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Abstract
Purpose  To develop a new analytical model for vibration analysis of cracked-submerged orthotropic micro-plate affected 
by fibre orientation and thermal environment.
Methods  The proposed analytical model is based on Kirchhoff’s classical thin plate theory and the size effect is introduced 
using the modified couple stress theory. Effect of crack is deduced using appropriate crack compliance coefficients based on 
line spring model while the effect of thermal environment is introduced in terms of thermal in-plane moments and forces. 
The coupling of shear and normal stresses for fibre orientation is represented using the coefficient of mutual influence. The 
fluid forces associated with its inertial effects are added in the governing differential equation to incorporate the fluid–struc-
ture interaction effect.
Results  The results are presented for frequency response as affected by different fibre orientation, crack length, crack location, 
level of submergence, temperature variation and material length-scale parameter for simply supported boundary condition. 
Furthermore, to study the phenomenon of shifting of primary resonance in a cracked micro-plate, the classical relations for 
central deflection of plate is also proposed.
Conclusions  The results show that the fundamental frequency of micro-plate decreases by the presence of crack and thermal 
environment and this decrease in frequency is further intensified by the presence of surrounding fluid medium in present 
study. Another important conclusion is that with increase in temperature variation the reduction in frequency at 45° of fibre 
orientation is less when compared to 0 and 90° for both intact and cracked orthotropic plates.

Keywords  Crack · Fibre orientation · Fluid · Micro-plate · Thermal environment

Introduction

In recent decades, orthotropic plates and shells are widely 
used as essential structural components in marine engineer-
ing applications which expose them to work under fluidic 
medium of varying temperature with unwanted intensity of 
high vibrations. Thus, the knowledge of the vibration char-
acteristics of such structures under fluidic medium with tem-
perature variation is important for their reliability evalua-
tion. It becomes more interesting to understand the effect 
of temperature under fluidic medium when these structures 
contain various flaws in the form of holes and cracks. As 
per the literature, it is seen that researchers have analysed 
the vibration problems of intact plates in the presence of 
thermal and fluidic environments individually. However, the 
studies on analysis of cracked orthotropic plates including 
the effect of thermal environment and fluidic medium are 
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insignificant. From the literature, it is observed that the pres-
ence of irregularities in a plate makes its dynamic behaviour 
drastically different from that of an intact one. To find the 
analytical solution of cracked thin plates, researchers have 
used the famous line spring model (LSM). This model was 
originally proposed by Rice and Levy [1], their concept of 
the LSM was based on Kirchhoff’s thin plate theory and 
they represented the partial crack as continuous line spring 
with stretching, bending and twisting compliances. Further, 
to simplify the line spring model, King [2] used linear alge-
braic equations rather than coupled integral equations and 
proposed a simplified line spring model. Zeng and Dai [3] 
employed simplified LSM in their modelling of a cracked 
rectangular plate to determine the stress intensity factors at 
the crack tips. Solecki [4] employed the Navier’s solution 
and finite Fourier transformation technique to construct an 
analytical model for vibration problem of cracked isotropic 
plates. Liew et al. [5] investigated the upper bound solutions 
for fundamental frequencies of plate using the Ritz method 
including the domain decomposition technique. Malhotra 
et al. [6] performed the frequency analysis of orthotropic 
plate using the Rayleigh–Ritz method. They studied the 
variation of fundamental frequency as affected by the fibre 
orientation for various boundary conditions and for various 
orthotropic materials. Using the LSM, the first approximate 
mathematical model for vibration problem of cracked iso-
tropic plates is developed by Israr et al. [7], they used the 
relationship between bending and tensile stresses at far sides 
of the plate and at the crack area to introduce the effect of 
crack on governing equation of an isotropic plate. They stud-
ied the variation of crack length on the frequency response 
of plate for different boundary conditions. By extending the 
work of Israr et al. [7], a new model for a partially cracked 
rectangular isotropic plate with variably oriented crack is 
developed by Ismail and Cartmell [8]. It is concluded from 
their work that the natural frequencies of cracked plate 
decreases when crack length and its orientation increases. 
Taking the consideration of thermal effects, Joshi et al. [9, 
10] have presented an analytical solution for buckling and 
vibration analysis of isotropic [9] and orthotropic [10] plate 
with surface and internal cracks. Soni et al. [11, 12] studied 
the effect of fluidic medium on vibration characteristics of 
cracked isotropic [11] and magneto-electro-elastic (MEE) 
[12] plates by incorporating the inertial effect of fluids forces 
on previously developed models. Recently Lai and Zhang 
[13] studied the buckling and vibration response of ortho-
tropic and isotropic cracked plate under thermal effects using 
discrete singular convolution (DSC) method. They also 
proposed the relation for critical buckling temperature of 
cracked orthotropic and isotropic plate.

The fluid–structure interaction (FSI) problems have been 
receiving wide attention in current decades. In the litera-
ture, it is observed that the phenomenon of fluid–structure 

interaction significantly influences the vibration response 
of a structure. The first classical approach for FSI prob-
lem was given by Lamb [14]. He employed a hypothetical 
approach for computing the vibration response of a circular 
plate coupled with fluid. The created technique was based on 
the evaluation of rise in kinetic energy of surrounding fluid. 
Muthuveerappan et al. [15] employed the experimental tech-
nique to determine the fundamental frequencies of the intact 
cantilever plate submerged in water. They studied the effect 
of plate aspect ratio and thickness ratio on the fundamental 
frequencies of submerged plate. To determine the funda-
mental frequency of plate in water from the frequency of 
the plate in vacuum, Kwak [16] proposed an approximation 
for virtual added mass incremental factor using Rayleigh’s 
method. In the same way, to determine the fundamental 
frequencies of annular plate in contact with fluid, Amabili 
[17] used the virtual added mass approach of Kwak [16]. To 
study the vibration response of intact plates vibrating under 
fluid, Haddara and Cao [18] have given an approximate rela-
tion for the virtual added mass. Their results are investigated 
experimentally as well as analytically for different submer-
gence levels and boundary conditions. Based on Sander’s 
shell theory and FEM technique, Kerboua et al. [19] devel-
oped an analytical model for free vibration problems of iso-
tropic plate coupled with water. It has given the ease to study 
the plate–fluid interaction problems. Using the Mindlin’s 
plate hypothesis for deriving the model, Hosseini-Hashemi 
et al. [20] developed an analytical model for thick horizontal 
plates which are submerged in fluid partially and totally. 
Vibration problems of plates considering the effect of both 
crack and fluidic medium are found in few investigations 
(Refs. [21–23]). The effect of through-crack on the vibration 
characteristics of a circular plate coupled with fluid is shown 
in the analysis of perforated plates using the finite element 
method (FEM) by Liu et al. [21]. Similarly, the effect of 
fluidic medium and side crack on fundamental frequency 
of cracked circular and rectangular plates vibrating under 
water is given by Si et al. [22, 23] using the computational 
approach of FEM.

Similarly, for the effect of thermal environment on vibra-
tion problems of plates, it is seen that the presence of ther-
mal stress decreases the stiffness of plate which results in 
the reduction of natural frequency. Yang and Shen [24] have 
given the results for natural frequency of FGM plates sub-
jected to thermal environment. In their work, the effect of 
rise in temperature, boundary condition and volume fraction 
index are considered as input parameters and they presented 
the effect of these above parameters on frequency of plate 
using higher order theories. Jeyaraj et al. [25] worked on 
the computational approach-based ANSYS and SYSNOISE 
to find the acoustic response and vibration attributes of an 
isotropic plate under certain temperature variation. Con-
tinuing their work they further analysed both responses 
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for a composite plate including internal material damping 
employing laminated plate theory [26]. The analysis of 
vibration problems being functionally graded plates exposed 
to thermal heating is stated by Li et al. [27]. Three-dimen-
sional theory of elasticity to model the FGM plates in close-
ness of thermal environment is employed by them. Using 
the finite element method, Viola et al. [28] also practised 
on vibration analysis of cracked composite plate. Detailed 
study on vibration and buckling analyses of a functionally 
graded plate consists of internal discontinuities in form of 
cracks using FEM and first-order shear deformation (FSDT) 
theory is carried out by Natarajan et al. [29]. They showed 
the outcome of increment in crack length and temperature 
gradient on the natural frequency of the cracked plate.

The dynamics of vibrating structures submerged in fluid 
is a fundamental research problem and caters the wide 
engineering applications from aerodynamics to biosensors. 
Micro-machined plates are used as biosensors, micro-reso-
nators, actuators, atomic force microscopes (AFMs), micro-
switches, etc. It has been vastly accepted that the mechani-
cal behaviours of small-scale structures are size dependent. 
It is found in the literature that as the structure dimensions 
diminish to the order of micro-/nano-scale, the effect of 
structure size plays a significant role in the correct exami-
nation of such structures. According to previous laboratory 
research, the classical continuum theory is unable to take 
account of size effects in the analysis of the behaviour of 
micro/nano structures. Thus, over the years, non-classical 
theories such as nonlocal theory, strain gradient theory and 
modified couple stress theory have been used by researchers 
to study the microstructures. Since these micro-sized struc-
tures often undergo dynamic loading and are regularly sub-
jected to external environment such as thermal environment, 
knowledge of vibration characteristics become important to 
improve upon reliability of their design. In the recent litera-
ture on investigation of microstructures, it has been estab-
lished that it alters the vibration response of plate structures 
[30–36]. Out of different theories which dominate the size 
effect on the analysis of the gradient elastic plates, among 
them, Mindlin and Eshel [37] proposed the strain gradient 
theory (SGT) to analyse the effect of microstructure. They 
(Ref. [37]) proposed a single length-scale parameter to 
catch size effect of microstructure in their expanded theory. 
Papargyri-Beskou and Beskos [38] established a sixth-order 
governing equilibrium equation of force and moment on gra-
dient elastic plate. Extending their work, Papargyri-Beskou 
et al. [39] practised the principle of virtual work to draft the 
same problem for distinct possible boundary aspects. The 
bending analysis of a thin isotropic rectangular plate based 
on the second gradient theory is performed by Mousavi and 
Paavola [40]. In their developed model, they considered 
parameter of two length scale to capture size consequence 
and to make the model more competent. Akgöz and Civalek 

[41, 42] presented the analytical solutions for bending, vibra-
tion and buckling problems of micro-sized plates based on 
modified couple stress theory [41] and modified strain gra-
dient theory [42]. In their work, they performed a detailed 
parametric study to demonstrate the effect of length-scale 
parameter, length-to-thickness ratio on buckling load, deflec-
tion, and fundamental frequencies of micro-plates. A new 
mathematical model for micro-plates based on the modified 
couple stress theory (MCST) is established by Tsiatas [43] 
and Tsiatas and Yiotis [44]. In their work, they examined 
distinct isotropic [43] and orthotropic [44] plates of numer-
ous shapes and dimensions to figure out the effectiveness of 
their suggested model (MCST) in contrast with the Kirch-
hoff’s plate model. Extending their work, Tsiatas and Yiotis 
[45] also studied the static, dynamic and buckling analyses 
of orthotropic micro-plates based on MCST and nonlocal 
elasticity theory. Adopting the MCST of Tsiatas [43], Yin 
et al. [46] likewise worked on the vibration problems of 
micro-plates. In their research, they used a material-scale 
parameter to demonstrate the size outcome of microstruc-
ture. After evaluating the results for two distinct theories 
(MCST and CPT), they achieved that the results attained 
from MCST are always greater as compared to CPT. Ebra-
himi and Barati [47] worked on buckling analysis of func-
tionally graded (FG) nanobeams using nonlocal third-order 
shear deformation beam theory. They studied the thermal 
effects on buckling response of the nanobeams subjected to 
various types of thermal loading. Based on Euler–Bernoulli’s 
beam theory, Akgöz and Civalek [48] and Demir and Civalek 
[49] have investigated the buckling and bending behaviour of 
micro-beams for various types of boundary conditions. They 
(Ref. [48]) studied the effects of additional material length-
scale parameters, material property variation function and 
slenderness ratio on the buckling response of FGM micro-
beams and also compared the results for different non-clas-
sical theories. Extending the work of Ref. [48], Mercan and 
Civalek [50, 51] and Mercan et al. [52] have also analysed 
the buckling response of boron nitride nanotubes (BNNTs) 
[50], silicon carbide nanotubes (SiCNTs) [51] and nanowires 
(SiCNWs) [52] considering the size effect of microstructure 
using different size-dependent continuum theories. They 
determined their critical buckling load as affected by dif-
ferent geometrical quantities/parameters. Numanoglu et al. 
[53] investigated the longitudinal free vibration behaviours 
of nanorods based on Eringen’s nonlocal theory. Effects of 
nonlocal parameter, attachments, boundary conditions, and 
length on the natural frequencies of nanorods are studied in 
detail in their study. In the new governing equation of motion 
based on Hamilton’s principle, Gao and Zhang [54] used a 
material length scale steady to catch the size significance of 
microstructure. They also figure out that their outcomes for 
natural frequency achieved by the non-classical plate model 
(MCST) are greater than that of the classical plate model 
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for thin plates. Most recently, Gupta et al. [55] produced an 
analytical model for vibration problem of a partially cracked 
thin isotropic and functionally graded cracked micro-plate 
using the LSM. They used classical plate theory (CPT) in 
conjunction with MCST and accomplished that their out-
comes for fundamental frequencies are consistently higher for 
modified couple stress theory. Moreover, they demonstrated 
the significance of fibre orientation on vibration attributes of 
cracked orthotropic micro-plate [56].

It is well known from the literature (Ref. [57]) that the 
vibration response of a submerged micro-plate is extensively 
influenced by fluid loading due to its inertial effects. Also, 
in the case of a generally orthotropic micro-plate, the stiff-
ness can be significantly altered by varying fibre orientation 
which is again reflected in the vibration response. Further, 
the vibration response is also dependent on the external 
environment such as thermal environment. Thus, the aim of 
the present work is to combine the research in these related 
areas and present comprehensive effect of microstructures, 
thermal environment, partial crack, surrounding fluid, fibre 
orientation on the vibration and deflection of the generally 
orthotropic micro-plate.

The present non-classical model extends the work of 
Refs. [56, 58] and narrows down the gap in the recently 
developing area of vibration analysis of cracked plates by 
addressing the following:

1.	 Vibration analysis of partially cracked orthotropic sub-
merged plate based on the Kirchhoff’s thin plate theory 
as affected by the fibre orientation and thermal environ-
ment is proposed.

2.	 The proposed model is further extended for the case of 
orthotropic micro-plate with fibre orientation based on 
the non-classical modified couple stress theory.

3.	 The classical relation for central deflection of cracked 
orthotropic submerged plate which shows an important 
phenomenon of a shift in primary resonance due to fibre 
orientation, crack, temperature, and material length-
scale parameter.

4.	 The effect of fibre orientation, level of submergence, 
temperature rise, material length-scale parameter, crack 
length and crack location on fundamental frequency as 
well as central deflection of cracked orthotropic sub-
merged plate is studied in the presence of thermal envi-
ronment for simply supported boundary condition.

5.	 The present work presents a comparison of classical 
plate theory and modified couple stress theory for vibra-
tion of partially cracked orthotropic micro-plate in the 
presence of thermal and fluidic environments.

In the present study, an analytical model has been pre-
sented for cracked orthotropic rectangular plate in light of a 
non-classical approach. The moment equilibrium equations 

for cracked orthotropic plate are derived by taking the 
consideration of thermal environment and microstructure. 
The effect of crack is introduced in the form of additional 
membrane force and bending moment using the line spring 
model. The effect of fluidic medium is integrated in the 
model in the form of added virtual mass with the help of 
Bernoulli’s equation and velocity potential function. Fig-
ure 1 shows the plate configuration in which the in-plane 
dimensions of the plate are taken as L1 and L2 in x- and 
y-directions separately. The plate thickness is denoted by h. 
Figure 2a is the length of crack at plate centre and the depth 
of the crack is less than the thickness. d is the offset distance 
between plate centre and the crack centre along the x-axis. 
To study the effect of various parameters such as rise in 
temperature, crack length, crack location, fibre orientation, 
material length-scale parameter and level of submergence on 
fundamental frequency, SSSS (all sides simply supported) 
boundary condition is considered in the present work. The 
central deflection of the cracked plate has also been stud-
ied as affected by length of crack, location of crack, fibre 
orientation, temperature variation and material length-scale 
parameter. A comparison of these results with the classical 
plate theory has also been established.

Governing Equation

The governing differential equation of an intact and cracked 
orthotropic plate under influence of thermal environment 
and based on the approach of classical thin plate theory has 
been thoroughly treated in Refs. [9, 10], respectively. In this 
section, a new governing equation for a partially cracked 
orthotropic submerged plate with various fibre orientations 
subjected to thermal environment is derived based on a non-
classical plate theory of elasticity. The assumptions consid-
ered in the derivation are customarily according to classical 
plate theory for thin plates (Refs. [56, 59]).

The constitutive relations for a thin orthotropic lamina 
considering the temperature gradient and fibre orientation 
have been obtained in Ref. [60]; based on the assumptions 
taken in the present study, such relations for an orthotropic 
lamina with uniform temperature rise can be given as

where x, y and �xy are the mid-plane strains. Ex,Ey,Gxy, �x 
and �y are the elastic constants. �x , �y and �xy are the thermal 

(1)

Ex =
�x

Ex

− �y

�y
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− mx�xy + �xΔT

Ey = −�x
�x
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�y

Ey

− my�xy + �yΔT

�xy = −mx�x − my�y +
�xy
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+ �xyΔT

⎫
⎪⎪⎪⎬⎪⎪⎪⎭

,
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expansion coefficients. The expressions for coefficient of 
thermal expansion can be stated as

where mx and my are the coefficients of mutual influence 
which depends on the material elastic constants and fibre 
orientation angle and represents the coupling of the shear 
and normal stresses. The relations for the coefficients of 
mutual influence can be stated as [60]

where mx and my will vanish for fibre orientations � = 0° and 
� = 90° and, therefore, for the fibre orientations � = 0° and 
90°, there is no extensional shear coupling [60]. For other 
than these fibre orientations, there exist six elasticity moduli: 
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,

E1,E2,Ex,Ey,G12,Gxy . The representation of these elasticity 
constants can be found in Refs. [56, 60].

The mid-surface strains in the terms of transverse deflec-
tion can be stated as

Using Eqs.  (1)–(4), the relationship for the normal 
stresses ( �x, �y ) and the in-plane shear stress ( �xy ) can be 
written as

(4)

Ex = −z
�2w

�x2
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�2w

�y2

�xy = Gxy(−2z)
�2w

�x�y

⎫
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.

Fig. 1   a Partially cracked 
orthotropic submerged plate 
showing fibre orientation. b 
Plate configuration showing 
offset distance ‘d’
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On integrating Eqs. (5)–(7) over the plate thickness, we 
obtain the expressions for bending and twisting moments as

where

(7)
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In the above equations, Mx , My and Mxy are the internal 
bending and twisting moments and MTx, MTy and MTxy are 
bending and twisting moments due to thermal environment.

Consider a cracked orthotropic submerged plate element 
as shown in Fig. 2. The internal forces and bending moments 
acting on the mid-plane of the plate are considered as per 
Kirchhoff’s plate theory [59]. My*, Mx* and Mxy∗ = Myx∗ 
denote the bending moments and twisting moments. M−y 
represents the additional bending moment due to the crack 
(Refs. [61, 62]).

On resolving the internal forces along the z-direction and 
taking moment about x- and y-directions, we get the follow-
ing equilibrium equations:

where Qx and Qy are the transverse forces. �h �2w

�t2
 denotes 

the inertia force of vibrating plate. ΔP is the fluid dynamic 
pressure difference between the upper ( Pu ) and lower ( Pl ) 
surfaces of the plate. � and h are the density and thickness 
of plate and pz represents the transverse load per unit area.

MTy =

h∕2

∫
−h∕2

Ey

(1−�x�y)

⎛
⎜⎜⎝
(�xmx+my)(�xyΔT+mxEx�xΔT)�

1

Gxy
−m2

x
Ex

� +
�
�x�x + �y

�
ΔT

⎞
⎟⎟⎠

1 −
Ey(�xmx+my)

(1−�x�y)
�

1

Gxy
−m2

x
Ex

�
�
my + mx�y

Ex

Ey

� zdz,

MTxy =

h∕2

∫
−h∕2

ΔT(�xy+mxEx(�x+�y�y)+myEy(�y+�x�x))
(1−�x�y)

1

Gxy

−
mxEx(�ymy+mx)+myEy(�xmx+my)

(1−�x�y)

zdz.

∑
Fz = 0,

(12)
�Qx

�x
+

�Qy

�y
= �h

�2w

�t2
+ ΔP − pz,
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Taking moment equilibrium about the x- and y-axis one 
obtains

where

(13)
�My∗

�y
+

�Mxy∗

�x
+

�M−y

�y
= Qy,

(14)
�Mx∗

�x
+

�Myx∗

�y
= Qx,

(15)Mx∗ = Mx +Ml
x
,

(16)My∗ = My +Ml
y
,

(17)Mxy∗ = Mxy +Ml
xy
,

where Ml
y
 , Ml

x
 and Ml

xy
= Ml

yx
 are the extra bending and twist-

ing moments per unit length due to the effect of microstruc-
ture. The detailed description for Eqs. (15)–(17), addition of 
Ml

x
 , Ml

y
 and Ml

xy
 to internal bending and twisting moments 

( Mx , My and Mxy ) based on the modified couple stress theory 
can be referred in Appendix A.

From Eqs. (12), (13) and (14), one obtains

On expressing the bending and twisting moments of 
Eq. (18) in terms of transverse deflection from Eq. (8) to 
Eq.  (11), the governing equation of cracked orthotropic 
micro-plate can be given as

(18)

�2Mx∗

�x2
+ 2

�2Mxy∗

�x�y
+

�2My∗

�y2
+

�2M−y

�y2
= �h

�2w

�t2
+ ΔP − pz.

Fig. 3   In-plane forces for the 
cracked orthotropic plate as 
affected by thermal environment

(19)
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+
2
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}

1
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−
mxEx(�ymy+mx)+myEy(�xmx+my)
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+
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)
+

(�xmx+my)
1

Gxy
−m2

x
Ex

(
2

�4w

�y3�x
+ mxEx
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)}

1 −
Ey(�xmx+my)

(1−�x�y)
(

1

Gxy
−m2

x
Ex

)
(
my + mx�y

Ex

Ey

)

= −�h
�2w

�t2
− ΔP + pz −

�2MTx

�x2
−

�2MTy

�y2
−

�2MTxy

�x�y
+

�2M−y

�y2
,
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where Dx =
Exh

3

12(1−�x�y)
 and Dy =

Eyh
3

12(1−�x�y)
 are the flexural 

rigidities of an orthotropic plate in x- and y-directions and 
Dx =

Exl
2h

2(1+�x)
 and Dy =

Eyl
2h

2(1+�y)
 are the additional flexural/

bending rigidities due to the microstructure.
The in-plane forces considered for the cracked ortho-

tropic plate are shown in Fig. 3. It is well known from the 
literature (Refs. [9, 10]) that the in-plane forces produced 
by the transverse deflection introduces non-linearity to the 
governing equation but does not affect the plate’s stiffness. 
In this present work, the in-plane forces induced only due to 
temperature variation are considered. Taking the summation 
of the in-plane forces along z-axis, we get

where NTx , NTy and NTxy represent the in-plane compres-
sive forces due to the uniform temperature rise of plate and 
Ny is the additional in-plane force due to the line crack [7, 
9, 10]. On adding the in-plane forces given by Eq. (20) in 
Eq. (19), the governing equation of the cracked orthotropic 
plate considering the effect of couple stress, fibre orientation 
and thermal environment can be stated as

Crack Terms

The crack terms ( my and ry ) are obtained using Line Spring 
Model (LSM) given by Rice and Levy [1]. The LSM can 
convert a complicated surface crack problem into a plane 
strain one and bring the net ligament stresses to the neutral 

(20)

∑
Fz(x, y) = −NTx

�2w

�x2
− NTy

�2w

�y2
− 2NTxy

�2w

�x�y
− N−y

�2w

�y2
,

(21)
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)
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1
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y
Ey

)
(
mx + my�x

Ey

Ex

)

+

2
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(
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(
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)
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−
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+
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�4w

�y4
+ �x

�4w
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)
+

(�xmx+my)
1

Gxy
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x
Ex

(
2

�4w
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+ mxEx
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)}

1 −
Ey(�xmx+my)

(1−�x�y)
(

1

Gxy
−m2

x
Ex

)
(
my + mx�y

Ex

Ey

)

= −�h
�2w

�t2
− ΔP −

�2MTx

�x2
−

�2MTy

�y2
+

�2My

�y2
− NTx

�2w

�x2
− NTy

�2w

�y2
− 2NTxy

�2w

�x�y
− N−y

�2w

�y2
+ Pz.

plane of the plate and replacing the constraints due to the 
net ligament by some bending and membrane stresses on 
the crack location. Israr et al. [7] proposed the relationship 
of tensile and bending stresses at far edges of plate and at 
crack tips for an isotropic plate. These relations were fur-
ther modified and applied to a specially orthotropic plate by 
Joshi et al. [63]. Extending their work Joshi et al. [9] have 
also derived the above relationship in the presence of tem-
perature variation for the isotropic plates. Similar relations 
for the partially cracked orthotropic plate incorporating the 
moments and in-plane forces due to temperature variation 
and internal microstructure can be presented as

where the terms �tt, �bb, �bt = �tb are crack compliance 
coefficients for stretching, bending and tensile bending, 
respectively. These coefficients depend on crack depth (d) 
to thickness (h) ratio and vanish when d = 0. The required 
expressions for compliance coefficients as a function of 

crack depth to plate thickness ratio (� = d∕h) can be written 
as (Ref. [7])

(22)M−y = −
2a

3

(
�bt

6
+ �bb

)(
3 + �x

)(
1 − �x

)
h + 2a

My∗,

(23)N−y =
2a(

6�bt + �tt
)(
1 − �2

x

)
h + 2a

NTy,

�tt = 1.154�2[1.98 − 0.54� + 18.65�2 − 33.70�3

+ 99.26�4 − 211.90�5 + 436.84�6

− 460.48�7 + 289.98�8],
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It is to be noted that these above expressions for compli-
ance coefficients are valid only for (� = d∕h) values within 
the range 0.1–0.7 and in the present model, � is taken 0.6.

To introduce the effect of location of crack on frequency 
under thermal environment, the values of the above crack 
compliance coefficients is to be multiplied by a factor (
2∕

√
�

(
�

�

))
exp

(
−

(
(�−�c)

2
L2
1(

�

�

)
))

 , here �c = d∕L1 is the 

eccentricity ratio, d is the offset distance between centre of 
the crack and centre of the plate, � = (h∕L1) and 
� = (a∕L1) . Similar treatment to introduce the effect of 
crack location can be found in the work of Bose et al. [64] 
and Gupta et al. [56, 61, 62]. Hence, the effect of change in 
crack location is taken into consideration by suitably modi-
fying the crack compliance coefficients.

Fluid Terms

Consider a cracked plate element submerged in fluid hori-
zontally as shown in Fig. 1. On expressing the velocity 
potential function in terms of Laplace equation and then 
using Bernoulli’s equation for the fluid dynamic pressure at 
fluid–plate interaction, we obtained the following expres-
sions for the dynamic pressure acting on the plate’s upper 
surface ( Pu ) and lower surface ( Pl ) as [19] (the detailed deri-
vation for fluid modelling can be referred from Appendix B)

�bb = 1.154�2[1.98 − 3.28� + 14.43�2 − 31.26�3

+ 63.56�4 − 103.36�5 + 147.52�6

− 127.69�7 + 61.50�8],

�bt = �tb = 1.154�2[1.98 − 1.91� + 16.01�2 − 34.84�3

+ 83.93�4 − 153.65�5 + 256.72�6

− 244.67�7 + 133.55�8].

(24)Pu = −
�f

�

[
1 + Ce2�h1

1 − Ce2�h1

]
�2w

�t2
,

where C =
ga�−�

2

ga�−�
2
 in which � denotes the frequency of wave 

motion at free surface of fluid and ga is the acceleration due 
to gravity. �f  is fluid density per unit volume and � is plane 
wavenumber which is taken as independent of boundary 
condition and it can be determined as � = �

√
1

L2
1

+
1

L2
2

 (Refs. 

[19, 11]). The approximate value of C = −1 is taken in the 
present work to avoid the influence of non-linearity on 
plate–fluid interface (Ref. [19]). Here �

2w

�t2
 represents the iner-

tia of the surrounding fluid that forces it to oscillate when 
the plate vibrates. h1 is the height of fluid above the surface 
of plate whereas h2 is the level of fluid below the plate 
surface.

For fully submerged plate, the net fluid dynamic pressure 
can be determined using Eqs. (18) and (19). The resulting 
fluid dynamic pressure difference (ΔP) for the submerged 
plate can given as

where madd = −
�f

�

[
1+Ce2�h1

1−Ce2�h1
−

1+e−2�h2

1−e−2�h2

]
 is the additional vir-

tual mass of submerged plate due to surrounding fluid. Thus, 
for the case of submerged plate vibrations, the mass of the 
plate is increased due to a layer of fluid vibrating with the 
plate. This added mass is referred to as virtual added mass.

On employing Eqs. (22), (23) and (27) in Eq. (21) and 
stating the moments M∗

y
 in terms of transverse deflection 

( w ), from Eqs. (16) and (10) we get the required governing 
equation of motion of cracked orthotropic plate as

(25)Pl = −
�f

�

[
1 + e−2�h2

1 − e−2�h2

]
�2w

�t2
,

(26)ΔP = Pu − Pl = −
�f

�

[
1 + Ce2�h1

1 − Ce2�h1
−

1 + e−2�h2

1 − e−2�h2

]
�2w

�t2
,

(27)ΔP = madd

�2w

�t2
,
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Solution of Governing Equation

The presence of external environment-like rise in tempera-
ture has been included in the governing differential equa-
tion of cracked orthotropic submerged plate in the form 
of thermal bending moments and in-plane compressive 
forces. The present work restricts itself to the solution of 
governing equation for the case of uniformly heated plates 
( MTx = MTy = 0 ). Since, in majority of engineering applica-
tions thin plate structures having good thermal conductivity 
are used, there is a little temperature gradient along the plate 
thickness and they can be considered as uniformly heated 
plates. The constant in-plane compressive forces arising due 
to temperature are only considered for making the model 
geometrically linear. The modal functions which depend on 
the boundary conditions can be selected for the general solu-
tion of governing equation as

In the above equation, Xm and Yn are the modal functions 
which depend on the boundary conditions of the cracked 

(28)
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(29)w(x, y, t) =

∞∑
n=1

∞∑
m=1

AmnXmYn�mn(t).

plate under the fluidic medium, Amn is arbitrary amplitude 
and �mn(t) is the time-dependent modal term. The modal 
functions Xm and Yn for the two boundary conditions con-
sidered in this work can be found from the literature (Refs. 
[7, 9, 10]). For uniform heating of the plate, the constant 
in-plane forces in terms of lateral deflection can be stated 
as [10]

On substituting Eqs. (29) and (30) in Eq. (28) and mul-
tiplying Eq. (28) by XmYn and then integrating over whole 
plate area, the governing equation of submerged orthotropic 
cracked plate considering the thermal effects can be written 
as

(30)
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On neglecting the point load pz for free vibration analysis, 
Eq. (31) can be expressed in the form of famous Duffing 
equation as

(31)
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From Eq.  (32), the fundamental frequency can be 
obtained as �2

mn
= Kmn∕Mmn.

Relation for Central Deflection of Plate

Consider a cracked orthotropic submerged plate with all 
sides simply supported, subjected to a lateral uniformly 

distributed dynamic load (Pz) harmonically varying with 
time. For a plate in the absence of thermal moments 
( MTx = MTy = MTxy = 0 ) and the presence of constant in-
plane forces ( NTx and NTy ) due to thermal environment only 
[Eq. (30)], the governing equation (28) becomes
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Table 1   Comparison of 
frequency parameter for intact 
and cracked orthotropic plate in 
vacuum

L1/L2 = 1, ΔT = 0

Frequency parameter 
�
�h�2

mn
L4
1
∕
√
DxDy

�

Length-scale parameter (l) Fibre angle (β) Intact Cracked

a = 0 m a = 0.01 m a = 0.05 m

Present Ref. [56] Present Ref. [56] Present Ref. [56]

l = 0 m (CPT) 0 20.03 20.03 19.89 19.89 19.59 19.59
15 21.85 21.85 21.61 21.61 21.21 21.21
30 25.08 25.08 24.84 24.84 24.46 24.46
45 26.55 26.55 26.32 26.32 25.93 25.93
60 25.08 25.08 24.83 24.83 24.34 24.34
75 21.85 21.85 21.41 21.41 20.44 20.44
90 20.03 20.03 18.86 18.86 15.94 15.94

l = 0.001 m (MCST) 0 20.48 20.48 20.33 20.33 20.02 20.02
15 22.16 22.16 21.91 21.91 21.50 21.50
30 25.31 25.31 25.05 25.05 24.67 24.67
45 26.75 26.75 26.51 26.51 26.12 26.12
60 25.31 25.31 25.05 25.05 24.55 24.55
75 22.16 22.16 21.71 21.71 20.72 20.72
90 20.48 20.48 19.27 19.27 16.28 16.28

Table 2   Comparison of 
fundamental frequency 
parameter 

�
�mnL

4

1

√
�h∕D

�
 for 

cracked isotropic plate as a 
function of fluid level and half 
crack length. (l = 0, ΔT = 0)

SSSS all sides simply supported, CCSS two adjacent edges clamped and the other two simply supported

B.C. Half crack 
length (a) (m)

Horizontally submerged in water

h
1

L
1

= 0.1
h
1

L
1

= 0.2
h
1

L
1

= 0.3

Present Ref. [11] Present Ref. [11] Present Ref. [11]

SSSS 0.00 8.773 8.773 8.123 8.123 7.826 7.826
0.01 8.554 8.554 7.921 7.921 7.631 7.631
0.05 8.073 8.073 7.475 7.475 7.201 7.201
0.10 7.806 7.806 7.228 7.228 6.963 6.963

CCSS 0.00 12.598 12.598 11.666 11.666 11.239 11.239
0.01 12.243 12.243 11.337 11.337 10.922 10.922
0.05 11.455 11.455 10.607 10.607 10.219 10.219
0.10 11.016 11.016 10.200 10.200 9.827 9.827
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Assuming the solution for lateral deflection as

where � is the vibrational frequency. Now for the case 
of forced vibrations, the applied lateral dynamic load 
Pz = Pz(x, y, t) can be expressed as

with ∅ being the forcing frequency of the load. Substituting 
the general solution of lateral deflection (w) from Eq. (34) 
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(37)Pz(x, y, t) = Pmn sin
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)
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)
,

with � being replaced by ∅ and the lateral dynamic load ( Pz ) 
from Eq. (35) into the governing equation (33) results in an 
expression for Wmn . Thus, the classical relation for central 
deflection of cracked orthotropic submerged plate subjected 
to uniform heating can be proposed as

(38)Wmn =
Pmn

I − C − T −
(
�h + madd

)
�2

,
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Fig. 4   Fundamental frequency (rad/s) as affected by temperature (ΔT) for various fibre orientations (β°) (l = 0.001 m, for in fluid—h1/L1= 0.1)
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where

For a special case of a square plate with side L1 and 
m = n = 1 , the central deflection W11 takes the form which 
clearly shows the presence of crack ( C11 ) and temperature 
( T11 ) terms:
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where

(39)W11 =
P11

I11 − C11 − T11 −
(
�h + madd

)
�2

,
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Fig. 5   Fundamental frequency (rad/s) for intact and cracked orthotropic plate as affected by material length-scale parameter l (m) for various 
fibre orientations (β) (ΔT = 2 °C, for in fluid—h1/L1= 0.1)
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The results for central deflection of a cracked orthotropic 
submerged plate without influence of thermal environment 
(∆T = 0), Eq. (39) can be expressed as

Similarly, the result for central deflection of a uniformly 
heated intact orthotropic submerged plate without influence 
of any crack (a = 0), Eq. (39) can be expressed as

where
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The result for central deflection of an intact orthotropic 
submerged plate without influence of any crack (a = 0), 
thermal environment (∆T = 0) and fibre orientation ( � = 0°), 
Eq. (39), can be expressed as
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The central deflection ratio Wcracked
11

/
W intact

11
 can be 

obtained by dividing Eqs. (40) and (42) as

or
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 is the natural frequency of intact 

orthotropic submerged plate.
Similarly, the central deflection ratio Wheated
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be obtained by dividing Eqs. (41) and (42) as
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Fig. 6   Fundamental Frequency (rad/s) of an intact and cracked orthotropic submerged plate as affected by temperature (ΔT) and internal length-
scale parameter (l) for different level of submergence (β = 45°, for cracked—a = 0.05 m)
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Fig. 7   Fundamental frequency (rad/s) of orthotropic submerged plate as affected by temperature (ΔT) and internal length-scale parameter l (m) 
(β = 45°, h1/L1= 0.1)

Table 3   Fundamental frequency for a cracked orthotropic plate as 
affected by crack location and temperature variation for different fibre 
orientation in vacuum (a = 0.2 m, l = 0.001 m)

Fundamental frequency (ωmn)

ξc Fibre angle (β) Rise in temperature (ΔT)

ΔT = 0 °C ΔT = 1 °C ΔT = 2 °C ΔT = 3 °C

0 0 322.169 303.961 284.590 263.801
15 346.129 335.631 324.794 313.582
30 397.537 390.086 382.491 374.742
45 420.856 415.067 409.196 403.239
60 394.492 387.815 381.021 374.104
75 328.542 317.578 306.222 294.428
90 238.362 206.110 167.768 117.519

0.1 0 324.451 306.938 288.363 268.507
15 348.555 338.704 328.559 318.090
30 399.758 392.821 385.759 378.565
45 423.283 417.855 412.355 406.782
60 397.918 391.626 385.230 378.726
75 336.193 326.144 315.775 305.054
90 265.194 239.062 209.698 175.488

0.2 0 325.217 307.924 289.600 270.036
15 349.439 339.806 329.892 319.670
30 400.582 393.819 386.939 379.933
45 424.160 418.852 413.477 408.030
60 399.101 392.931 386.663 380.292
75 338.695 328.927 318.860 308.464
90 273.366 248.826 221.585 190.488

Table 4   Fundamental frequency for a cracked orthotropic submerged 
plate as affected by crack location and temperature variation for dif-
ferent fibre orientation (a = 0.2 m, l = 0.001 m, h1/l1 = 0.1)

Fundamental frequency (ωmn)

ξc Fibre angle (β) Rise in temperature (ΔT)

ΔT = 0 °C ΔT = 1 °C ΔT = 2 °C ΔT = 3 °C

0 0 78.255 73.832 69.127 64.077
15 84.075 81.525 78.892 76.169
30 96.562 94.752 92.907 91.025
45 102.226 100.820 99.394 97.947
60 95.822 94.200 92.550 90.870
75 79.803 77.140 74.381 71.517
90 57.898 50.064 40.751 28.545

0.1 0 78.809 74.555 70.044 65.220
15 84.664 82.271 79.807 77.264
30 97.101 95.416 93.701 91.954
45 102.815 101.497 100.161 98.807
60 96.654 95.126 93.572 91.993
75 81.661 79.220 76.702 74.098
90 64.416 58.068 50.936 42.626

0.2 0 78.995 74.795 70.344 65.592
15 84.879 82.539 80.131 77.648
30 97.301 95.659 93.987 92.286
45 103.029 101.739 100.434 99.111
60 96.942 95.443 93.921 92.373
75 82.269 79.896 77.451 74.926
90 66.401 60.440 53.823 46.269
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Results and Discussion

In this section, new results for fundamental frequency and 
central deflection of a cracked orthotropic submerged plate 
as affected by crack length ( a ), crack location ( �c ), fibre 
orientation (�) , level of submergence ( h1∕L1 ), rise in tem-
perature (ΔT) and microstructure ( l ) are presented for SSSS 
boundary condition. The orthotropic plate under considera-
tion is made up of Boron Epoxy; the material properties 
are considered same as that used in Refs. [10, 56]: Ex = 208 
× 109 Pa, Ey = 18.9 × 109 Pa, �1 = 0.23 , �2 = 0.0208 , 
G12 = 5.7 × 109 Pa and ρ = 2000 kg/m3. The coefficients 
of thermal expansion taken are �x = 7.10e − 06∕◦C and 
�y = 2.3e − 05∕◦C . The fluid density is 1000 kg m−3. The 
dimensions of reservoir tank are 5 m × 5 m × 5 m. The 
depth of crack is 0.006 m and the plate thickness is 0.01 m 
throughout this work. The plate dimensions are taken as 
L1 = L2 = 1 m. As the literature lacks in the results for ortho-
tropic submerged plate, validation of the present model is 
done with the cracked orthotropic plate in vacuum medium. 
Table 1 represents the results for frequency parameter of an 
intact and cracked orthotropic plate for various fibre orienta-
tions and length-scale parameters. The material constants of 
plate for this validation (Table 1) are taken from Ref. [56]. 
Results in Table 1 shows that the present outcomes are in 
exact agreement with the existing results which verifies the 
correctness of the proposed model.

To compare the effect of level of submergence (flu-
idic medium), the present model is applied for a partially 
cracked isotropic submerged plate and the compared results 
for fundamental frequency parameter are shown in Table 2. 
The material constants and plate dimensions for results in 
Table 2 are taken from Ref. [11]. Again, the results are in 
exact agreement with the existing results which indicates 
that the proposed model deduces to the model developed by 
Ref. [11] when applied for an isotropic plate. In the absence 
of fluidic medium, the results for fundamental frequency of 
especially orthotropic cracked plate as affected by thermal 
environment can be found in the literature (Ref. [10]). The 
present model reduces to the one presented by Ref [10] when 
applied for a cracked orthotropic plate in the absence of flu-
idic medium with fibre orientation at 0° and 90°. Therefore, 
such validation is omitted here.

Figure 4 shows new results for the variation in fundamen-
tal frequency of intact and cracked orthotropic plates with 
fibre orientations ( � = 0–90°) and temperature ( ΔT = 0–8 °C) 
for two different surrounding mediums (vacuum and fluid). 
It is well known that, for a square intact orthotropic plate, 
the fundamental frequency increases gradually from fibre 
orientation 0° to 45° (maximum) and is symmetric for 
45°–90°. A similar trend is seen in the present results for an 
intact orthotropic plate (Fig. 4a, c), for both the surrounding 

mediums when the fibres are oriented from 0° to 90°. But 
in case of the cracked plate (Fig. 4b, d), it is observed that, 
due to presence of crack, the pattern of frequency variation 
for various fibre orientations is not symmetrical about 45°. 
This is because the crack under consideration is parallel to 
either edges of the plate and for every fibre orientation the 
stiffness is differently affected. In Fig. 4b, d it is clearly seen 
that stiffness is least affected when fibres are at 0° and most 
when fibres are at 90°, i.e. crack is across the fibres which 
satisfies one’s physical understanding. Literature shows that 
the rise in temperature of cracked isotropic plate reduces 
its frequency (Ref. [9]). Such a reduction in frequency is 
due to decrease in stiffness which is also observed to be 

Fig. 8   Central deflection ratio W11
cracked/W11

intact versus the normalized 
operational frequency ( ∅/ω)2 for various values of crack length (a) in 
metres. (ΔT = 0, β = 0°, l = 0 m)

Fig. 9   Central deflection ratio W11
cracked/W11

intact versus the normalized 
operational frequency ( ∅/ω)2 for various values of fibres angle (β°) 
(ΔT = 0, a = 0.01 m, l = 0 m)
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valid for cracked orthotropic plate in both the vacuum and 
fluid medium in present case. It is interesting to see from 
Fig. 4a–d that with every fibre orientation, the reduction in 
frequency with uniform rise in temperature (∆T = 0–8 °C) 
is different. It is noted that the reduction in frequency at 45° 
of fibre orientation is less when compared to 0° and 90° for 
both intact and cracked orthotropic plates, it is due to the 
thermal stresses induced for a given temperature at 45° fibre 
orientation is less as compared to 0 and 90° and hence the 
reduction in the stiffness due to temperature is lesser at 45°.

Again it is also observed from Fig. 4a, b (in vacuum) 
and Fig. 4c, d (in fluid) that the frequencies are reduced 
in fluidic medium as compared to plate in vacuum. This is 

because of the virtual added mass ( madd ) due to surround-
ing fluid which increases the overall mass ( Mmn ) of coupled 
system as shown in Eq. (33), thus validating one’s physical 
understanding. Similar type of variation in frequencies due 
to fluidic medium is also evident in the works of Ref. [11] 
for isotropic plates thereby validating the present variations 
for orthotropic plate.

By employing the modified couple stress theory, the 
variation in fundamental frequency of an intact and cracked 
orthotropic plate with internal length-scale parameter (l) is 
shown in Fig. 5. It is seen that for a given fibre orienta-
tion angle as the material length-scale parameter increases 
(l = 0–0.003 m) the fundamental frequency also increases, 
such increase in frequency is due to the contribution of 
microstructure to the flexural rigidity of the plate. It can be 
noted that classical plate theory under-predicts the frequency 
in the case of a micro-plate and the difference in both the 
theories is noticeable. Figure 5c, d shows such variation is 
observed to be valid for the case of intact and cracked ortho-
tropic submerged plates also. Therefore, the consideration of 
microstructure in terms of material length-scale parameter 
is significant. It is important to mention that the frequency 
decreases due to the presence of crack whereas it increases 
when the internal length-scale parameter is considered. 
From Figs. 4 and 5 it is found that the effect of variation 
in temperature and length-scale parameter on fundamental 
frequency for a given fibre orientation is same for submerged 
plate as well as plate in vacuum. Such similarity is due to 
the assumption that the rise in temperature and length-scale 
parameter does not affect the virtual added mass ( madd).

The comparison of variation in fundamental frequency 
as affected by temperature and internal length-scale param-
eter for various level of submergence is shown in Fig. 6 

Fig. 10   Central deflection ratio W11
cracked/W11

intact versus the normalized 
operational frequency ( ∅/ω)2 for various values of crack location (ξc) 
(a = 0.2 m, ΔT = 0, β = 0°, l = 0 m)

Fig. 11   Central deflection ratio W11
heated/W11

intact versus the normalized 
operational frequency ( ∅/ω)2 for various values of temperature ΔT. 
(a = 0 m, β = 0°, l = 0 m)

Fig. 12   Central deflection ratio W11
cracked/W11

intact versus the normalized 
operational frequency ( ∅/ω)2 for various values of internal mate-
rial length-scale parameter (l) in metres. (ΔT = 0, a = 0.01 m, β = 0°, 
z = 0 m)
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for a fixed fibre orientation ( � = 45°). It is observed from 
Fig. 6a–d that for a given temperature difference and length-
scale parameter, as the plate goes deeper into the fluid tank, 
i.e. with the increase in depth of submergence, the frequency 
of the plate decreases for both intact and cracked plates. 
This is due to the resistance offered by the fluid medium 
in the form of dynamic pressure to the vibratory motion of 
plate. As the submerged plate goes deep into the fluid, the 
mass of fluid layer vibrating with the plate increases thereby 
increasing the virtual added mass or the total mass of the 
coupled system. Such a phenomenon of variation in fre-
quency is also found in Refs. [20, 11] for intact and cracked 
isotropic plates, respectively. It is seen from Fig. 6a, b that 
for a given level of submergence, as the temperature of plate 
is increased from ΔT  = 0–20 °C, the frequency is decreased, 
which is again due to the decrease in the thermal stiffness of 
the plate which further reduces the overall plate’s stiffness. 
It is interesting to see from Fig. 6b that for the cracked plate 
at a fixed level of submergence, the reduction in frequency 
as affected by temperature variation is found to be more 
when compared to intact plate (Fig. 6a). The reason behind 
such reduction in frequency is for an intact plate, decrease in 
stiffness is only due to thermal stress but for a cracked plate, 
it is due to thermal stresses as well as due to effect of crack. 
This interaction between the crack and temperature is clearly 
shown by the third term in the expression for plate’s stiffness 
[Eq. (34)]. Thus, it is concluded that the presence of thermal 
environment and crack in an orthotropic plate can severely 
affect the fundamental frequency of plate. Again, it is seen 
from Fig. 6c, d that for a given level of submergence as the 
internal length-scale parameter increases (l = 0–0.003 m), 
the fundamental frequency also increases due to the effect 
of microstructure.

From Fig. 7a, b, it is observed that for a given length-
scale parameter, the fundamental frequency decreases with 
the increase in temperature (ΔT = 0–20 °C). It is found that 
for higher values of length-scale parameter (l = 0.01), the 
effect of increase in temperature on frequency reduces; this 
is because of the substantial contribution of material length-
scale parameter to the stiffness.

Tables 3 and 4 show the results for fundamental frequency 
as a function of crack location and temperature variation for 
cracked plate vibrating in vacuum and fluid, respectively. 
Plate dimension considered are L1 = L2 = 1 m for both the 
tables and all the results are obtained for SSSS boundary 
condition. The crack length is kept constant at a = 0.2 m and 
internal material length-scale parameter at l = 0.001 m. It 
is seen from both the tables that as the crack moves away 
from the centre the fundamental frequency increases, this 
is because the crack at centre of the plate affects the stiff-
ness to maximum as compare to other locations. A similar 
phenomenon was seen in Ref. [56] in the absence of thermal 
environment. Thus, it can be concluded that for the case of 

thermal environment also, the crack at the centre affects the 
fundamental frequency more when compared to crack at any 
other location. Again, it is seen that the crack location affects 
the stiffness most for the fibre orientation 90° (crack across 
the fibres) and least for 0° (crack parallel to the fibres). It is 
because the crack is parallel to either edges of the plate and 
with every orientation of fibre plate’s stiffness is differently 
affected. From Tables 3 and 4, it is also found that the effect 
of crack locations on fundamental frequency for a given tem-
perature and fibre orientation is same for submerged plate 
and plate in vacuum. This is due to the assumption that the 
crack terms do not affect the virtual added mass ( madd ) of 
plate.

Figure 7 represents the variation of ratio of deflection of 
cracked plate to intact orthotropic plate. To investigate the 
primary resonance, the ratio of forcing frequency to fun-
damental frequency of intact plate based on strain gradi-
ent theory is varied from 0.92 to 1.04. It is interesting to 
note that the presence of crack shifts the primary resonance 
and it takes place well below �∕� = 1 . This is due to the 
reduction in plate’s stiffness due to centrally located crack. 
Similarly, the effect of fibre orientation and crack location 
on deflection of cracked plate is shown in Figs. 9 and 10, 
respectively. The results for variation of deflection ratio of 
heated intact plate to intact plate with respect to the ratio of 
forcing frequency and fundamental frequency are shown in 
Fig. 11. With the rise in temperature of plate, it is known 
that the fundamental frequencies decrease; such a fact seen 
in the literature is validated from the results of Fig. 11. As 
expected, the rise of temperature decreases the fundamental 
frequency of plate thereby increasing the deflection. The 
shift in primary resonance can be ascribed to the decrease 
in plate’s stiffness due to temperature rise. Figure 12 shows 
the ratio of deflections Wcracked

11
∕W intact

11
 versus 

(
�∕�

)2 for 
various values of length scale of microstructure (l). It is 
seen that increasing values of l result in shifting the pri-
mary resonance position of the classical case ( �∕� = 1 ) to 
higher values of ( �∕� ). The shift in primary resonance can 
be attributed to the increase in stiffness due to internal length 
scale of microstructure. Thus, it can be concluded that the 
primary resonance occurs at higher values of forcing fre-
quency ( ∅ ). As per the authors’ knowledge, Figs. 8, 9, 10, 11 
and 12 along with Eqs. (38–45) present first time the effect 
of crack length, crack location, fibre orientation, temperature 
and length scale of microstructure on deflection and primary 
resonance of cracked orthotropic submerged plate.

Conclusions

Micro-sized structures such as micro-plate have recently 
emerged as promising frequency sensing devices. In prac-
tice, these micro-plates are often operated under different 
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surroundings such as fluidic medium and thermal environ-
ment. For, e.g. a micro-plate when used as a bio-sensor needs 
to interact with biological particles in natural fluid–thermal 
environment. When these micro-plates are used as frequency 
sensing devices, they usually undergo dynamic loading and 
when submerged in fluidic medium they also bear fluid iner-
tial loads. Due to such dynamic loading, micro-plates are 
prone to develop flaws such as cracks, this is in line with 
one’s physical understanding and hence, it is necessary to 
predetermine its characteristics at the design level.

To cater the above problem, on the basis of classical plate 
theory and modified couple stress theory, vibration and 
deflection analyses of submerged orthotropic micro-plate 
with arbitrarily located crack are investigated in the pres-
ence of thermal environment. For this purpose, the govern-
ing differential equation is derived following the equilibrium 
principle and analytically solved for the simply supported 
boundary condition. A classical relation for central deflec-
tion of cracked plate affected by forcing frequency, crack 
length and its location, temperature, material length-scale 
parameter and fibre environment is also deduced in the pre-
sent work.

The effects of crack length, crack location, fibre orien-
tation, level of submergence, material length-scale param-
eter and thermal environment are examined in detail for 
boron-epoxy orthotropic micro-plate. It is established that 
the fundamental frequency of plate decreases by the pres-
ence of crack and thermal environment and this decrease 
in frequency is further intensified by presence of surround-
ing fluid medium in the present study. It is further observed 
that the presence of centrally located crack affects the fre-
quency differently for each fibre orientation. It is because 
the crack is assumed to be parallel to either edge of the plate 
and with every orientation of fibre plate’s stiffness is differ-
ently affected. Another important conclusion is that with the 
increase in temperature variation the reduction in frequency 
at 45° of fibre orientation is less as compared to 0 and 90° 
for both intact and cracked orthotropic plate. It is known 
from the strength point of view that 45° fibre orientation 
makes the plate stronger and the present work proves this to 
be true for orthotropic micro-plate in the presence of par-
tial crack, fluid and thermal environment. Few results are 
presented in tabular and graphical form to show the com-
parative differences between the results obtained by classical 
plate theory and modified couple stress theory.

The rise in temperature and increase in crack length shifts 
the resonance to lower values of forcing frequency whereas 
the increase in fibre orientation and length-scale parameter 
shift the resonance to higher values. It is also seen that as 
the crack moves away from centre the resonance also shifts 
to higher values of forcing frequency, this is because the 
crack at centre of plate affects the frequency to maximum 
as compared to other locations.
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Appendix A

From the literature review, it is seen that many research-
ers used strain gradient (higher order) theories [38, 40, 46, 
65–67] to consider the size effect of microstructure in form 
of length-scale parameter. Among them Tsiatas [43] and Yin 
et al. [46] proposed a new non-classical Kirchhoff’s plate 
model with a single internal material length-scale parameter 
for the analysis of isotropic micro-plates based on the simpli-
fied couple stress theory of Yang et al. [67].

In the simplified couple stress theory, the strain energy 
density (U) in three-dimensional body occupying a volume 
V bounded by the surface G is given by Yang et al. [67] as

where

are the strain tensor ( �ij ) and the symmetric part of the cur-
vature tensor ( ℵij ), respectively, uij is the displacement vector 
and �ij is the rotation vector which can defined as

where eijk is the permutation symbol.
As per modified couple stress theory, the stress tensor 

( �ij ) and the deviatoric part of the couple stress tensor ( mij ) 
can be expressed as (Ref. [43])

where � and �o are the Lamé constants, �ij is the Kronecker 
delta. Equations (50) and (51) described the two dimen-
sional state of stress. From Eq. (51) it is observed that the 
couple stress tensor mij is symmetric and from Eq. (48) the 

(46)U =
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2 ∫
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𝜎ij𝜖ij + mijℵij

)
dV ,

(47)�ij =
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+

�uj

�i

)
,

(48)ℵij =
1

2

(
𝜕𝜃i

𝜕j
+

𝜕𝜃j

𝜕i

)
,

(49)�i =
1

2
eijk

�uk

�j
,

(50)�ij = ��kk�ij + 2�o�ij,

(51)mij = 2𝜇ol
2ℵij,
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curvature tensor ℵij is also symmetric. That is, only the sym-
metric part of the rotation gradient and the symmetric part of 
displacement gradient contribute to the deformation energy 
(Ref. [67]) which is dissimilar from that in the classical cou-
ple stress theory.

In the work of Tsiatas [43], after the suitable replacement 
of the Lamé constants by the modulus of elasticity E and the 
Poisson’s ratio � , the stress tensor ( �ij ) and the couple stress 
tensor ( mij ) is expressed as

where G = E∕2(1 + �) is the shear modulus, l is a material 
length-scale parameter and ℵij is the curvature tensor.

From Eqs. (52) and (53), the expression for the bending 
moment and couple moment tensors can be written as [43]

Expressing the curvature and strain tensors in form of 
lateral deflection of isotropic plate we have (Ref. [43])

where D =
Eh3

12(1−�2)
 is the flexural rigidity of the isotropic 

plate and Dl =
El2h

2(1+�)
 shows the bending rigidity due to cou-

ple stress of micro-plate and l is a material length-scale 
parameter. This Dl also shows the contribution of rotation 
gradients to the bending rigidity.

Tsiatas [43] employed the Gauss divergence theorem to 
the total potential energy of a deformable body and arrived 
at the expression of bending moment which shows two 
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,

components of bending; (i) the bending due to microstruc-
ture and (ii) pure plate bending. This expression for moment 
can be written as

From the above expression, it is seen that the effect of micro-
structure in the form of a single material length-scale param-
eter “l”, contributing to the bending moment and increasing 
the flexural rigidity by Dl =

El2h

2(1+�)
 . The advantage of the 

modified couple stress theory developed by Tsiatas [43] is 
that a single parameter can capture the microstructure effect 
and its contribution to the flexural rigidity can be easily cou-
pled with the rigidity used in classical plate theory. It is 
important here to note that Yin et al. [46] employed the addi-
tional rigidity ( Dl ) due to microstructure in their analysis of 
dynamics of micro-plate. The present work employs the 
additional flexural rigidity established by Tsiatas [43] for 
isotropic plate and applies it to the case of cracked ortho-
tropic submerged plate in the presence of thermal 
environment.

Appendix B

Soni et al. [11] have formulated the fluid forces in form of 
virtual added mass using potential flow theory and pre-
sented the influence of fluid medium on vibration response 
of cracked isotropic plate. They used the velocity potential 
function along with Bernoulli’s equation to express the fluid 
dynamic pressures acting on the plate. Similar approach 
has been adopted here to find the fluid pressure for cracked 
orthotropic plate with the following assumptions:

1.	 The fluid flow is assumed to be small, incompressible, 
homogeneous and irrotational.

2.	 The dynamic fluid pressure is normal to the surface of 
the plate and shear forces are neglected as the fluid is 
inviscid.

3.	 Interaction between the cracked plate and fluid and 
influence of non-linearity at plate–fluid interface is 
neglected.

4.	 As the orthotropic plate is considered thin, the effect 
of fluid forces is ignored in the derivation of in-plane 
forces.

5.	 The fluid behaves like a thermal reservoir and the rise in 
temperature does not affect the fluid properties.

M∗
ii
= Mii +Ml

ii
= −

(
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)(�2w
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+ �
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)
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= Mij +Ml

ij
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(
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)
(1 − �)

�2w

�i�j
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The velocity potential function �(x, y, z, t) satisfying the 
Laplace’s equation can be expressed in the Cartesian coor-
dinate system as

Using Bernoulli’s equation, the fluid dynamic pressure at 
any point of plate–fluid boundary can be given by

where �f  is fluid density per unit volume.
Assuming � be the function of two discrete variables.

where S(x, y, t) and F(z) are the two discrete functions.
For the assumption of permanent contact between the 

surface of the plate and fluid layer, the kinematic bound-
ary conditions at the fluid–plate interface can be written as 
(Ref. [11])

By introducing Eq. (59) in Eqs. (60) and (61) we get

By substituting Eqs. (62) and (63) in Eq. (59) the � on 
fluid–plate interfaces (i.e. upper and lower surface of plate) 
can be stated as
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The following differential equation of second order can be 
obtained by putting Eq. (64) or (65) into Eq. (56).

where � represents wave number, which can be determined 
by � = �

√
1

l2
1

+
1

l2
2

 (Ref. [19]).

The general solution for the differential equation (66) can 
be expressed as

On substituting Eq. (67) into Eqs. (64) and (65) we get 
an expression for � on plate–fluid interface as shown below:

where A and B denote the unknown constants which can 
be resolved utilizing two extreme limit conditions at 
plate–fluid interface and at fluid extremity surfaces z = h1 
and z = (h + h2).

Assuming the disturbance because of free surface wave 
motion of liquid is irrelevant, the accompanying boundary 
condition can be applied for velocity potential at the free 
surface of liquid [19]

where ‘ ga ’ denotes the gravity acceleration. Substitution of 
Eq. (68) into Eqs. (70) and (60) gives the expression for 
velocity potential � as

where C =
ga�−�

2

ga�−�
2
 and � represents wave motion frequency 

at free surface of fluid.
The fluid pressure acting on plate’s upper surface can be 

obtained by substituting Eq. (71) of velocity potential into 
Eq. (57) as

The boundary condition at the rigid base of the tank rep-
resented in Fig. 1 is referred to null-frequency condition and 
can be written as
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On substituting Eq. (69) into Eqs. (73) and (61), the 
expression for � is obtained as

From Eqs. (74) and (58), the fluid pressure at plate’s 
lower surface can be expressed as

The resulting fluid dynamic pressure for the plate fully 
submerged in fluid is written as

where madd = −
�f

�

[
1+Ce2�h1

1−Ce2�h1
−

1+e−2�h2

1−e−2�h2

]
 represents the virtual 

added mass of submerged plate.
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