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Abstract
Background A novel tunable negative stiffness nonlinear electromagnetic isolator is presented, it includes a vertical positive 
stiffness spring, an electromagnetic spring constructed by two permanent magnets and an electromagnet. The electromagnetic 
isolator can act as a passive isolator or a semi-active control one.
Method The mathematical expression of system stiffness-current-displacement is derived by analyzing the mechanical 
characteristics. The motion differential equation under an external harmonic excitation force is established. The amplitude-
frequency relationship of the system is deduced by the averaging method. The global dynamic behavior on the Van der pol 
plane and the force transmissibility are researched.
Results The results show that the nonlinear electromagnetic isolator with appropriate parameters can enlarge the low fre-
quency isolation range and make the system have better isolation performance in the low frequency band.
Conclusions The nonlinear electromagnetic isolator with suitable system parameters has the advantages of widening the 
vibration isolation range and improving the low-frequency vibration isolation effect.

Keywords Electromagnetic spring · Nonlinear vibration · Averaging method · Transmissibility

Introduction

In recent years, it is urgent to meet the requirement of low-
frequency vibration isolation in the engineering field to reduce 
waterborne noise. According to the vibration theory, the lower 

limit of effective vibration isolation frequency of linear vibra-
tion isolation system is 

√
2 �n , where �n is the natural fre-

quency, which requires that �n of isolation system should be 
deceased greatly [1]. However, to reduce the system natural 
frequency of the system means to reduce the system stiff-
ness, and thus a large static deformation will be produced. 
So it is difficult to meet the needs of low-frequency vibration 
isolation for the general linear vibration isolation system. To 
restrain low-frequency vibration effectively, a high-static-low-
dynamic stiffness vibration isolator (HSLDS-VI) is studied. 
The design of the HSLDS-VI structure includes a positive and 
a negative stiffness mechanism. The negative stiffness mecha-
nism plays a key role in the HSLDS-VI. Many different types 
of the HSLDS-VI structure are proposed in the literature. A 
typical structure with oblique springs as a negative stiffness is 
connected to a vertical spring as a positive stiffness researched 
in [2–5]. The Platus [6] used two poles hinged to each other 
under axial load as a negative stiffness mechanism. The results 
showed that the negative stiffness mechanisms could cancel 
the stiffness of power cables connected with payloads. Le 
et al. [7] designed a new quasi-zero-stiffness vibration isola-
tion system in which the connecting rod acted as a negative 
stiffness, and it was applied to the vibration reduction of the 
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car seat successfully. Huang et al. [8] proposed a method for 
designing a quasi-zero stiffness system through connecting a 
linear spring with a negative stiffness Euler flex beam. Zhou 
et al. [9] designed a high-static–low-dynamic stiffness vibra-
tion isolator (HSLDS-VI) with a cam roller. The design of a 
quasi-zero-stiffness isolator with equal thickness and variable 
thickness butterfly spring was proposed in the recent paper 
[10, 11], and the influence of system parameters on the trans-
mission rate of vibration isolator was studied by the averaging 
method. Xu et al. [12] used the magnetic spring as a negative 
stiffness mechanism, and designed a low-frequency vibration 
isolator with quasi-zero-stiffness characteristics. Sun [13] pro-
posed a high-static–low-dynamic stiffness vibration isolator 
with scissor-like structure. Carrella et al. [14] put forward a 
three-magnet negative stiffness mechanism. The basic princi-
ple was that two permanent magnets were fixed at the ends of 
the poles, and the other one which generated negative stiffness 
was put in the middle of the structure.

The above-mentioned negative stiffness structures belong 
to the passive pattern of vibration isolation, and their param-
eters cannot be adjusted. Xu et al. [15] introduced a mechan-
ical device to change the pre-compression of the horizontal 
spring on the basis of the conventional spring, and obtained 
an online adjustable negative stiffness mechanism. Zhou 
et al. [16] designed a tunable negative stiffness vibration 
isolator using a set of electromagnets and a permanent mag-
net. The negative stiffness could be adjusted by changing 
the current. Although these structures can achieve the self-
adaptive negative stiffness, the load can only be installed in 
the fixed position, and its operating range is limited.

The averaging method is an important analysis method 
for a nonlinear dynamic system [17]. Wang et al. studied the 
robustness problem of nonlinear systems with state delayed 
feedback control by this method. The infinite dimensional 
delay differential equations were reduced to ordinary differ-
ential equations so that the periodic solutions of nonlinear 

vibration systems were solved. It could be extended to a class 
of linear control systems with small perturbations and weakly 
bounded nonlinear delay systems [18]. Atay used the average 
method to study the delay feedback control of the van der 
Pol equation. The relationship between the limit cycle and 
the delay time of the system was derived [19]. Stroucken 
et al. applied the average method to investigate the problem 
of solving the partial differential equation with small param-
eters under certain boundary conditions [20]. Bogoliubov 
et al. investigated the modified method in practical nonlinear 
oscillators [21, 22]. To improve the calculation effect of the 
averaging method, Okabe et al. used the elliptic function as 
the generating function of the method to analyze the Duffing 
equation with catastrophe and obtained the amplitude–fre-
quency curve. Compared with the shooting method, it is con-
cluded that this method has higher accuracy [23].

In this paper, a new design of a nonlinear electromag-
netic vibration isolator with a tunable negative stiffness 
characteristic is proposed. The isolator can act as a pas-
sive or semi-active pattern isolator. It depends on the vari-
ation of current. The paper is organized as follows. In the 
section “Isolator Stiffness Characteristics”, the model of 
nonlinear electromagnetic vibration isolator is introduced. 
In the section “Dynamic System Behavior”, the isolator 
stiffness characteristics are analyzed. The dynamical 
equation of the system is established and the influence 
of system parameters on the dynamic characteristics is 
discussed in the section “Conclusions”. Finally, the con-
clusions are presented.

Isolator Stiffness Characteristics

The structure of the nonlinear electromagnetic isolator is shown 
in Fig. 1. As a negative stiffness mechanism, the electromagnetic 
spring is composed of three magnets. Three permanent magnets 

Fig. 1  Schematic of electromag-
netic vibration isolator
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repel each other, and their polarity is shown in Fig. 1. The mid-
dle of the permanent magnet is wound around the coil, and its 
position is fixed. The left and right permanent magnets can slide 
on the horizontal guide rod. The vertical springs are fixed on the 
base as a positive stiffness mechanism, and the top is connected 
with a ringer. Each spring has a vertical guide with a diameter 
less than the diameter of the spring. The ringer can be slid on the 
vertical guide through rollers. The supporting platform is con-
nected with the ringer by three supporting rods. The connecting 
rod connects the electromagnetic spring to the vertical springs.

The electromagnetic spring force depends on the magnetic 
flux density, current and distance between the permanent 
magnets. Although the electromagnetic spring contains the 
coupling problem between the electromagnetic field and the 
permanent magnetic field inevitably, this paper only focuses 
on the dynamic characteristics of vibration isolation system. 
The coupling between the magnetic fields is not the main 
content of this study. Therefore, the electromagnetic force is 
measured by experiment. The experimental conditions are set 
such that the current changes from 0 A to 2 A at a step size of 
0.4 A, and the current direction is shown in Fig. 1. The dis-
tance between the permanent magnet and the electromagnet is 
gradually changed, and the curve of the electromagnetic force 
with distance is obtained. Repeat this procedure to get a series 
of data curves as shown in Fig. 2. According to the curve, 
the approximate formula of the electromagnetic force can be 
obtained by the application of curve fitting based on Matlab:

where i is the current, d is air gap between permanent magnet 
and electromagnet,w1 = 46.5 , w2 = 2.6 , and w3 = 0.0128.

The isolator modeling when the system is excited 
is shown in Fig. 3. When the system reaches the static 

(1)fE = w1e

(
i

w2
−

d

w3

)

,

equilibrium position, the compression amount of the posi-
tive stiffness spring element is h and the air gap spacing 
is d0 . The coordinate y defines the displacement from the 
static balance in the vertical direction, and the downward 
direction is positive. The vertical spring stiffness is k and 
the connecting rod length is L. The relationship between 
the system force and the displacement can be expressed as

Noting that x = L −
√
L2 − y2 , d = x + d0 , and substitute 

Eq. (1) into Eq. (2):

Differentiating Eq. (3), the stiffness K can be obtained:

Let y = 0 and K = 0 , the relationship between the verti-
cal spring stiffness and the current can be obtained:

When the parameters of the vibration isolator meet 
the Eq.  (5), the system will work in a quasi-zero stiff-
ness state at the equilibrium position. The system param-
eters selected in this article are: k = 450 N/m , L = 0.15 m , 
h = 0.05 m , and d0 = 0.01 m . The current range of the coil 
is: 0 ≤ i ≤ 5 A.The relationship between stiffness, current 
and displacement of vibration isolator given by Eq. (4) is 
shown in Fig. 4. It can be seen from the figure, under the 
same displacement, the stiffness increases with the current 

(2)f = −2k(h + y) + 2fE
y

√
L2 − y2

.

(3)f = −2k(h + y) + 2w1e

�
i

w2
−

d0+L−

√
L2−y2

w3

�

y
√
L2 − y2

.

(4)

K = − 2k +
2w1y

2e

�
i

w2
−

d0+L−

√
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w3

�

(L2 − y2)3∕ 2

+
2w1e

�
i

w2
−

d0+L−

√
L2−y2

w3

�

√
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−
2w1y

2e

�
i

w2
−

d0+L−

√
L2−y2

w3

�

(L2 − y2)w3

.

(5)k =
2w1e

�
i

w2
−

d0

w3

�

√
L2 − y2

.

Fig. 2  Measured force curves between PE and EM
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increasing. The variation of the negative stiffness will 
change the stiffness of the vibration isolator so that the 
isolator exhibits different vibration isolation performance.

When the displacement range of the system at the static 
equilibrium position is narrow, Eq. (3) can be expanded by 
the Taylor series:

Differentiating Eq. (6), an approximate expression of the 
stiffness is obtained:

(6)f = − 2kh +
w1

L2

(
1

L
−

1

w3

)

e

(
i
w2

−
d0
w3

)

y3.

(7)K = 3
w1

L2

(
1

L
−

1

w3

)

e

(
i
w2

−
d0
w3

)

y2.

The comparison of force displacement curves between the 
exact expressions given by Eqs. (3) and (4) and the approxi-
mate expressions given by Eqs. (4) and (5) are shown in Fig. 5. 
It can be seen from the figure that the error between the exact 
expression and approximate expression increases with the 
increase of displacement. When the displacement is small, 
the error is neglected, so the third-order Taylor series expan-
sion can fit the exact expression in the vicinity of the static 
equilibrium position.

Dynamic System Behavior

Dynamic Modeling

The dynamical model of the system under a vertical harmonic 
force is shown in Fig. 6, and the dynamical equation of the 
system is:

(8)MZ̈ + cŻ − f = Fh cos(𝛺T).

Fig. 4  Stiffness–current–displacement curves
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Introducing the non-dimensional parameters, �
0
=√

k∕M , � = �0� , � = c
�√

Mk , t = �0T , and F = Fh

/
(kh) : 

� =
w1h

2

kL2

(
1

w3

−
1

L

)
e

(
i
w2

−
d0
w3

)

.

Equation (8) becomes:

Assuming that the basic solution of the system under lin-
ear condition is

Differentiating Eq. (10):

In the nonlinear condition, due to the complexity of vibra-
tion, the amplitude and phase of the system are considered 
as time-varying parameters. The expression is:

At the same time, it is assumed that the vibration velocity 
of the vibration system has the same form as Eq. (11):

Differentiating Eq. (12):

Combining Eqs. (13) and (14), we get:

Differentiating Eq. (13), the second derivative form is 
obtained:

Inserting Eqs. (13) and (16) into Eq. (9), we obtain:

Combining Eqs. (15) and (17), the two equations are 
obtained:

(9)z̈ + 𝜉ż + 𝛾z3 = F cos(𝜔t).

(10)z(t) = a cos(�t) + b sin(�t).

(11)z�(t) = b� cos(�t) − a� sin(�t).

(12)z(t) = a(t) cos(�t) + b(t) sin(�t).

(13)z�(t) = �b(t) cos(�t) − �a(t) sin(�t).

(14)
z�(t) = a�(t) cos(�t) − �a(t) sin(�t) + b�(t) sin(�t) + �b(t) cos(�t).

(15)a�(t) cos(�t) + b�(t) sin(�t) = 0.

(16)
z
��(t) = − �a�(t) sin(�t) − �2

a(t) cos(�t)

+ �b�(t) cos(�t) − �2
b(t) sin(�t).

(17)

cos(�t)(� a�(t) − �2
a(t) + �b�(t) + ��b(t) − F)

+ �b3(t) sin3(�t) + sin(�t)(� b�(t) − �a�(t) − ��a(t)

− �2
b(t)) + �a3(t) cos3(�t) + 3�a2(t)b(t) sin(�t) cos2(�t)

+ 3�a(t)b2(t) sin2(�t) cos(�t) = 0.

(18)

a
�(t) =

1

�
sin(�t)(a(t)(�a3(t) cos3(�t)

+ 3�b2(t) sin2(�t) cos(�t) − �� sin(�t)

− �2 cos(�t)) + 3�a2(t)b(t) sin(�t) cos2(�t)

+ �b3(t) sin3(�t) − F cos(�t) + b(t)(�� cos(�t)

− �2 sin(�t))),

To facilitate the analysis, transforming the non-autono-
mous system into an autonomous system, let �t = �0:

Assuming that the amplitude a(t) and b(t) are slow vari-
ation parameters, the right side of the Eqs. (20) and (21) is 
integrated at [0, 2π] and averaged over the interval. We get:

To facilitate analysis, a(t) and b(t) are expressed in polar 
coordinates: a(t) = A cos� , b(t) = A sin� , and they are 
inserted into Eq. (12). The following equations are obtained:

So A′ and �′ are found to be

The equilibrium point on the van der Pol plane should 
be satisfied:

(19)

b
�(t) = −

1

�
cos(�t)(a(t)(�2 cos(�t) − �� sin(�t)

+ 3�b2(t) sin2(�t) cos(�t)) + �b3(t) sin3(�t)

+ 3�a2(t)b(t) sin(�t) cos2(�t) − F cos(�t)

+ �a3(t) cos3(�t) + b(t)(�� cos(�t) − �2 sin(�t))).

(20)

a
�(t) =

1

�
sin(�0)(a(t)(�a

3(t) cos3(�0)

+ 3�b2(t) sin2(�0) cos(�0) − �� sin(�0)

− �2 cos(�0)) + 3�a2(t)b(t) sin(�0) cos
2(�0)

+ �b3(t) sin3(�0) − F cos(�0)

+ b(t)(�� cos(�0) − �2 sin(�0))),

(21)

b
�(t) = −

1

�
cos(�0)(a(t)(�

2 cos(�0) − �� sin(�0)

+ 3�b2(t) sin2(�0) cos(�0)) + �b3(t) sin3(�0)

+ 3�a2(t)b(t) sin(�0) cos
2(�0) − F cos(�0)

+ �a3(t) cos3(�0) + b(t)(�� cos(�0) − �2 sin(�0))).

(22)

{
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2
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Removing � and using sin2(�) + cos2(�) = 1 , the ampli-
tude–frequency expression A − � can be obtained:

Amplitude–Frequency Characteristic

Based on the above derivation, the change influence of the 
system parameters on the amplitude–frequency characteris-
tic curve can be analyzed.

1. When parameters � = 0.4 and � = 4 , the excitation 
parameter F is increased from 0.5 to 2, the amplitude–
frequency curve is plotted using Eq.  (27) shown in 
Fig. 7. It can be seen that the system exhibits obvious 
nonlinearity and the response amplitude increases as the 
excitation force amplitude F increases.

2. When parameters � = 4 , F = 1 , and the damping ratio 
� is increased from 0.1 to 0.4, the amplitude–frequency 
characteristic given by Eq. (27) is plotted in Fig. 8. It 
can be seen that the resonance amplitude of the curve is 
restrained as the damping ratio increases.

3. When parameters � = 0.1 and F = 1 , the system param-
eter � is increased from 1 to 4, and the amplitude–fre-
quency curves are shown in Fig. 9. With the increase 

(26)

{
− A��+F sin(�)

2�
= 0

− 3A3�+4A�2+4F cos(�)

8A�
= 0

.

(27)
A2(3�A2 − 4�2)2

16F2
+

�2A2�2

F2
= 1.

of parameter � , the system nonlinearity is gradually 
enhanced, and the response peak is obviously reduced.

The Force Transmissibility Analysis

In the vibration isolation system, the force transmission rate 
index is generally used to evaluate the vibration isolation 
effect. The transmitted force as shown in Fig. 6 is given as

The magnitude of the transmitted force is obtained:

Thus we get the force transmissibility:

The force transmissibility of the linear system is given 
by [24]

It can be seen from the Eq. (30) that the expression of 
the force transmissibility of the electromagnetic vibration 
isolation system is different from that of the linear system. 
Besides the parameters of the system, it changes under the 

(28)Ft = 𝜉ż + 𝛾z3.

(29)|
|Ft

|
| =

√

(��A)2 +
(
3

4
�A3

)2

.

(30)T =

√

(��A)2 +
(

3

4
�A3

)2
/

Fh
.

(31)TL =

√
1 + 4�2�2

(1 −�2)2 + 4�2�2
.
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effect of an external excitation force. This is because in the 
nonlinear system, the relationship between the response 
amplitude and the external excitation force is nonlinear. 
The influence of system parameters and external excita-
tion parameters on the system force transmissibility will be 
described by a numerical simulation.

1. When the system parameters � = 0.1 and � = 4 , the force 
transmissibility given by Eq. (30) for several values F is 
plotted in Fig. 10. When the force amplitude is 0.1, the 
resonance peak is 13.8 and the starting frequency is 0.8. 
When the force amplitude is varied to 0.5, the resonance 
peak is 26.9 and the starting frequency is 1.3. As the 
force amplitude increased to 1, the resonance peak is 
33.2 and the starting frequency is 1.6. It can be seen that 
the resonance peak and the starting frequency of vibra-
tion isolation gradually increase with the increase of the 
excitation force amplitude F. The effective frequency 
range of vibration isolation is reduced.

2. When the system parameters F = 1 and � = 4 , the force 
transmissibility given by Eq. (30) for different values � 
is as shown in Fig. 11. When the damping ratio � = 0.05 , 
the curve bents towards the right trend obviously, and 
the jump phenomenon occurs. At this time, the expected 
vibration isolation effect occurs. When the damping 
ratio � is varied to 0.2, the force transmissibility near 
the resonant peak decreases significantly, and the effec-
tive frequency range of vibration isolation is widened, 

but the vibration isolation performance in the high-fre-
quency region becomes worse. As the damping ratio � 
increased to 0.4, the jumping phenomenon disappears, 
and the low-frequency vibration isolation performance 
is excellent, but the high-frequency vibration isolation 
is further deteriorated. Therefore, with the increase of 
the damping parameters, the jump range of the nonlinear 
electromagnetic vibration isolation system is gradually 
narrowed.

3. When the system parameters F = 1 and � = 0.1 , the force 
transmissibility given by Eq. (30) for several values � is 
as shown in Fig. 12. When the parameter � is 0.1, the 
resonance peak is 33.6 and the starting frequency is 0.5. 
When the force amplitude is changed to 1, the resonance 
peak is 44.7 and the starting frequency is 0.9. As the 
force amplitude increased to 4, the resonance peak is 
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55.1 and the starting frequency is 1.6. It can be seen that 
with the increase of the system parameter � , the degree 
of right bending increases gradually, and the resonant 
peak and the starting frequency of the vibration isolation 
gradually increase.

The force transmissibility of a linear vibration system 
given by Eq. (31) is also plotted in Figs. 10, 11 and 12. It can 
be seen that the novel electromagnetic nonlinear vibration 
system outperforms the linear system. First, the jump-down 
frequency of all the electromagnetic nonlinear vibration 
system is smaller than the natural frequency of the linear 
vibration system. Second, the starting frequency of the elec-
tromagnetic nonlinear vibration system is smaller than that 
of linear vibration system. Third, the maximum amplitudes 
of force transmissibility of all the electromagnetic nonlinear 
vibration system are less than that of linear vibration sys-
tem. According to the analysis above, it is possible to obtain 
a good low-frequency vibration isolation performance by 
designing the appropriate system parameters.

Conclusions

In this paper, a new structure of vibration isolator using an 
electromagnetic spring consisted of a permanent magnet 
and electromagnet is proposed. The vibration isolator can 
be used as a passive isolator or a semi-active isolator. If the 
current is zero, the isolator works in a passive pattern. If the 
current is not zero, the magnitude of the negative stiffness 
varies with the current. The approximate expression of elec-
tromagnetic force is obtained by the experiment. Through 
the static analysis, the system will achieve quasi-zero-stiff-
ness characteristics at the equilibrium position when the 

system parameters meet certain conditions. The dynamic 
characteristics of vibration isolation system are analyzed by 
the averaging method. The influence of system parameters 
on amplitude–frequency characteristics is obtained. Through 
the force transmissibility, the study shows the nonlinear 
electromagnetic isolator with suitable system parameters 
outperforms the linear system, and has the advantages of 
widening the vibration isolation range and improving the 
low-frequency vibration isolation effect.
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