
Vol.:(0123456789)1 3

Journal of Vibration Engineering & Technologies (2018) 6:453–469 
https://doi.org/10.1007/s42417-018-0063-y

ORIGINAL PAPER

Nonlinear Vibrations of FGM Circular Conical Panel Under In‑Plane 
and Transverse Excitation

Y. X. Hao1 · Y. Niu2 · W. Zhang2 · M. H. Yao2 · S. B. Li3

Received: 11 September 2016 / Revised: 9 December 2016 / Accepted: 15 December 2016 / Published online: 26 November 2018 
© Krishtel eMaging Solutions Private Limited 2018

Abstract
Purpose In this study, nonlinear forced vibrations of a functionally graded material circular conical panel under the transverse 
excitation and the in-plane excitation are discussed.
Method The temperature field of the system is considered as a steady-state temperature. Material properties of temperature-
dependence for the system vary along the thickness direction in the light of a power law. The nonlinear geometric partial 
differential equations expressed by general displacements are derived by the first-order shear deformation theory and Ham-
ilton’s principle. Furthermore, the ordinary differential equations of the system are acquired by the Galerkin method. The 
nonlinear dynamic behaviors of the system are fully analyzed.
Results Based on numerical simulations, time history records, Poincare maps, phase portraits and bifurcation diagrams are 
depicted to clarify the existence of complex nonlinear dynamic behaviors of the system.

Keywords Functionally graded material · Circular conical panel · Nonlinear dynamics · Chaotic motion

Introduction

By changing the volume fraction of constituent materials 
smoothly and continuously, functionally graded material 
(FGM) structures can relieve the problems of stress con-
centration and interfacial debonding. Typically, FGM struc-
tures composited by metals and ceramics gradually are able 
to withstand high temperature environments more easily. 
They have been considered to be one of the most promising 
candidates in many engineering fields in the future, such 
as aerospace, rocketry, and many others in recent years [1, 
2]. Compared with the homogeneous composite structures, 
FGM structures will have more complex dynamics under the 

effect of the thermal load and the mechanical load. It is well 
known that circular conical panels are usually used as fun-
damental and important load carrying components in more 
complicated structures in various engineering fields, such as 
turbo machinery blades or aircraft fuselages. By changing 
the initial curvatures or other geometric parameters of coni-
cal panels, the dynamic properties of them can be optimized. 
It is significant for us to predict and control dynamic behav-
iors of the FGM circular conical panel under various loads.

There are many results on the dynamics of isotropic 
homogeneous or laminated composite circular conical pan-
els up to now. Teichmann [3] investigated free vibrations 
of clamped and free open conical shells using the Navier 
solution. Qiu and Zhou [4] explored nonlinear dynamic 
behaviors of circular plates under the effect of in-plane 
impact velocities. Based on Donnell’s theory and the fully 
clamped boundary condition, Srinivasan [5] studied natural 
frequencies of the isotropic circular conical shell by using 
an integral equation approach. Lim [6–9] developed global 
Ritz formulation to analyze the free vibration of circular 
conical panels, and vibration frequencies of laminated circu-
lar conical panels were given by employing the Ritz energy 
principle. Based on an improved generalized differential 
quadrature method, Lam [10] discussed natural frequen-
cies of the conical panels by considering different boundary 
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conditions. Correia [11] analyzed dynamic characteristics of 
the cylindrical/conical panel by comparing first-order dis-
placement field and higher order displacement field. Based 
on the Mindlin’s theory and the finite element method, Dey 
[12] analyzed the effects of parameters on natural frequen-
cies of pretwisted composite conical shells. According to 
the kp-Ritz method, taking into account arbitrary boundary 
conditions, Zhao [13] performed free vibrations of the coni-
cal panels.

For the past few years, the dynamic performances of 
the FGM conical shell or circular conical panel have been 
widely concerned. Sofiyev [14] investigated the stability 
problems of FGM conical shells under the effect of a uni-
form pulsive load. Naj [15] canvassed buckling behaviors 
of FGM conical shells. Taking into account the sinusoidal 
impulse and the step loads, Zhang [16] canvassed dynamic 
buckling behaviors of the clamped FGM conical shell. 
Using the Donnell shell theory and von-Karman type non-
linear kinematics, Sofiyev [17, 18] analyzed the nonlinear 

frequency and nonlinear stability of the FGM truncated 
conical shell. Deniz [19] developed a system with a homo-
geneous truncated conical shell and two FGM composite 
coatings, and performed the nonlinear stability of the system 
subjected to an axially compressed load. Considering the 
elastic foundations, Duc [20] studied stability behaviors of 
the FGM truncated conical shell.

When it comes to FGM circular conical panels, studies on 
dynamics of them were scarce in the open literature. Accord-
ing to the kp-Ritz method, Zhao [21] analyzed free vibra-
tion behaviors of FGM conical panels. Akbari [22] studied 
free vibrations of FGM conical panels, the curved edges 
of the structure are clamped, free or simply supported, and 
the straight edges of the structure are assumed as simply 
supported.

It should be remarked that the above-mentioned studies 
on the FGM circular conical panels have been focused on 
free vibration behaviors. Studies on nonlinear dynamical 
responses of FGM circular conical panels subjected to exter-
nal excitations are rare. This paper aims to discuss nonlinear 
forced vibrations of the FGM circular conical panel under 
the transverse excitation and the in-plane excitation. Mate-
rial properties of temperature-dependence for the system 
vary along the thickness direction in the light of a power 
law. The nonlinear geometric partial differential equations 
expressed by general displacements are derived by the first-
order shear deformation theory and Hamilton’s principle. 
Furthermore, the ordinary differential equations of the sys-
tem are acquired by the Galerkin method. Numerical simula-
tions are carried out to illustrate that the FGM circular coni-
cal panel has very complex nonlinear dynamic behaviors.

Fig. 1  Configuration of the FGM circular conical panel
Fig. 2  The ceramic volume fraction varies along the direction of the 
thickness
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Formulation

Consider an FGM circular conical panel with the length 
L, the subtended angle � , the thickness h , the semi-vertex 
angle � and radii at the two ends R1 and R2 , respectively, 
as illustrated in Fig. 1. The radius at one point along the 
length direction is a parameter varying in x direction that 
can be obtained by R = R1 + x sin � . We defined the coordi-
nate system (x, �, z) on the mid-surface of the FGM circular 
conical panel, where x axis, θ axis are along the genera-
trix direction and the circumferential direction, and z axis 
is perpendicular to the mid-surface, positive outwards. The 
u, v and w are the displacements of a point with respect to x 
axis, θ axis and z axis, respectively. The transverse excitation 
F(x, �) cos�1t and the in-plane excitation p0 + p1 cos

(
�2t

)
 

at the two curved ends x = 0 and x = L act on the FGM 
circular conical panel.

Material Properties of the FGM

For purpose of getting the material properties, a power law is 
utilized. Thus, the volume fractions of the ceramic material 
and the metal material are expressed by

where V denotes the volume fraction, the subscript c rep-
resents the ceramic and the subscript m is the metal, the 
superscript n denotes the volume fraction index. Figure 2 
shows the change of the ceramic volume fraction along the 
direction of the thickness for the structure.

Based on the above material properties of FGM, the 
effective material properties, such as the mass density ρ, 
the thermal expansion coefficient α and Young’s modulus 
E, are determined by a homogenization scheme, which is a 
linear rule of mixture

The typical temperature-dependent material properties is 
represented by

(1)Vc(z) =
(
1

2
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z
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3
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where P0 , P−1 , P1 , P2 and P3 are the power law coefficients, 
and T  is the temperature expressed by Kelvin, which can be 
computed by

where

where kc is the coefficient of heat conduction for the ceramic 
and km is the coefficient of heat conduction for the metal.

Governing Equations

On the basis of the first-order shear deformation theory, 
relationships between the strains and the displacements are 
obtained by the von-Karman hypothesis, which can be given 
by
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where u0, v0 and w0 represent displacement components on 
the middle surface, along x axis, θ axis and z axis, respec-
tively. �x and �� are rotations of tangents about the middle 
surface.

The thermoelastic constitutive equation of the FGM cir-
cular conical panel is expressed as follows:

where Qij are stress stiffnesses with

where ΔT  is the temperature increment relative to the refer-
ence temperature.

Based on Hamilton’s principle, which is a generalized 
virtual displacement principle, nonlinear partial differential 
equations of the FGM circular conical panel are derived by

where γ denotes the structural damping coefficient, (I0, I1, I2) 
are the mass moments of inertia, which can be computed 
from

(8)
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The components of stress and thermal stress resultants 
can be given by

where stiffness matrices A , B , D and the variable Q are 
expressed by

where Aij , Bij and Dij denote the extension, bending-exten-
sion coupling and bending stiffness elements of, respec-
tively, which can be calculated as follows:

In Eq. (12), K denotes the shear correction factor. Here, 
the shear correction factor K is selected as 5∕6.

Substituting Eqs. (11–14) to Eqs. (10a–10e), partial dif-
ferential equations for the system expressed by the form of 
generalized displacements can be given by

where the detailed expressions of partial differential opera-
tors LjL and LjR are presented in Appendix 1.

All edges of the FGM circular conical panel are simply 
supported, which can be given by the following expressions:
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ment components are expressed by the double Fourier series 
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The transverse excitation is expanded by

where n and m represent the number of circumferential 
waves and axial half waves number. umn, vmn, wmn, ϕxmn, ��mn 
and Fmn are time-dependent variables associated to every 
modes and external force, respectively. We focus on the first 
two order modes of the system.

The inertia terms of u, v, �x and �� in Eq. (15) can be 
ignored on the basis of the study given by Nosir and Bhima-
raddi [24, 25]. Employing the Galerkin method, the displace-
ments of in-plane and rotation can be replaced in terms of 
transverse displacement. Furthermore, ordinary differential 
equations for the FGM circular conical panel for transverse 
motion can be yielded

where coefficients are described in Appendix 2 in detail. It 
is notable that in Eq. (19), variable C is a fixed value for a 
certain FGM circular conical panel in a certain thermal field 
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(19)Ẅ + 𝝁Ẇ + (M + P)W + NL + C = F cos�1t,

described by Eq. (4). It can cause bending deformation for 
the FGM circular conical panel.

Numerical Results

The validation of the present model is verified by compar-
ing with the Reddy’s results [26]. The dimensionless cen-
tral moments of our works are compared with the study 
acquired by utilizing the method given by Ref [26], which 
can be seen in Table 1. Here, the FGM plate is composited 
of Ti–6Al–4V and  Al2O3. The geometric properties of the 
FGM plate can be listed, which the length is a = 0.2 m, the 
width is b = 0.5 m and the thickness is h = 0.002 m. Good 
agreement is observed.

The effect of the thickness–radius ratio and the volume 
fraction index on nonlinear dynamic behaviors of the FGM 
circular conical panel is analyzed by means of the fourth-
order Runge–Kutta method with variable steps.

The material properties of the structure are the  Si3N4 
(silicon nitride) and the SUS304 (steel), which are tem-
perature dependent and given in Table 2 [27]. Geometric 
parameters of the system are thickness h = 0.002 m, sub-
tended angle γ = 60°, semi-vertex angle � = 30◦ , length 
L = 0.8 m and the radius at the top end R1 = 0.5 m, respec-
tively. The temperature at the inner surface remained a con-
stant at 300 K. The amplitudes of the in-plane pre-applied 
excitation and the transverse excitation are p0 = 1.0 × 106 N/
m2 and F = 6.0 × 105 N/m2, respectively. The frequencies 
of the external excitation are 318.5 Hz. The initial condi-
tions are given, which are w1 = − 0.001, ẇ1 = − 0.0001 , 
w2 = − 0.00025 and ẇ2 = − 0.0001 . The damping coefficient 

Table 1  Comparison of dimensionless central moments M̄xx and M̄yy 
for n = 0.5 and n = 1

n M̄xx M̄yy

Ref. [26] Present Ref. [26] Present

0.5 0.01774 0.01742 0.01769 0.01792
1 0.01776 0.01801 0.01794 0.01813

Table 2  Coefficients of SUS304 
and  SI3N4 about temperature-
dependence

Coefficients SUS304 SI3N4

E (Pa) ρ (kg m−3) α  (K−1) E (Pa) ρ (kg m−3) α  (K−1)

P−1 0 0 0 0 0 0
P0 201.04 × 109 8166 12.33 × 10−6 348.43 × 109 2370 5.8723 × 10−6

P1 3.079 × 10−4 0 8.08 × 10−4 − 3.070 × 10−4 0 9.09 × 10−4

P2 − 6.534 × 10−7 0 0 2.160 × 10−7 0 0
P3 0 0 0 − 8.95 × 10−11 0 0
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is 0.09 kg/s in all calculations. We change the in-plane exci-
tation when we investigate nonlinear dynamic responses 
of the system. The three-dimensional bifurcation diagrams 
for w1, ẇ1 and in-plane load, two-dimensional bifurcations, 
phase portraits, Poincare maps and time history diagrams are 
depicted to present the periodic and nonperiodic responses 
of the system.

Effect of Volume Fraction Index

Nonlinear dynamical analysis of the FGM circular coni-
cal panel is performed when we consider the volume frac-
tion index to be n = 0.5, n = 5 and n = ∞, respectively. The 
thickness–radius ratio h/R1 = 0.004 and the temperature 
Tc = 400 K are used in the calculations. Figure 3 depicts 
bifurcation diagrams for n = 0.5 when the change interval 
of the in-plane excitation is (1.0 × 106 N/m2, 3.5 × 106 N/
m2). Figure 3a, b describes bifurcation diagrams of the in-
plane excitation versus w1 and w2. In Fig. 3a, b, it is diffi-
cult for us to see the chaotic motion and the quasi-periodic 
motion directly. But from three-dimensional bifurcation 
diagram of Fig. 3c, it is easily obvious that the process of 
the motions for the system exhibits the following law: the 
periodic-1 motion appears at first, then the quasi-periodic 

motion occurs, finally, the system exhibits the periodic-1 
motion. The system has the quasi-periodic motion when the 
in-plane excitation is in the range from 2.59 × 106 N/m2 to 
2.95 × 106 N/m2. Figures 4 and 5 are given to describe the 
responses of the system. It is shown that vibration of the first 
mode is outward while the second mode is inward.

Figure 6 reveals the dynamic responses of the system 
for n = 5. It is obvious that the FGM circular conical panel 
has complex nonlinear dynamic responses. Three periodic 
motion ranges, one chaotic motion range and two quasi-
periodic motion ranges are detected. The system exhibits 
chaotic motion when p1 changes from 3.40 × 106  N/m2 
to 3.50 × 106 N/m2. It is also evident that three jumps are 
detected in this figure. Bifurcation diagram in Fig. 7 has 
been obtained with n = ∞ when the change interval of the in-
plane excitation is (1.0 × 106 N/m2, 3.5 × 106 N/m2). In this 
case, it means that the FGM circular conical panel is fully 
metal. The periodic motion and the quasi-periodic motion 
appear at first. Then the system exhibits chaotic motion. The 
chaotic motion occurs when p1 is larger than 2.56 × 106 N/
m2. It is because that the higher value of n means less stiff-
ness of the system.

Fig. 3  Bifurcation diagrams when the thickness–radius ratio is 
h/R1 = 0.004, the temperature on the outer surface is Tc = 400 K and 
the volume fraction index is n = 0.5 for the system. a, b are bifurca-

tion diagrams of the first mode and the second mode; c is the three-
dimensional representation of the bifurcation diagram for the first 
mode
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Fig. 4  The periodic-1 motion of the system appears when 
p1 = 2.00 × 106  N/m2. a, c are phase portraits on the plane (w1 , ẇ1) 
and (w2 , ẇ2) ; b, d are time history records on the plane (t, w1) and 

(t, w2); e denotes the three-dimensional phase portrait in the space 
(w1 , ẇ1,w2) ; f is the Poincare map on the plane (w1 , ẇ1)
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Fig. 5  The quasi-periodic motion of the system appears when p1 = 2.70 × 106 N/m2
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Fig. 6  Bifurcation diagrams when the thickness–radius ratio is h/R1 = 0.004, the temperature on the outer surface is Tc = 400 K and the volume 
fraction index is n = 5

Fig. 7  Bifurcation diagrams when the thickness–radius ratio is h/R1 = 0.004, the temperature on the outer surface is Tc = 400 K and the volume 
fraction index is n = ∞
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Effect of Thickness–Radius Ratio

Nonlinear dynamical responses of the FGM circular coni-
cal panel with different thickness–radius ratios h/R1 = 0.002, 
h/R1 = 0.004 and h/R1 = 0.006 are studied in this subsection. 
The temperature Tc = 400 K and the volume fraction index 
n = 0.5 are used in the calculations. Figure 8 reveals bifurca-
tion diagrams for h/R1 = 0.002 when the change interval of 
the in-plane excitation is (1.0 × 106 N/m2, 3.0 × 106 N/m2). 
The process of motions exhibits the following phenom-
enon: the periodic motion and the chaotic motion appear 
alternate three times. The first time, the system moves 
from periodic motion to chaotic motion. The second time, 
the system moves from periodic motion to quasi-periodic 
motion, and finally the motion becomes chaotic. The change 
law of the third time is the same as the second time. The 
corresponding motions are illustrated in Figs. 9, 10, 11 
when the FGM circular conical panel at p1 = 1.20 × 106 N/
m2, p1 = 2.30 × 106  N/m2 and p1 = 2.60 × 106  N/m2, 
respectively. Figure 12 depicts bifurcation diagrams for 
h/R1 = 0.006. When the in-plane excitation is in the range of 
p1 ∈ (1.0 × 106N∕m2, 3.0 × 106N∕m2) , it can be seen that 
there is only the periodic motion in the FGM circular coni-
cal panel.

According to Figs. 3, 8 and 12, which have the same 
parameters except the thickness–radius ratio, it is observed 
that as the thickness–radius ratio increases, the in-plane exci-
tation, which causes the system to change from the periodic 
motion to the chaotic motion, increases. This is reasonable 
because the Young’s modulus increases with the increase of 
h/R1. It can increase the ability of the system to resist bend-
ing deformation. What’s more, we can calculate the change 
law of stress resultants from the dynamic response of dis-
placements to meet the demand of design.

Conclusions

The dynamical response behaviors of the FGM circular coni-
cal panel under the transverse excitation and the in-plane 
excitation are studied. The temperature field of the system 
is considered as a steady-state temperature. Material prop-
erties of temperature-dependence for the system vary along 
the thickness direction in the light of a power law. The non-
linear geometric partial differential equations expressed by 
general displacements are derived by the first-order shear 
deformation theory and Hamilton’s principle. Furthermore, 
the ordinary differential equations of the system are acquired 

Fig. 8  Bifurcation diagrams when the volume fraction index is n = 0.5, the temperature on the outer surface is Tc = 400 K and the thickness–
radius ratio is h/R1 = 0.002
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Fig. 9  The periodic-1 motion of the system appears when p1 = 1.20 × 106 N/m2
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Fig. 10  The quasi-periodic motion of the system appears when p1 = 2.30 × 106 N/m2



465Journal of Vibration Engineering & Technologies (2018) 6:453–469 

1 3

Fig. 11  The chaotic motion of the system appears when p1 = 2.60 × 106 N/m2
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by the Galerkin method. The effects of the thickness–radius 
ratio and the volume fraction index are analyzed.

The nonlinear dynamic behaviors of the FGM circular 
conical panel are fully analyzed. Time history records, 
Poincare maps, phase portraits and bifurcation diagrams are 
depicted by means of numerical simulations to illustrate that 
the system has very complex nonlinear dynamical behaviors. 
One can observe that increasing the volume fraction index 
makes the FGM circular conical panel stiffer and the cha-
otic regions move forward gradually. Additionally, increas-
ing the thickness–radius ratio may lead to higher bending 

stiffness. Therefore, the larger thickness–radius ratio leads 
to the higher in-plane excitation, which causes the FGM 
circular conical panel to move from the periodic motion to 
the chaotic motion.
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Appendix 1: The Partial Differential 
Operators LjL and LjR of Eq. (15)
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Fig. 12  Bifurcation diagrams when the volume fraction index is n = 0.5, the temperature on the outer surface is Tc = 400 K and the thickness–
radius ratio is h/R1 = 0.006
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−
2

R2
A66

𝜕2w0

𝜕x𝜕𝜃
v0 sin 𝛽 +

(
KA55 + NT

xx
− (p0 + p1 cos𝛺2t)

)𝜕2w0

𝜕x2
+

1

R
A66

𝜕2v0

𝜕x2

𝜕w0

𝜕𝜃

+
1

R3
A66

𝜕2v0

𝜕𝜃2
+

1

R
A12

𝜕2w0

𝜕x2
u0 sin 𝛽 +

1

R3
A66

𝜕w0

𝜕𝜃
v0 sin

2 𝛽 +
1

R
B66

𝜕2𝜙𝜃

𝜕x2

𝜕w0

𝜕𝜃

+
1

R2

(
KA44 + NT

𝜃𝜃

)𝜕2w0

𝜕𝜃2
+

1

R
A12

𝜕2w0

𝜕x2

𝜕v0

𝜕𝜃
+

1

R3
A22

𝜕2w0

𝜕𝜃2

𝜕v0

𝜕𝜃
+ KA55

𝜕𝜙x

𝜕x

𝜕w0

𝜕𝜃

−
1

R2
(KA44 + A22)

𝜕v0

𝜕𝜃
cos 𝛽 + B11

𝜕2w0

𝜕x2

𝜕𝜑x

𝜕x
−

1

R
B12

𝜕𝜑x

𝜕x
cos 𝛽 +

1

R2
B12

𝜕2w0

𝜕𝜃2

𝜕𝜑x

𝜕x

+
3

2R4
A22

𝜕2w0

𝜕𝜃2

(
𝜕w0

𝜕𝜃

)2

+
2

R2
A66

𝜕2w0

𝜕x𝜕𝜃

𝜕u0

𝜕𝜃
+

1

R2

(
B12 + B66

) 𝜕2𝜙x

𝜕x𝜕𝜃

𝜕w0

𝜕𝜃

+
1

R2
B66

𝜕2𝜙x

𝜕𝜃2

𝜕w0

𝜕x
+

1

2R3
A22

𝜕2w0

𝜕𝜃2
cos 𝛽 +

2

R
B66

𝜕2w0

𝜕x𝜕𝜃

𝜕𝜙𝜃

𝜕x
+

1

R3
B22

𝜕2𝜙𝜃

𝜕𝜃2

𝜕w0

𝜕𝜃

+
1

R2
(A12 + A66)

𝜕2u0

𝜕x𝜕𝜃

𝜕w0

𝜕𝜃
−

1

R2
B66

𝜕w0

𝜕𝜃

𝜕𝜑𝜃

𝜕x
sin 𝛽 +

1

R3
(A22 − A66)

𝜕w0

𝜕𝜃

𝜕u0

𝜕𝜃
sin 𝛽

+
1

2R
(A12 + 2A66)

𝜕2w0

𝜕x2

(
𝜕w0

𝜕𝜃

)2

+ F cos𝛺1t,



468 Journal of Vibration Engineering & Technologies (2018) 6:453–469

1 3

(25)L3R = I0ẅ0,
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Appendix 2: Matrixes and Vectors of Eq. (19)
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