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Abstract
Purpose  In this paper, a detailed investigation of oscillation behaviors in the non-autonomous Murali–Lakshmanan–Chua 
(MLC) circuit is proposed. The determination of the bifurcation value in the MLC circuit is associated with the two switching 
boundaries leading to different types of nonlinearity in structures. The non-conventional bifurcations in the layer equations 
by switching manifolds are explored. The discontinuous Fold/Fold and Hopf/Hopf periodic vibration mechanisms can be 
well released. The influence of the addition of the second periodic force is also being discussed.
Methods  We use Clarke’s concept of generalised differential to analyze the occurrence of discontinuous Hopf bifurcations. 
The DeMoivre expansion formula and the variable replacing method are used to express the relevant critical manifold. The 
validity for our study is also elucidated by numerical examples of application.
Results  Complex oscillation patterns under periodic perturbation with multiple-frequency signal as well as the underlying 
characteristic properties are demonstrated. The MLC circuit occurs the transitions through the sets of non-smooth bifurca-
tion values leading to complicated wave forms. The addition of second periodic signal will provide the parameter condition 
to acquire more desired periodic vibrations.

Keywords  Murali–Lakshmanan–Chua (MLC) circuit · Non-smooth bifurcation · Periodic vibrations · Multiple frequency, 
switching manifold

Introduction

Feedback control [1–4] allows a system dynamic response 
to be modified without changing any system components. 
However, in an open-loop controller, also called a non-
feedback controller, the control action from the controller 
is independent of the “process output”, which is the process 
variable that is being controlled [5–7]. It does not use feed-
back to determine if its output has achieved the desired goal 
of the input command or process. In these control methods, 

the periodicity and the stability condition of the chaos con-
trolled in nonlinear dynamical systems by periodic perturba-
tion [8, 9] have been investigated in many experiments and 
models from chemistry, physics and neuroscience [10–12].

The Murali–Lakshmanan–Chua (MLC) circuit is a two-
dimensional dissipative circuit system introduced by Murali 
et al. [13, 14] which is a classic configuration of electronic 
circuit having a Chua’s diode as its nonlinearity and the bi-sta-
bility nature clarified by two discontinuous boundaries. Bifur-
cations of equilibriums in non-smooth MLC circuit system are 
related to piecewise smooth maps, which lead to a large variety 
of nonlinear phenomena such as the coexistence of several 
stable states, jump behavior of periodic responses, quasiperi-
odic response and chaotic attractors [15–18]. We restrict our 
discussion to the MLC circuit shown in Fig. 1 with periodic 
perturbation expressed by the set of differential equations,

C
dV

dt
= iL − G(V)
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where C is the capacitor, R is a linear resistor and L is an 
inductor while the nonlinear resistor RN is the Chua’s diode, 
and the corresponding V − i characteristic is given by

The periodic power source is VG = f sin (�t).
By suitably rescaling the variables and parameters, the 

MLC circuit system can be written in dimensionless form

where 𝜔 ≪ 1 is the frequency of the periodic signal and 
g(x) = bx +

1

2
(a − b)(|x + 1| − |x − 1|) . � , ẋ = y − g(x) , a 

and b are rescaled circuit parameters. F > 0 is the forcing 
amplitude. If the frequency of periodic perturbation is of 

(1)
L
diL

dt
= −RiL − v + f sin (�t)

(2)G(V) = P2V +
1

2

(
P2 − P1

)(||V + E0
|| − ||V − E0

||
)

ẋ = y − g(x)

(3)ẏ = −𝛼y − 𝛽x + F1𝜅 + F2 sin
(
𝜔2t

)

order 1, the MLC circuit consisting with the piecewise linear 
element has been reported to possess rich nonlinear dynami-
cal behaviors and observed numerically and experimentally 
[19–21].

All through this paper, we fix the parameter values at 
� = 1.0 , a = −1.02 and b = −0.55 in system (3) to reveal 
the dynamical evolutions in the circuit system. For exam-
ple, chaotic behaviors are presented from the one-parameter 
bifurcation diagram in Fig. 2a for increasing values of the 
driving amplitude F with the specific choice of the parameter 
�= 1.015 and the external frequency � = 0.75 . As shown in 
Fig. 2a, one can identify different attractors as starting from 
the equilibrium branch to a limit cycle, period-3T  orbit and 
then period-doubling sequences to a double-scroll chaotic 
attractors with the variation F in the range (0, 0.5) . Further, 
fixing the driving amplitude at F = 0.45 , we can present a 
typical double-scroll chaotic attractor as shown in Fig. 2b.

What are the mechanisms of the complex trajectories 
appearing the small amplitude oscillations that alternate 
with large relaxation-like oscillations [22–25] in a non-
smooth dissipative and non-autonomous circuit is still an 
open question. The number, amplitude and shape of small 
and large excursions may vary depending on the bifurcation 
of state for various types of periodic response influenced by 
the discontinuous boundaries, which play an important role 
in the analysis of the transition process about the variation 
equations. The goal of this paper is to study such complex 
oscillation patterns under periodic perturbation with multiple 
frequency signal as well as the understanding of the underly-
ing characteristic properties in the non-smooth MLC circuit.

The rest of this paper is organized as follows. In Sect. 2, 
the non-smooth bifurcation for the layer equation and its 
switching properties are discussed. Some computational 
results are given to determine the later localized structures 

Fig. 1   MLC circuit diagram with periodic alternating current source 
VG

Fig. 2   Numerical simulations of the MLC circuit with constant forc-
ing frequency at �= 0.75 and � = 1.015 . a One-parameter bifurca-
tion diagram of (F, x) showing an infinite period bubble and chaotic 

structure by fixing other parameter values of � = 1.0 , a = −1.02 , 
b = −0.55 and � = 0.75 . b Chaotic attractor at F = 0.45
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of large amplitude oscillations on a background of small 
amplitude oscillations. In Sect. 3, we investigate the genera-
tion of some novel periodic attractors with clearly separated 
amplitudes in each periodic cycle. The associated oscillation 
mechanisms are also revealed. Section 4 is devoted to the 
study of the influence on the MLC circuit by the addition 
of the second periodic signal. Irregular periodic oscillation 
modes are found to occur for a wide range of frequencies 
of the additive force. The DeMoivre expansion method and 
the variable replacing technique are used to illustrate two 
different oscillation mechanisms in the non-smooth circuit 
system. A brief conclusion and possibilities of further stud-
ies are discussed in Sect. 5.

Non‑Smooth Bifurcation Analysis 
for the Layer Equations

Complicated nonlinear behaviors in the dissipative chaotic 
MLC circuit may be discussed by the geometric properties 
of non-smooth differential equations. Using the technique 
of fast–slow analysis method combined with the geometri-
cal properties [26–28], several distinct mechanisms may be 
revealed. We can present the fast system as an autonomous 
form, and the discontinuous bifurcations can be discussed 
by using Clarke’s generalized Jacobian matrix [34, 35] in 
the following.

Assume � = sin (�t) in system (3) for 𝜔 ≪ 1 and give the 
autonomous layer equations (fast system),

Referring to the non-smooth or piecewise smooth char-
acteristics represented by G(V) in Eq. (2), two non-smooth 
boundaries �1,2 =

{
(x, y) ∈ R2|x = ±1

}
 can be obtained. 

Consequently, the phase space for the layer equations can 
be divided into three subspaces:

w i t h  t w o  n o n - s m o o t h  b o u n d a r i e s 
�1,2 =

{
(x, y) ∈ R2|x = ±1

}
 . If the variable x passes across 

�1,2 , non-smooth bifurcation on the dynamics will appear, 
which plays an effective role for leading to qualitative prop-
erties of the nonlinear circuit system.

Equilibrium Points and Their Stability

The details of the equilibrium points in each domain can be 
described as: the only equilibrium point E0

(
F�

a�+�
,

aF�

a�+�

)
 in 

ẋ = y − g(x)

(4)ẏ = −𝛼y − 𝛽x + F𝜅

I =
{
(x, y) ∈ R2|x < −1

}
, II =

{
(x, y) ∈ R2||x| < 1

}
,

and, III =
{
(x, y) ∈ R2|x > 1

}

space  I I  and  t he  two  equ i l i b r ium po in t s 
E±

(
F�∓�(a−b)

b�+�
,
bF�±�(a−b)

b�+�

)
 in spaces I and III, respectively, 

the stability of which can be determined by the correspond-
ing eigenvalues of the Jacobian matrix.

For E0 , the Jacobian matrix of J0 at this equilibrium state 
is given by

which yields the characteristic polynomial

The eigenvalues that characterize the equilibrium states are 
given as

Depending on the eigenvalues, the nature of the equilibrium 
states differs. Obviously, if (a − 𝛼)

2 > 4𝛽 , the equilibrium 
E0 will be a saddle, and while if (a − 𝛼)

2 < 4𝛽 , E0 will be a 
focus whose stability may depend on whether a + � is posi-
tive or not.

Then, we consider E± , whose Jacobian matrix can be 
expressed as

which results in the characteristic polynomial

The eigenvalues that characterize the equilibrium states are 
given as

One may derive the stability conditions related to E± , 
from which E± will be stable foci when (b − 𝛼)

2 < 4𝛽 and 
b + 𝛼 > 0 . At this case, the circuit admits self-oscillations 
with natural frequency of 

√
(b−�)2−4�

2
 . It means that at two 

subspaces of S± , the MLC circuit system has the trajectory 
orbits with the same frequency.

When we fix � = 1.015 , F = 0.5 and �= ± 1 in the layer 
Eq. (4), the distribution of equilibrium points is shown in 
Fig. 3. Depending on the eigenvalues by Jacobian matrix, 
the equilibrium points E± in spaces of I and III are stable 
foci, and E0 in space of II is a saddle as depicted in Fig. 3. 
Furthermore, for the equilibrium point which is located by 
the non-smooth boundaries as �1,2 =

{
(x, y) ∈ R2|x = ±1

}
 , 

the dynamics in the vicinity of the equilibrium point cannot 
only be determined by the eigenvalues defined in P0(�) or 
P±(�) , respectively.

(5)J0 =

(
−a 1

−� −�

)

(6)P0(�) = �2 + (a + �)� + a� + �

(7)�
1,2

0
=

−(a + �)

2
±

√
(a − �)

2 − 4�

2

(8)J± =

(
−b 1

−� −�

)

(9)P±(�) = �2 + (b + �)� + b� + �

(10)�1,2
±

=
−(b + �)

2
±

√
(b − �)

2 − 4�

2
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The switching manifolds �1,2 will result in the trajectories 
behaving as a piecewise smooth flows that admit different 
types of non-smooth bifurcations such as boundary equilib-
rium bifurcations, grazing bifurcations or sliding bifurca-
tions et al [29–33]. In order to investigate the evolution of 
the fast system dynamics near the switch boundaries, we 
next consider the occurrence of a discontinuity-induced 
Hopf bifurcation leading to limit cycle motion.

Discontinuity Hopf Bifurcation by the Switching 
Manifolds

The evolution of non-smooth dynamics near the switching 
discontinuities may be investigated by a generalized Jaco-
bian matrix Jq expressed as the following set-valued matrix.

Written explicitly, we have

which results in the generalized characteristic polynomial 
equation

Obviously, discontinuous bifurcations may occur at 
the non-smooth boundaries when the eigenvalues defined 
in (13) pass zero point or pure imaginary axis. When the 
auxiliary variable q = 1 by fixing the parameter values of 
� = 1.015 , we have Pq(�) = P0(�) and the eigenvalues �q 
deduced by the Jacobian matrices J0 are �1

0
= 0.1904 and 

�2
0
= −0.1854 for the subspace II in the central region. On 

the other hand, at q = 0 , we have Pq(�) = P±(�) , and the 

(11)Jq = qJ0 + (1 − q)J±, q ∈ [0, 1]

(12)Jq =

(
−aq + bq − b 1

−� −�

)

(13)
Pq(�) = �2 + (aq − bq + b + �)� + aq� − bq� + b� + � = 0

eigenvalues �q deduced by the Jacobian matrices J± are 
�
1,2

± = −0.2325 ± 0.6227i for the spaces of I and III in the 
both symmetric side regions (as seen in Fig. 4).

For other intermediate values in 0 < q < 1 , the eigenval-
ues � from the Jacobian matrices Jq form a one-dimensional 
path in the complex plane shown as the blue tracks in Fig. 3. 
These generalized eigenvalues are found that they have not 
crossed through the imaginary axis as a conjugate complex 
pair. At the critical value of q = 0.9255 , the fixed points 
will lose the stability and a saddle-node bifurcation occurs 
suggesting that the two fixed points of the nonlinear dynami-
cal system collide and annihilate each other. Following that 
one-dimensional path at that point, we can find the eigen-
value of �q = −0.015 , thereby suggesting the only one stable 
equilibrium point in the fast system.

As the parameter � is reduced maintaining all other 
parameters unchanged, the generalized eigenvalues may 
cross the pure imaginary axis at the non-smooth bounda-
ries which leads to the occurrence of discontinuous Hopf 
bifurcations. As an example of Fig. 5 for � = 0.8 , these 
generalized eigenvalues �q are observed to jump through 
the imaginary axis as a conjugate pair at the critical 
value. As shown in Fig. 5, the fast system has the stable 
foci E± in the subspaces I and III with the eigenvalues of 
�q = −0.1250 ± 0.7378i for the Jacobian matrix Jq at q = 0 , 
while the eigenvalues of �q = 0.11 ± 0.4146i for the Jaco-
bian matrix Jq at q = 1 indicate an unstable focus, the equi-
librium point E0 in the center space II repelling the trajec-
tories away.

Following that one-dimensional path at that critical point 
of q = 0.532 , we can find the eigenvalues of �q = ±0.6i , and 
the fast system will lose the stability of the fixed points and 

Fig. 3   Phase portraits for � = 1.015 of layer equations (4) in the dif-
ferent subspaces about the switching manifolds �1,2 , as we choose 
� = ±1 , respectively

Fig. 4   Schematic diagram of the discontinuous-fold bifurcation for 
� = 1.015 showing the path of eigenvalues � in the complex plane 
parameterized with auxiliary variable of q described by Eq. (13)
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generate the stable periodic motions via the discontinuity. 
For the phase portrait of system (4) at � = 0.8 and � = 0 
plotted in Fig. 6, the trajectory starting from the basin of 

attraction may cycle around the equilibrium point of E0 and 
cross the non-smooth boundaries of �1,2 according to the 
frequency approximated by the discontinuous Hopf bifurca-
tion. Such combined effect of the two different vector fields 
clarified by the switching manifolds is so as to cause the 
birth of periodic orbits.

Periodic Vibrations in the Perturbed System

Based on the results of the stability and bifurcations dis-
cussed above, we begin to investigate periodic cascades of 
oscillations with clearly separated amplitudes [36, 37] in 
the MLC circuit system. Since the periodic force frequency 
is far smaller than the natural frequency of the unperturbed 
system, system (3) may possess the fast variable of x (or 
y ) and exhibit different types of flow relaxations. To reveal 
the non-smooth dynamics in this double-scroll circuit in 
the presence of the perturbation, we fix the parameters at 
F = 0.5 and � = 0.01 in this section.

Figure 7 shows the relaxation flows at � = 1.015 in the 
perturbed system (3) by numerical simulation, in which 
relaxation excursions and small peaks appear alternately in 
one period. Another type of oscillation patterns, an example 
for �= 0.8 , is presented in Fig. 8, in which the trajectories 
clearly move back and forth periodically between the foci 
and the large amplitude cycles controlled by the non-smooth 
boundaries. Non-smooth critical manifolds can be developed 
to compute and visualize geometric structures that shape 
such dynamics in the following.  

Mechanism of Relaxation Flows by Fold Singularities

Non-smooth critical manifold from the fast system (4) can 
be expressed by

where g(x) = bx +
1

2
(a − b)(|x + 1| − |x − 1|) . Due to the 

existence of two non-smooth boundaries, S1 may have singu-
larities with three normally hyperbolic pieces of I, II and III.

(14)S1 =
{
(x, �) ∈ R2|−�g(x) − �x + F� = 0

}

Fig. 5   Schematic diagram of the discontinuous Hopf bifurcation 
for � = 0.8 showing the path of eigenvalues � in the complex plane 
parameterized with auxiliary variable of q described by Eq. (13)

Fig. 6   Phase portraits for � = 0.8 of layer equations (4) crossing the 
different subspaces about the switching manifolds by discontinuous 
singular Hopf as we choose � = 0 in Eq. (4)

Fig. 7   Relaxation flows in 
system (3) for � = 1.015 with 
fixed parameter values � = 1.0 , 
a = −1.02 , b = −0.55 , F = 0.5 
and � = 0.01 . a Phase portraits. 
b Time series
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Figure 9a gives a critical manifold with piecewise lin-
ear shape on the plane of (x, �) at � = 1.015 according to 
Eq.  (14), where the branches Sa± are attracting, and Sr 
is repelling. However, the discontinuity-induced Hopf 
singularities are not observed in this case, while the two 
generic-fold bifurcation points may occur on the non-smooth 
boundaries and separate attracting and repelling sheets of the 
non-smooth critical manifold into three areas. Such generic-
fold points are also called as jump points J1,2 (see Fig. 9), 
where the fast and slow segments are concatenated and the 
trajectory flow is directed away from the boundaries on the 
critical manifold.

We now clarify the mechanism of periodic relaxation 
flows observed in the perturbed system at �= 1.015 with the 
other parameter values of F = 0.5 and �= 0.01 . As shown 
in Fig. 9b, the orbits are drawn in the phase space of (x, �) 
combined with the manifold S1 and the attracting branch 
appears the focus form. Such closed curve is a singular orbit 
composed of two fast trajectories indicated by the horizontal 
double arrows as depicted in Fig. 9b. Meanwhile, the slow 
flow indicated by single arrows surrounding the attracting 
branch of Sa± forms the continuous concatenation flanked 
the non-smooth boundaries, the process of which is belong 
to the rest state.

This slow drift persists until approaching the fold point 
of J1 , where the trajectory flows lose the stability and go 
into the fast process. Upon that, the system jumps toward 

another stable branch with damped oscillations. Then, the 
trajectories slow drift is back to the manifold when the slow 
variable of � reaches the other fold point of J2 which leads 
to the second fast process with the quick jump and another 
cluster of the fast damped oscillations.

Oscillation Mechanism Induced by Discontinuous 
Singular Hopf Bifurcations

Previous studies show that the structures of the attracting 
branch may change with the variation in the parameter 
values of � . The stable limit cycle can exist and affect the 
oscillation modes of the layer Eq. (4). Here, Fig. 10a gives 
another critical manifold with piecewise linear shape at 
� = 0.8 based on Eq. (14). The discontinuous Hopf bifurca-
tion may occur at points H1,2 (see Fig. 10) on the non-smooth 
boundaries which lead to the birth of large amplitude oscil-
lations as the return mechanism involved in the formation of 
complex oscillation modes.

Figure 10b gives numerical simulations about the mecha-
nism of complex oscillation patterns when the discontinu-
ous Hopf bifurcation occurs on the non-smooth boundaries. 
Firstly, the system converges toward the slow manifold in 
the area of I belonging to the part of the rest state. When 
the slow-varying variable of � reaches the non-smooth 
boundaries and the discontinuous Hopf bifurcation at point 
H1 appears, the trajectory undergoes a transition to the limit 

Fig. 8   Oscillation patterns in 
system (3) for � = 0.8 with fixed 
parameter values at � = 1.0 , 
a = −1.02 , b = −0.55 , F = 0.5 
and � = 0.01 . a Phase portraits. 
b Time series

Fig. 9   Oscillation mechanism 
in the MLC circuit system at 
� = 1.015 with other fixed 
parameter values at � = 1.0 , 
a = −1.02 , b = −0.55 , F = 0.5 
and � = 0.01 . a Fast–slow 
decomposition on critical mani-
fold S1 with piecewise linear 
shape. b The periodic vibration 
combined with the switching 
manifold S1
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cycle attractor according to the frequency approximated by 
the discontinuous Hopf bifurcation. The corresponding spik-
ing orbits are drawn in the phase space of (x, �) combined 
with the manifold of S1 , in which a continuation of stable 
limit cycles born between the two Hopf bifurcations at H1,2 
is detected.

Such large amplitude oscillations persist until approach-
ing the next switching boundary at H2 , where the trajectories 
lose stability and go back into the damped oscillations. Then, 
the trajectories slow drift is back to the critical manifold, and 
the attracting branch displays the focus form. Such closed 
curve is due to symmetric singular Hopf bifurcations clari-
fied by the two non-smooth boundaries. These trajectories 
consisting of small amplitude oscillations that alternate with 
large relaxation-like oscillations during each period indicate 
that the transition behaviors are both depended on the sin-
gular Hopf point found in the non-smooth boundaries as it 
allows the reduced flow to cross from the attractive region 
of I to the other attractive region of III repeatedly.

Effect of the Second Periodic Force

A prime advantage of addition of the second sinusoidal force 
is its easy implementability in actual application. One can 
also add a second periodic signal in series with the existing 
one of the MLC circuit model as shown in Fig. 1. Then, 
the system becomes a quasiperiodically driven one with the 
forcing item of f1 sin

(
�1t

)
+ f2 sin

(
�2t

)
 , where the corre-

sponding dimensionless form can be represented by,

where F1 = 0.5 and �1 = 0.01 . Some investigations have 
been carried out in Eq. (15) for a fixed amplitude value of 
the second force F2 = 0.2 and varying the frequency �2 over 
a range. In order to give the description of the distinction 

ẋ = y − g(x)

(15)ẏ = −𝛼y − 𝛽x + F1 sin
(
𝜔1t

)
+ F2 sin

(
𝜔2t

)

that occurs in the system’s dynamics under the second forc-
ing frequency variation, two representative periodic forces 
in values of frequency of the second force can be clarified. 
One case is when the two periodic signals in series have the 
resonant ratio. The other is when there exists a significant 
order gap between �1 and �2.

Oscillation Mechanisms with Two Low‑Frequency 
Periodic Forces

Due to the resonant frequency ratio of the same order, the 
total force can be interpreted as slow-varying incentive 
under the action of periodic effect which leads to complex 
oscillations with apparent fast and slow flows. The decom-
position technique applied here is based on the formula of 
DeMoivre expansion [38]. Without loss of generality, we can 
assume �2 = n�1 and give the expression as,

where the integer k ≤ n.
Here are the concrete instances based on Eq. (16) for 

�2 = 2�1 or �2 = 3�1 as sin
(
�2t

)
= 2 sin

(
�1t

)
cos

(
�1t

)
 

or sin
(
�2t

)
= 3 sin

(
�1t

)
− 4 sin

3
(
�1t

)
 . An appropriate 

scaling of the parameters will help us magnify the transi-
tion process and offer some more perspective. As an exam-
ple of �2 = 2�1 , we assume sin

(
�1t

)
= � and obtain that 

sin
�
�2t

�
= ±2�

√
1 − �2 , which leads to the complex criti-

cal manifold,

where g(x) = bx +
1

2
(a − b)(|x + 1| − |x − 1|) . Due to the 

existence of two non-smooth boundaries, S2 gives a non-
smooth manifold and may have more complex singularities 
with three normally hyperbolic pieces of I, II and III.

(16)sin
(
�2t

)
=

n∑

k=0

(
n

k

)
cosk

(
�1t

)
sin

(n−k)
(
�1t

)

(17)

S2 =

�
(x, �) ∈ R2

����
−�g(x) − �x + F1� ± 2F2�

√
1 − �2 = 0

�

Fig. 10   Oscillation mechanism 
in the MLC circuit system 
at � = 0.8 with other fixed 
parameter values of � = 1.0 , 
a = −1.02 , b = −0.55 , F = 0.5 
and � = 0.01 . a Fast–slow 
decomposition with a critical 
manifold S1 with piecewise 
linear shape. b The periodic 
vibration combined with the 
switching manifold S1
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At � = 1.015 , the sketch of the time series of the oscil-
lation modes in system (15) with two low-frequency forces 
is presented in Fig. 11a. The fast and slow oscillation parts 
connected by catastrophic jumps clarified by the non-smooth 
boundaries appear irregularly in one period. Although the 
attracting branch still appears the form of stable foci, such 
closed curve combined with the non-smooth manifold is 
composed of more complex dynamical properties due to 
the complexity of the critical manifold as shown in Fig. 11b.

As shown in Fig. 11b, when the slow variable of � passes 
through the singular-fold bifurcation clarified by the non-
smooth boundaries at J1,2 , the system undergoes catastrophic 
transitions between area I and area III. One revolution of 
fast and slow flows on such complex critical manifold is 
illustrated in detail of Fig. 11b. What is noteworthy is that 
due to the characteristic of the more complicated manifold 
depicted by Eq. (17), the system will undergo one periodic 
movement with the joint of distinct segments showing small 
oscillations interspersed with large amplitude jumps.

Previous studies have shown that the eigenvalues for the 
generalized Jacobian matrix in the fast system may change 
with the bifurcation coefficient of � . More precisely, the 
repelling part still has saddle properties which are inde-
pendent, while the transition process is by means of the 
discontinuous Hopf bifurcation which induces dense cycle 
motions. In the case of �= 0.8 , Fig. 12 shows the sketch of 

phase portraits of another type of oscillation modes with 
two resonant low-frequency signals as well as time series.

The cycle trajectories are repelled by the saddle causing 
them to cross the non-smooth boundaries and settle down to 
the bilateral equilibrium points of E± , the mechanism of which 
is associated with the singular discontinuous Hopf bifurca-
tions. Thus, the system exhibits the oscillation motions involv-
ing parts of small damped oscillations and parts of large limit 
cycles bifurcated by the discontinuous Hopf bifurcation due 
to the two non-smooth boundaries.

Quasiperiodic Spiking for an Order Gap Between 
Two Frequencies

When an order gap exists between the two external periodic 
forces, the transformation method by expansion formula of 
Eq. (16) can no longer be used for the DeMoivre polynomial in 
the much higher order of n . We can rewrite the system (15) into 
the following fast system by still introducing � = sin

(
�1t

)
,

Introducing the two new variables u = cos
(
�2t

)
 and 

v = sin
(
�2t

)
 into Eq. (15) gives autonomous four-dimensional 

layer equations with an additional equation of u2 + v2 = 1,

ẋ = y − g(x)

(18)ẏ = −𝛼y − 𝛽x + F1𝜅 + F2 sin
(
𝜔2t

)

Fig. 11   Complex relaxation 
flows with multiple frequency 
signals of system (15) at 
� = 1.015 , with other parameter 
values of � = 1.0 , a = −1.02 , 
b = −0.55 , F1 = 0.5 , �1 = 0.01 , 
F2 = 0.2 and �2 = 0.02 . a Time 
series. b The periodic vibration 
combined with the complex 
manifold S2

Fig. 12   Complex oscillation 
patterns with multiple fre-
quency signals of system (15) 
at � = 0.8 , with other parameter 
values of � = 1.0 , a = −1.02 , 
b = −0.55 , F1 = 0.5 , �1 = 0.01 , 
F2 = 0.2 , and �2 = 0.02 . a 
Phase portraits. b Time series
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where (x, y, u, v) ∈ R4 and g(x) = bx +
1

2
(a − b)(|x + 1|

−|x − 1|) . Obviously, the critical manifold is decided by

We remark that the critical manifold defined by S3 
depicted by Eq. (20) has the similar form as S1 depicted 
by Eq. (14). This means that the intersection between the 
stable branch and the slow unstable manifolds (through 
the fold or the discontinuous Hopf singularities) can exist 
in the same way. Moreover, something should be pointed 
out that the existence of the second signal will introduce 
additional frequency as well as the harmonics, which leads 
to the occurrence of local cycles as slow stable branches 
with the second frequency of �2.

ẋ = y − g(x)

ẏ = −𝛼y − 𝛽x + F1𝜅 + F2v

u̇ = −𝜔2v

(19)v̇ = 𝜔2u

(20)S3 =
{
(x, �) ∈ R2||−�g(x) − �x + F1� = 0

}

As an example of �2 = 1 and � = 1.015 in the fast sys-
tem (18), the distribution of two stable local limit cycles is 
shown in Fig. 13. We can easily find that the area of the local 
cycle orbits scale is in accordance with the variation in the 
second signal. When we further investigate such multiple 
frequency signal-driven system (15), the phase portraits of 
non-smooth dynamics by the addition of the second periodic 
force are presented in Fig. 14a.

One may easily find that there is an oscillation of large 
amplitude with fast transitions between the two clusters of 
local cycle orbits. Moreover, we can find that in addition to 
the second signal, the two local cycles will go through saddle-
node bifurcation of period orbits (fold-cycle bifurcation) at the 
non-smooth boundaries. This resulting singularity-induced 
dynamics can be called as discontinuous fold-cycle bifurca-
tion Sa1,2 for the local cycle orbits which cross the boundaries 
and evolve to large amplitude oscillations (see Fig. 14b).

Figure 14b shows one revolution of the trajectories in 
detail. Before the left of the fold-cycle point ( Sa1 ) induced 
by the boundary �1 , the periodic oscillation in the area I 
is the only attractor corresponding to the quasi-stationary 
manifold. Beyond Sa1 , the local cycle orbits become unsta-
ble causing the oscillations to increase until the orbits are 
finally attracted by the local cycles in the area III. When the 
trajectories pass the other fold-cycle point ( Sa2 ) induced by 
the boundary �2 , the orbits with the small amplitude oscil-
lations will increase again and jump back to the left to begin 
the next revolution. The large amplitude oscillations are indi-
cated by the double arrows corresponding to the spiking 
process.

According to the classification scheme of oscillation 
mechanisms given by Izhikevich et al. [39–42], the nature 
of such dynamical behaviors is associated with the sym-
metric discontinuous fold-cycle spiking mode since the large 
amplitude oscillations terminate at discontinuous fold-cycle 
bifurcations.

Previous studies have shown that as the bifurcation 
parameter � is reduced, the generalized eigenvalues of fast 
system (18) without regard to the second force may cross 
the pure imaginary axis at the non-smooth boundaries which 

Fig. 13   Phase portraits showing two symmetric local cycles at 
� = 1.015 in fast system (18) with the second frequency at �2 = 1 
clarified by the switching manifolds as we choose �= ± 1 , respec-
tively

Fig. 14   Periodic oscillations 
with multiple frequency signals 
of system (15) at � = 1.015 , 
with other parameter values of 
� = 1.0 , a = −1.02 , b = −0.55 , 
F1 = 0.5 , �1 = 0.01 , F2 = 0.2 
and �2 = 1 . a Phase portraits. 
b The periodic vibration com-
bined with the manifold S3 on 
the plane of (x, �)



576	 Journal of Vibration Engineering & Technologies (2020) 8:567–578

1 3

leads to the occurrence of a discontinuous Hopf bifurcation. 
As we take into account the second periodic force and fetch 
values at � = 0.8 in fast system (18) of the second frequency 
of �2 = 1 , we can present quasiperiodic behaviors in Fig. 15 
at �= 0 as well as the two stable local cycle orbits at � = ±1 
distributed in regions I and III. These quasiperiodic trajecto-
ries pass through all the three regions of the state space and 
enclose the two local cycle orbits.

The quasiperiodic oscillations exhibited by the non-
autonomous fast system can be explained by the discontinu-
ous Hopf bifurcation as suggested by the eigenvalues for 
the Jacobian matrices. This discontinuous Hopf bifurcation 
leads to the birth of periodic motion which is combined with 
the periodically forced vibration introduced by the second 
signal with the frequency of �2 and the harmonic, thereby 
forming the quasiperiodic motions.

In order to determine the nature of the non-smooth 
dynamics affected by the second periodic force, we present 
the sketch of phase portraits as well as time series in Fig. 16 

for � = 0.8 in system (15). Note that, the fast transitions will 
happen near the neighborhood of the non-smooth boundaries 
causing the quasiperiodic oscillations via the discontinuous 
Hopf bifurcation. More precisely, the clusters of large cycle 
oscillations still remain in the area of II along with the two 
non-smooth boundaries, while the small cycle oscillations 
occur and go around the bilateral equilibrium points on the 
areas of both sides. From such dynamical system structure, 
the difference is that these driven dynamics are more sophis-
ticated than those observed previously because the quasi-
periodic spiking modes exist due to discontinuity-induced 
Hopf bifurcations.

Conclusions

The transitions through the sets of non-smooth bifurca-
tion values may lead to complicated dynamics such as the 
coexistence of bilateral local cycles and the abrupt jumps or 
hysteresis cycles in the MLC electronic circuit. Relaxation 
trajectories with complicated waveforms are observed under 
the influence of periodic perturbation during one period. A 
small number of well-chosen examples of various kinds of 
nonlinear dynamics have been followed by a discussion of 
the non-smooth bifurcation phenomena in hand, and a brief 
introduction to the mathematical tools associated with the 
MLC electronic circuit has been developed to study these 
phenomena.

The discontinuous bifurcations in layer equations associ-
ated with the switching manifolds are analyzed by the gen-
eralized Jacobian matrix. A prime advantage of periodic 
perturbations is that they can evoke so complex oscilla-
tory patterns consisting of large amplitude oscillations that 
alternate with slight oscillations. It could be easy to observe 
this phenomenon and implement in many actual electronic 
systems as the MLC circuit. The addition of second peri-
odic signal will provide more parameter condition, namely 
amplitude and frequency. One can choose suitable values 
of the second perturbation to acquire more desired periodic 

Fig. 15   Phase portraits showing the quasiperiodic orbits and local 
cycle orbits at � = 0.8 in fast system (18) with the second frequency 
at �2 = 1 clarified by the switching manifolds as we choose � = 0 and 
�= ± 1 , respectively

Fig. 16   Complex quasiperiodic 
spiking behaviors with multiple 
frequency signals of system (15) 
at � = 0.8 , with other parameter 
values of � = 1.0 , a = −1.02 , 
b = −0.55 , F1 = 0.5 , �1 = 0.01 , 
F2 = 0.2 and �2 = 1 . a Phase 
portraits. b Time series
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vibrations. To investigate the feature of such complex oscil-
lation patterns in more non-smooth and non-autonomous 
chaotic systems is one of our attractive following research 
topics.
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