
(a centered point force or a uniformly distributed force).

Review of the Mathematical Approach

Determination of the Linear Mode Shapes

Consider the multi-span beam, shown in Fig. 1, whose geo-
metric and material characteristics, i.e., the length, width, 
thickness, second moment of area of cross-section, Youngs 
modulus, area of cross-section and the mass per unit length 
are, respectively, denoted by: L, b, h, I,E,A, �.

First of all, a linear study is established to determine the 
system linear mode shapes, to use them as basic functions in 
the non-linear theory developed below. The transverse dis-
placement function w of the beam shown in Fig. 1 can be 
defined piece-wise by:

With x∗ being the non-dimensional coordinate that can be 
written as: x∗ = x

L
 and �j =

xj

L
 being the non-dimensional 

position of the support. Using the transfer matrix method 
as in Ref. [10], a closed form solution to this eigenvalue 
problem can be obtained. The general solution for transverse 
vibration at the (j)th span can be written as:

In which �i is the eigenvalue parameter of the beam, given 
by:

(1)w(x∗) =

⎧
⎪⎪⎨⎪⎪⎩

w1(x
∗) →]0, �1[

⋯

wj(x
∗) →]�j−1, �j[

⋯

wn+1(x
∗) →]�n, 1[

.

(2)

wji(x
∗) = cj cosh(�iL(x

∗ − �j−1)) + dj sinh(�iL(x
∗ − �j−1))

+ ej cos(�iL(x
∗ − �j−1)) + gj sin(�iL(x

∗ − �j−1))

�j−1 ≤ x∗ ≤ �j.

(3)�i =
4

√
�A�2

i

EI
.

Fig. 1   Physical model of a 
multi-span beam resting on 
arbitrary number of rigid sup-
ports
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With i varying from 1 to n, n being the number of functions.
The constants cj, dj, ej, gj, are determined by the beam end 

and continuity conditions as follows:
The end conditions (at the left end) [13]:

The end conditions (at the right end):

The compatibility conditions at the jth support are given 
by [13]:

The use of the continuity conditions corresponding to each 
support, the end conditions and the transfer matrix method 
leads to a homogeneous system. The determinant of the lat-
est must be set equal to zero to obtain the natural frequen-
cies, determined iteratively by the Newton–Raphson method 
[14].

Formulation of the Non‑linear Problem

The total strain energy V of the beam can be written as the 
sum of the axial strain energy due to the non-linear stretch-
ing forces induced by the large deflections Va , and the strain 
energy due to bending Vb . Va , Vb , and the kinetic energy T can 
be expressed as [15, 16]:

(4)
d
3w1i(x

∗)

dx∗3
||| x∗ = 0

= − Kt1w1i(x
∗)
||| x∗ = 0

,

(5)
d
2w1i(x

∗)

dx∗2
||| x∗ = 0

=K�1

dw1i(x
∗)

dx∗
||| x∗ = 0

.

(6)
d
3w(n+1)i(x

∗)

dx∗3
||| x∗ = 1

=Kt2w(n+1)i(x
∗)
||| x∗ = 1

,

(7)
d
2w(n+1)i(x

∗)

dx∗2
||| x∗ = 1

= − K�2

dw(n+1)i(x
∗)

dx∗
||| x∗ = 1

.

(8)wji(x
∗)
||| x∗ = �j

=w(j+1)i(x
∗)
||| x∗ = �j

= 0,

(9)
dwji(x

∗)

dx∗
||| x∗ = �j

=
dw(j+1)i(x

∗)

dx∗
||| x∗ = �j

,

(10)
d
2wji(x

∗)

dx∗2
||| x∗ = �j

=
d
2w(j+1)i(x

∗)

dx∗2
||| x∗ = �j

,

(11)
d
3wji(x)

dx3
||| x∗ = �j

=
d
3w(j+1)i(x)

dx3
||| x∗ = �j

−
R

EI
.

(12)Va =
EA

8L

[
∫

L

0

(
�W

�x

)2

dx

]2
,

In this study, the time dependence is assumed to be harmonic 
and the transverse displacement W is expanded in the form 
of a finite series of basic spatial functions wi, i = 1, 2, ..., n 
(which represents the linear modes of the beam) and the 
time, one may write:

The following expressions can be written for the potential 
and kinetic energies (as functional involving wi ), when 
W(x, t) is used in the form defined above:

bijkl presents the non-linearity tensor defined as:

kij denotes the rigidity matrix:

and mij stands for the mass matrix:

The coefficients ai are unknowns as well as the frequency �.

Governing Equation

To examine non-linear forced vibrations, consider a uniform 
beam excited by the force F(x, t) over the range S(S repre-
sents the length of the beam or a part of it). The physical force 
F(x, t) excites the modes of the structure via a set of general-
ized forces Fi which depend on the expression for F, the exci-
tation point for concentrated forces, the excitation length for 

(13)Vb =
EI

2 ∫
L

0

(
�2W

�x2

)2

dx,

(14)T =
1

2
�A

[
∫

L

0

(
�W

�t

)2

dx

]
.

(15)W(x, t) = aiwi(x)sin(�t).

(16)Va =
1

2
aiajakalbijklsin

4(�t),

(17)Vb =
1

2
aiajkijsin

2(�t),

(18)T =
1

2
�2aiajmijcos

2(�t),

(19)
bijkl =

EA

4L ∫
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(
�wi
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)(
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)
dx∫

L

0
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)(
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)
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(
�2wi
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)(
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)
dx,

(21)mij = �S∫
L

0

wiwjdx.
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distributed forces, and the mode considered. The generalized 
forces Fi(t) are given by:

The dynamic behaviour of the beam is examined under two 
types of excitation, a centered point force Fc applied at the 
point xf  , and a distributed harmonic force Fd defined by:

� denotes the Dirac function, Fd
i
(t) and Fc

i
(t) are the corre-

sponding generalized forces given by:

It is well known that the dynamic behaviour of a conserva-
tive system may be obtained by applying Hamilton’s princi-
ple, which, by taking into account the forcing term, may be 
written as follows [17]:

where T is the kinetic energy, V is the total stain energy and 
W is the work done by the external load. After calculations, 
the following non-linear system is obtained:

With {�} being the column vector of the basic function con-
tribution coefficients.

For obtaining non-dimensional parameters, one puts:

The dimensionless generalized forces f ∗d
i

 and f ∗c
i

 are given 
by:

(22)Fi(t) = ∫S

F(x, t)wi(x) dx.

(23)Fd(x, t) = f dsin(�t),

(24)Fc(x, t) = f csin(�t)�(x − xf ),

(25)Fd
i
(t) = Fdsin(�t)∫

L

0

wi(x)dx = f d
i
sin(�t),

(26)Fc
i
(t) = Fcsin(�t)wi(x0)dx = f c

i
sin(�t).

(27)� ∫
2�∕�

0

(V − T +W)dt,

(28)[�]{�} +
3

2
[�({�})]{�} − �2[�]{�} = {�}

(29)

w(x) = hw∗
i

(
x

L

)
= hw∗

i
(x∗);

mij

m∗
ij

= �Sh2L;

=
kij

k∗
ij

EIh2

L3
;

�2

�∗2
=

EI

�SL4
.

(30)f ∗d
i

= Fd L4

EIh ∫
1

0

w∗
i
(x∗)dx∗,

(31)f ∗c
i

= Fc L3

EIh
w∗
i
(xf ).

Substituting these notations into (27), one obtains the fol-
lowing non-linear algebraic equation:

which may be written as:

Considering for example the first non-linear mode, previous 
works have shown that the contribution of the fundamental 
mode a1 remains predominant for the whole range of vibra-
tion amplitudes considered. Consequently, the contributions 
of the other modes are denoted �2,… �n instead of a2,… , an , 
to indicate that they are small compared to a1 . According 
to Ref. [12], by separating in the non-linear expression 
aiajakbijkr terms proportional to a3

1
 , terms proportional to 

a2
1
�i , and by neglecting the terms which are proportional to 

a1�i�j and terms proportional to �i�j�k one may write:

In the vicinity of the rth mode, the Eq. (31) can be written 
as follows:

With: [�∗
r
]R = [a∗2

r
b∗
ijrr
]R Eq. 35 is an approximate linear sys-

tem, very easy to solve to get the contribution coefficients to 
the non-linear beam-forced response.

Numerical Results and Discussion

The results presented herein are obtained for a 
clamped–clamped beam resting on two rigid supports 
located at �1 = 1∕3 , �2 = 2∕3 . To obtain both clamped 
ends, the stiffness of the rotational and translational springs 
defined in Fig. 1 is given by:

Table 1 presents the linear frequencies obtained by the 
application of the transfer matrix method. The results are 
compared with those obtained using the finite element 
method, the theory of which is detailed in Ref. [18]. The 
results obtained show a very good agreement since the aver-
age of the relative difference is of the order of 0.01%.

Figure 2 illustrates the comparison between the results 
of the present method and those obtained in Ref. [6], for 
the first non-linear mode shape. the support positions are 
selected as: �1 = 2∕5 , �2 = 3∕5 . It is quite clear that the 

(32)[�∗]{�} +
3

2
[�∗({�})]{�} − �∗2[�∗]{�} = {�∗},

(33)aik
∗
ir
− �∗2aim

∗
ir
+

3

2
aiajakb

∗
ijkr

= F∗
r

r = 1,… , n.

(34)aiajakbijkr = a3
1
b111r + a2

1
�ib11ir r = 1,… , n.

(35)
([�∗

�
]
�
− �∗2[�∗

�
]
�
){�

�
}
�
+

3

2
[�∗

�
]{�

�
}
�
=
{
Fr −

3

2
a3
r
birrr∗

}
.

(36)k�1 = k�2 = ∞,

(37)kt1 = kt2 = ∞.
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results obtained by the present approach show a very good 
agreement with those in Ref. [6] since for amplitudes up to 
twice the beam thickness, the average of relative difference 
does not exceed 1 %.

Figure 3 corresponds to a beam resting on two supports 
with �1 = 1∕3 et �2 = 2∕3 , the hardening type effect of geo-
metrical non-linearity can be clearly observed for various 
vibration amplitudes in Fig. 3a. The Fig. 3b shows that the 
curvatures increase in the vicinity of the clamps. It is quite 
clear that the effect of the rigid support is accentuated with 
the increase of the amplitude of vibration.

Figure 4 shows that for a given amplitude, the frequency 
ratio decreases for each added support. This is due to the fact 
that the denominator, corresponding to the linear frequencies 

increases by adding new supports, due to the increased 
rigidity.

It can be noticed in Fig. 5, that by moving the support 
towards the clamps, the linear frequencies decrease signifi-
cantly, and consequently the corresponding frequency ratio 
increases.

Two scenarios are presented, considering two types of 
excitation: a centered point force applied at the middle of 
the beam (Fig. 6), and a harmonic force uniformly distrib-
uted over the beam length (Fig. 7). These figures illustrate 
the typical behaviour of the Duffing equation. The harden-
ing type effect of geometrical non-linearity can be clearly 
observed for the two scenarios, a behaviour that involves the 
creation of a frequency range in which three amplitudes exist 

Table 1   Eigenvalue parameters 
of a fully clamped beam resting 
on two supports

Modes 1 2 3 4 5 6 7 8 9 10

Present 10.6692 12.8925 14.1901 20.1227 22.2886 23.5596 29.5463 31.7146 32.9868 38.9712
FEM 10.6692 12.8926 14.1901 20.1231 22.2892 23.5604 29.5488 31.7182 32.9911 38.9810

Fig. 2   Comparison of the fre-
quency ratios of a C-SS-C beam 
in the vicinity of the first mode
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Fig. 3   The normalized first 
non-linear mode (a) and the 
associated curvature distribu-
tion (b) of a C-SS-C beam for 
various values of the vibration 
amplitudes
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Fig. 4   Backbone curves of a 
C-SS-C beam, in the vicinity of 
the first mode for three different 
number of supports
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Fig. 5   Backbone curves in the 
vicinity of the first mode for the 
three scenarios considered
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resonance curves obtained for 
three levels of excitation based 
on the multimode approach: 
case of a centered point force
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for a single frequency: a phenomenon characteristic of non-
linear systems commonly called the jump phenomenon [19]. 
Another property of the non-linear systems can be noticed: 
the frequency response functions are not proportional to the 
level of the force applied, whereas it increases by power of 
10.

Table 2 presents the contributions of the 5 symmet-
ric modes. It can be seen that the force excites predomi-
nantly the third mode of vibration. Therefore, an analysis 
is performed in its neighbourhood based on the multimode 
approach.

Conclusion

Foremost, a linear analysis was performed allowing the 
determination of the frequencies and linear mode shapes of 
a multi-span beam. By the use of the transfer matrix method, 
the problem was generalized to give the exact analytic results 
for each possible number of supports. The non-linear vibra-
tion analysis was established, based on the Euler–Bernoulli 
beam theory and the von Kármán geometrical non-linearity 
assumptions. The method was validated through a compara-
tive study with that developed in Ref. [6]. The effect of the 
supports, their positions and their number were examined. 
The presence of an additional support increases significantly 

the linear frequencies, and, consequently, decreases the fre-
quency ratio, which makes it possible to increase the beam 
rigidity with each additional support. By considering the 
multimode approach, an analysis of the dynamic behaviour 
of beams resting on several supports has been established in 
the vicinity of the predominant mode. The response curves 
have been illustrated for two scenarios: the first, the beam 
was excited by a concentric harmonic excitation, in the sec-
ond, by a uniformly distributed force. The results shows the 
particular behaviour of non-linear systems such as the jump 
phenomenon where for the same frequency range, several 
results are possible, as well as the non-proportional evolu-
tion of the frequency response to the intensity of excitation.
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