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Abstract

Purpose In this study, nonlinear forced vibrations of a functionally graded material circular conical panel under the transverse

excitation and the in-plane excitation are discussed.

Method The temperature field of the system is considered as a steady-state temperature. Material properties of temperature-
dependence for the system vary along the thickness direction in the light of a power law. The nonlinear geometric partial
differential equations expressed by general displacements are derived by the first-order shear deformation theory and Ham-
ilton’s principle. Furthermore, the ordinary differential equations of the system are acquired by the Galerkin method. The

nonlinear dynamic behaviors of the system are fully analyzed.

Results Based on numerical simulations, time history records, Poincare maps, phase portraits and bifurcation diagrams are
depicted to clarify the existence of complex nonlinear dynamic behaviors of the system.

Keywords Functionally graded material - Circular conical panel - Nonlinear dynamics - Chaotic motion

Introduction

By changing the volume fraction of constituent materials
smoothly and continuously, functionally graded material
(FGM) structures can relieve the problems of stress con-
centration and interfacial debonding. Typically, FGM struc-
tures composited by metals and ceramics gradually are able
to withstand high temperature environments more easily.
They have been considered to be one of the most promising
candidates in many engineering fields in the future, such
as aerospace, rocketry, and many others in recent years [1,
2]. Compared with the homogeneous composite structures,
FGM structures will have more complex dynamics under the
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effect of the thermal load and the mechanical load. It is well
known that circular conical panels are usually used as fun-
damental and important load carrying components in more
complicated structures in various engineering fields, such as
turbo machinery blades or aircraft fuselages. By changing
the initial curvatures or other geometric parameters of coni-
cal panels, the dynamic properties of them can be optimized.
It is significant for us to predict and control dynamic behav-
iors of the FGM circular conical panel under various loads.

There are many results on the dynamics of isotropic
homogeneous or laminated composite circular conical pan-
els up to now. Teichmann [3] investigated free vibrations
of clamped and free open conical shells using the Navier
solution. Qiu and Zhou [4] explored nonlinear dynamic
behaviors of circular plates under the effect of in-plane
impact velocities. Based on Donnell’s theory and the fully
clamped boundary condition, Srinivasan [5] studied natural
frequencies of the isotropic circular conical shell by using
an integral equation approach. Lim [6-9] developed global
Ritz formulation to analyze the free vibration of circular
conical panels, and vibration frequencies of laminated circu-
lar conical panels were given by employing the Ritz energy
principle. Based on an improved generalized differential
quadrature method, Lam [10] discussed natural frequen-
cies of the conical panels by considering different boundary

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s42417-018-0063-y&domain=pdf

454

Journal of Vibration Engineering & Technologies (2018) 6:453-469

conditions. Correia [11] analyzed dynamic characteristics of
the cylindrical/conical panel by comparing first-order dis-
placement field and higher order displacement field. Based
on the Mindlin’s theory and the finite element method, Dey
[12] analyzed the effects of parameters on natural frequen-
cies of pretwisted composite conical shells. According to
the kp-Ritz method, taking into account arbitrary boundary
conditions, Zhao [13] performed free vibrations of the coni-
cal panels.

For the past few years, the dynamic performances of
the FGM conical shell or circular conical panel have been
widely concerned. Sofiyev [14] investigated the stability
problems of FGM conical shells under the effect of a uni-
form pulsive load. Naj [15] canvassed buckling behaviors
of FGM conical shells. Taking into account the sinusoidal
impulse and the step loads, Zhang [16] canvassed dynamic
buckling behaviors of the clamped FGM conical shell.
Using the Donnell shell theory and von-Karman type non-
linear kinematics, Sofiyev [17, 18] analyzed the nonlinear

Fig. 1 Configuration of the FGM circular conical panel
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frequency and nonlinear stability of the FGM truncated
conical shell. Deniz [19] developed a system with a homo-
geneous truncated conical shell and two FGM composite
coatings, and performed the nonlinear stability of the system
subjected to an axially compressed load. Considering the
elastic foundations, Duc [20] studied stability behaviors of
the FGM truncated conical shell.

When it comes to FGM circular conical panels, studies on
dynamics of them were scarce in the open literature. Accord-
ing to the kp-Ritz method, Zhao [21] analyzed free vibra-
tion behaviors of FGM conical panels. Akbari [22] studied
free vibrations of FGM conical panels, the curved edges
of the structure are clamped, free or simply supported, and
the straight edges of the structure are assumed as simply
supported.

It should be remarked that the above-mentioned studies
on the FGM circular conical panels have been focused on
free vibration behaviors. Studies on nonlinear dynamical
responses of FGM circular conical panels subjected to exter-
nal excitations are rare. This paper aims to discuss nonlinear
forced vibrations of the FGM circular conical panel under
the transverse excitation and the in-plane excitation. Mate-
rial properties of temperature-dependence for the system
vary along the thickness direction in the light of a power
law. The nonlinear geometric partial differential equations
expressed by general displacements are derived by the first-
order shear deformation theory and Hamilton’s principle.
Furthermore, the ordinary differential equations of the sys-
tem are acquired by the Galerkin method. Numerical simula-
tions are carried out to illustrate that the FGM circular coni-
cal panel has very complex nonlinear dynamic behaviors.

—_—
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Fig.2 The ceramic volume fraction varies along the direction of the
thickness
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Formulation

Consider an FGM circular conical panel with the length
L, the subtended angle y, the thickness £, the semi-vertex
angle g and radii at the two ends R, and R,, respectively,
as illustrated in Fig. 1. The radius at one point along the
length direction is a parameter varying in x direction that
can be obtained by R = R, + xsin f. We defined the coordi-
nate system (x, 8, z) on the mid-surface of the FGM circular
conical panel, where x axis, 6 axis are along the genera-
trix direction and the circumferential direction, and z axis
is perpendicular to the mid-surface, positive outwards. The
u, v and w are the displacements of a point with respect to x
axis, 6 axis and z axis, respectively. The transverse excitation
F(x, 0) cos 2, and the in-plane excitation p;, + p; cos (£2,7)
at the two curved ends x = 0 and x = L act on the FGM
circular conical panel.

Material Properties of the FGM

For purpose of getting the material properties, a power law is
utilized. Thus, the volume fractions of the ceramic material
and the metal material are expressed by

V@ =(3+5), Vu@ =1- V.. (1)

where V denotes the volume fraction, the subscript c rep-
resents the ceramic and the subscript m is the metal, the
superscript n denotes the volume fraction index. Figure 2
shows the change of the ceramic volume fraction along the
direction of the thickness for the structure.

Based on the above material properties of FGM, the
effective material properties, such as the mass density p,
the thermal expansion coefficient @ and Young’s modulus
E, are determined by a homogenization scheme, which is a
linear rule of mixture

P=PV . +P_ V.. )

The typical temperature-dependent material properties is

represented by
P, =Py(P_, T +1+P,T+P,T* + PsT°), i=c,m,

3
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where P, P_,, P, P, and P; are the power law coefficients,
and T is the temperature expressed by Kelvin, which can be
computed by

T(z) =Ty + (T, — Tp)n(2), 4)
where
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where k, is the coefficient of heat conduction for the ceramic
and k,,, is the coefficient of heat conduction for the metal.

Governing Equations
On the basis of the first-order shear deformation theory,
relationships between the strains and the displacements are

obtained by the von-Karman hypothesis, which can be given
by

Exx 1 dw,
o 1 Yoz ¢9+————v0cosﬁ
- eopecter. {2} - { e ’
ﬁx

ny
(6)
where
eg) 9%,
D %4;
AV} =150 (= fg '] L, sinp NG
[
1) _9
v, %06 ¢a sin f +
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where u,, v, and w, represent displacement components on
the middle surface, along x axis, € axis and z axis, respec-
tively. ¢, and ¢, are rotations of tangents about the middle
surface.

The thermoelastic constitutive equation of the FGM cir-
cular conical panel is expressed as follows:

r 3 e 3 C ) 3

c £ a
" 0 Qn 0 0 0 -
%o 0,0, 0 0 0 €9 «
100¢=| O 0 Qg 0 O K3 Vwr—13 O¢AT p,
ol {00 Sen ol o
oy, Osll] v| |o
®
where Qj; are stress stiffnesses with
E E E
0n=0n= P Q= ﬁ Ous = 055 = Qg6 = ms
€))

where AT is the temperature increment relative to the refer-
ence temperature.

Based on Hamilton’s principle, which is a generalized
virtual displacement principle, nonlinear partial differential
equations of the FGM circular conical panel are derived by

Nxx,x + %Nxe,ﬂ + %Nxx Sinﬂ - I%NHH Sil’lﬂ = IOuO + Il(isx’
(10a)
1 2 . 1 . ..
Nyg, + R V00.0 + ENxe sin § + EQG cos f = Iy + 1)y,
(10b)
1 1 . 1 ow,
QX‘)C + EQQ’G + EQX Slnﬂ - ENBQ COSﬁ + Nxx’xg
62w0 1 owy . 1 ow,
+NXX ()x2 ENXXa_ Slnﬂ + R2N90’9 06
L1 *w, L1 owy, 2 0w,
R %002 "R ox T R oxo0
Ly 2% 4 poos@ bo = Iji
+ R0 30 + Fcos(£2,1) — ywy = Iy, (10¢)
1 1 . 1 . .. i
M, + kngﬂ -0, + ﬁMm sinf — ﬁMgg sin g = Iiig + I, ¢,,
(10d)
1 1 2 . .. ¥
My, + 7000 = EQe + EMxo sin f = 1;Vy + Ly, (10e)

where y denotes the structural damping coefficient, (1,1}, I,)
are the mass moments of inertia, which can be computed
from
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(10’11’12)=// (l,Zl,Zz)de. (]1)

2

The components of stress and thermal stress resultants
can be given by

O =laal{ e -G o)

N‘(X M‘(X N
N =1 Nggp. M =1 Mgy, N'.M") = / *,QAT(1,2)dz,
2
Nxﬁ Mxﬁ

12)

where stiffness matrices A, B, D and the variable Q are
expressed by

A AR O By, By, 0
A=|Ap Ay 0 [ B=|B);By0
(13)
Dll D12 0 Qll Q12 0
D=|D;, Dy 0 |,0=|0,0,n 0 |
0 0 Dg 0 0 Qg
where Aij, Bij and Dl-j denote the extension, bending-exten-

sion coupling and bending stiffness elements of, respec-
tively, which can be calculated as follows:

d
2

Ay, By, Dy) = /_ , 21,22z (14)
2

In Eq. (12), K denotes the shear correction factor. Here,
the shear correction factor K is selected as 5/6.

Substituting Eqs. (11-14) to Eqs. (10a—10e), partial dif-
ferential equations for the system expressed by the form of
generalized displacements can be given by

Ly (g, Vo, Wos by b W) = Lig(it, Vs W0gs s o) (15)
where the detailed expressions of partial differential opera-
tors L; and Ly are presented in Appendix 1.

All edges of the FGM circular conical panel are simply
supported, which can be given by the following expressions:

Vo=wo=¢y=M, =0atx=0, x=L

ug=wy=¢, =My, =0atd =0, 0=y. (16)

Based on the above boundary conditions, the displace-
ment components are expressed by the double Fourier series
(23]
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The transverse excitation is expanded by

© . (mEX\ .
F=Z§ mn(t)sm(T)mn( ),

n=1 m=1
where n and m represent the number of circumferential
waves and axial half waves number. u,,,,, V,,., Wy P> Pomn
and F,,, are time-dependent variables associated to every
modes and external force, respectively. We focus on the first
two order modes of the system.

The inertia terms of u, v, ¢, and ¢, in Eq. (15) can be
ignored on the basis of the study given by Nosir and Bhima-
raddi [24, 25]. Employing the Galerkin method, the displace-
ments of in-plane and rotation can be replaced in terms of
transverse displacement. Furthermore, ordinary differential
equations for the FGM circular conical panel for transverse
motion can be yielded

nr6

4

(18)

W+ uW + (M + P)W + NL + C = F cos 2,t, (19)

where coefficients are described in Appendix 2 in detail. It
is notable that in Eq. (19), variable C is a fixed value for a
certain FGM circular conical panel in a certain thermal field

Table 1 Comparison of dimensionless central moments M, and M),y
forn=05andn=1

described by Eq. (4). It can cause bending deformation for
the FGM circular conical panel.

Numerical Results

The validation of the present model is verified by compar-
ing with the Reddy’s results [26]. The dimensionless cen-
tral moments of our works are compared with the study
acquired by utilizing the method given by Ref [26], which
can be seen in Table 1. Here, the FGM plate is composited
of Ti-6Al-4V and Al,O;. The geometric properties of the
FGM plate can be listed, which the length is a=0.2 m, the
width is »=0.5 m and the thickness is #=0.002 m. Good
agreement is observed.

The effect of the thickness—radius ratio and the volume
fraction index on nonlinear dynamic behaviors of the FGM
circular conical panel is analyzed by means of the fourth-
order Runge—Kutta method with variable steps.

The material properties of the structure are the Si;N,
(silicon nitride) and the SUS304 (steel), which are tem-
perature dependent and given in Table 2 [27]. Geometric
parameters of the system are thickness £#=0.002 m, sub-
tended angle y=60°, semi-vertex angle f = 30°, length
L=0.8 m and the radius at the top end R, =0.5 m, respec-
tively. The temperature at the inner surface remained a con-
stant at 300 K. The amplitudes of the in-plane pre-applied

n M, M, excnatlon and the transverse excitation are p,=1.0X 106 N/
- 5
Ref. [26] Prosent Ref. [26] Prosent m? and F=6.0x 19 N/m , respectively. The' fr§quen01§s
of the external excitation are 318.5 Hz. The initial condi-
0.5 0.01774 0.01742 0.01769 001792 tions are given, which are w;=—0.001, w, = — 0.0001,
1 0.01776 0.01801 0.01794 0.01813 ) =—0.00025 and w, = — 0.0001. The damping coefficient
Table 2 Coefficients of SUS304 Coefficients SUS304 SLN,
and SI;N, about temperature-
dependence E (Pa) pkgm™) a(K™ E (Pa) pkegm™) o @XM
P, 0 0 0 0 0 0
P, 201.04x10° 8166 1233x107%  34843x10° 2370 5.8723x 1076
P, 3.079x107* 0 8.08x10™*  —3.070x10™ 0 9.09% 107
P, -6.534x107 0 0 2.160x1077 0 0
P, 0 0 0 -895x1071 0 0
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Fig.3 Bifurcation diagrams when the thickness—radius ratio is
h/R,;=0.004, the temperature on the outer surface is 7,=400 K and
the volume fraction index is n=0.5 for the system. a, b are bifurca-

is 0.09 kg/s in all calculations. We change the in-plane exci-
tation when we investigate nonlinear dynamic responses
of the system. The three-dimensional bifurcation diagrams
for w,, w; and in-plane load, two-dimensional bifurcations,
phase portraits, Poincare maps and time history diagrams are
depicted to present the periodic and nonperiodic responses
of the system.

Effect of Volume Fraction Index

Nonlinear dynamical analysis of the FGM circular coni-
cal panel is performed when we consider the volume frac-
tion index to be n=0.5, n=35 and n= oo, respectively. The
thickness—radius ratio #/R;=0.004 and the temperature
T.=400 K are used in the calculations. Figure 3 depicts
bifurcation diagrams for n=0.5 when the change interval
of the in-plane excitation is (1.0 X 10° N/m?, 3.5 x 10° N/
m?). Figure 3a, b describes bifurcation diagrams of the in-
plane excitation versus w, and w,. In Fig. 3a, b, it is diffi-
cult for us to see the chaotic motion and the quasi-periodic
motion directly. But from three-dimensional bifurcation
diagram of Fig. 3c, it is easily obvious that the process of
the motions for the system exhibits the following law: the
periodic-1 motion appears at first, then the quasi-periodic

@ Springer
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tion diagrams of the first mode and the second mode; ¢ is the three-
dimensional representation of the bifurcation diagram for the first
mode

motion occurs, finally, the system exhibits the periodic-1
motion. The system has the quasi-periodic motion when the
in-plane excitation is in the range from 2.59 x 10° N/m? to
2.95x 10° N/m?. Figures 4 and 5 are given to describe the
responses of the system. It is shown that vibration of the first
mode is outward while the second mode is inward.

Figure 6 reveals the dynamic responses of the system
for n=>5. It is obvious that the FGM circular conical panel
has complex nonlinear dynamic responses. Three periodic
motion ranges, one chaotic motion range and two quasi-
periodic motion ranges are detected. The system exhibits
chaotic motion when p; changes from 3.40 X 10® N/m?
to 3.50x 10° N/m?. It is also evident that three jumps are
detected in this figure. Bifurcation diagram in Fig. 7 has
been obtained with n=co when the change interval of the in-
plane excitation is (1.0x 10° N/m?, 3.5 10® N/m?). In this
case, it means that the FGM circular conical panel is fully
metal. The periodic motion and the quasi-periodic motion
appear at first. Then the system exhibits chaotic motion. The
chaotic motion occurs when p, is larger than 2.56 x 10° N/
m?. It is because that the higher value of n means less stiff-
ness of the system.
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Fig.4 The periodic-l motion of the system appears when (t, w,); e denotes the three-dimensional phase portrait in the space

P, =2.00x 10® N/m?. a, ¢ are phase portraits on the plane (w, , W,) (w;, Wy, w,); fis the Poincare map on the plane (w, , W)
and (w,, W,); b, d are time history records on the plane (f, w;) and
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Fig. 5 The quasi-periodic motion of the system appears when p, =2.70 x 10® N/m?
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Fig.7 Bifurcation diagrams when the thickness-radius ratio is #/R;=0.004, the temperature on the outer surface is 7,=400 K and the volume

fraction index is n= o0
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Effect of Thickness—-Radius Ratio

Nonlinear dynamical responses of the FGM circular coni-
cal panel with different thickness-radius ratios #/R, =0.002,
h/R,;=0.004 and h/R, =0.006 are studied in this subsection.
The temperature 7,=400 K and the volume fraction index
n=0.5 are used in the calculations. Figure 8§ reveals bifurca-
tion diagrams for 4/R; =0.002 when the change interval of
the in-plane excitation is (1.0 10° N/m?, 3.0 x 10° N/m?).
The process of motions exhibits the following phenom-
enon: the periodic motion and the chaotic motion appear
alternate three times. The first time, the system moves
from periodic motion to chaotic motion. The second time,
the system moves from periodic motion to quasi-periodic
motion, and finally the motion becomes chaotic. The change
law of the third time is the same as the second time. The
corresponding motions are illustrated in Figs. 9, 10, 11
when the FGM circular conical panel at p, =1.20x 10® N/
m?, p,;=2.30x10° N/m? and p,=2.60x 10° N/m?,
respectively. Figure 12 depicts bifurcation diagrams for
h/R;=0.006. When the in-plane excitation is in the range of
P € (1.0 x 10°N/m?, 3.0 x 10°N/m?), it can be seen that
there is only the periodic motion in the FGM circular coni-
cal panel.

According to Figs. 3, 8 and 12, which have the same
parameters except the thickness—radius ratio, it is observed
that as the thickness—radius ratio increases, the in-plane exci-
tation, which causes the system to change from the periodic
motion to the chaotic motion, increases. This is reasonable
because the Young’s modulus increases with the increase of
h/R,. It can increase the ability of the system to resist bend-
ing deformation. What’s more, we can calculate the change
law of stress resultants from the dynamic response of dis-
placements to meet the demand of design.

Conclusions

The dynamical response behaviors of the FGM circular coni-
cal panel under the transverse excitation and the in-plane
excitation are studied. The temperature field of the system
is considered as a steady-state temperature. Material prop-
erties of temperature-dependence for the system vary along
the thickness direction in the light of a power law. The non-
linear geometric partial differential equations expressed by
general displacements are derived by the first-order shear
deformation theory and Hamilton’s principle. Furthermore,
the ordinary differential equations of the system are acquired

0.01¢
0.005¢

w, -0.008f
-0.01t
-0.015}

-0.02

(b)

100

Fig. 8 Bifurcation diagrams when the volume fraction index is n=0.5, the temperature on the outer surface is 7,=400 K and the thickness—

radius ratio is #/R; =0.002
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Fig. 12 Bifurcation diagrams when the volume fraction index is n=0.5, the temperature on the outer surface is 7,=400 K and the thickness—

radius ratio is #/R; =0.006

by the Galerkin method. The effects of the thickness—radius
ratio and the volume fraction index are analyzed.

The nonlinear dynamic behaviors of the FGM circular
conical panel are fully analyzed. Time history records,
Poincare maps, phase portraits and bifurcation diagrams are
depicted by means of numerical simulations to illustrate that
the system has very complex nonlinear dynamical behaviors.
One can observe that increasing the volume fraction index
makes the FGM circular conical panel stiffer and the cha-
otic regions move forward gradually. Additionally, increas-
ing the thickness—radius ratio may lead to higher bending

stiffness. Therefore, the larger thickness—radius ratio leads
to the higher in-plane excitation, which causes the FGM
circular conical panel to move from the periodic motion to
the chaotic motion.
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Operators LjL and LjR of Eq. (15)
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Appendix 2: Matrixes and Vectors of Eq. (19)
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