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Abstract
This paper discusses the application of the homotopy approach to optimizing the free-flight-time low-thrust trajectory con-
sidering the performance characteristics. The trajectory optimization problem is formulated as an optimal control problem
(two-point boundary value problem). The developed homotopy algorithm to solve the optimal control problem comprises
three steps—orbital energy/acceleration matching, flight-time matching, and orbital reshaping. A comprehensive case study
demonstrates the effectiveness of the proposed homotopy-based optimization algorithm for an optimal design of a low-thrust
trajectory involving long mission time.
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List of Symbols

TPBVP Two-point boundary value problem
x State variable
r Position vector
v Velocity vector
(r , θ , φ) Position components(
Vr , Vθ , Vφ

)
Velocity components

aT, aT(0), aT, d Thrust acceleration, Initial thrust acceler-
ation, desired initial thrust acceleration

msat Mass of spacecraft
Isp Specific impulse
T Thrust
u Control variables
(α, β) In and out-of-plane control variable
λ Lagrange multiplier
t Time vector
τ Free final-time parameter
Ecurrent, Edesired Current and desired orbital energy
pBi , p

E
i Beginning and end initial classical orbital

elements

B Jaemyung Ahn
jaemyung.ahn@kaist.ac.kr

Jinsung Lee
jinsung_lee@kaist.ac.kr

1 Department of Aerospace Engineering, Korea Advanced
Institute of Science and Technology, Daejeon, Republic of
Korea

pBf , p
E
f Beginning and end final classical orbital

elements
pBc , p

E
c Current solution’s classical orbital ele-

ments
a Semi-major axis
e Eccentricity
i Inclination
� Right ascension ascending node
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1 Introduction

Formany decades, scientists and engineers have shown inter-
est in low-thrust trajectory optimization for its potential for
future space exploration following successful missions such
as the Deep Space 1 [1] and HAYABUSA [2]. The low-
thrust propulsion system can help to satisfy challenging
requirements in deep-space missions that traditional chemi-
cal propulsion systems cannot fulfill. It is flexible, efficient,
and reliable due to its unlimited on/off switching capability
and long operation duration. Its high specific impulse can
increase the payload to mass ratio, bringing valuable science
mass back to Earth.

One can categorize the solution methodologies for low-
thrust trajectory optimization problems into three types:
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direct, indirect, and hybrid. A direct method [3–6] trans-
forms a continuous optimal control problem into a parameter
optimization problem (nonlinear optimization) under various
constraints and boundary conditions. The direct optimiza-
tion method is suitable for trajectories that do not include
many revolutions (e.g., ascend and descent trajectory opti-
mizations [7]). An indirect optimization method formulates
a two-point boundary value problem based on the Euler–La-
grange equation and finds the necessary optimality condition
[8–10]. A hybrid optimization method utilizes multiple
approaches such as the indirect method, and direct method,
and other heuristic methods (e.g., multi-objective hybrid
optimal control [11], genetic algorithm [12], and particle
swarm optimization [13]). The hybrid optimization method
is suitable for generating multiple short trajectory segments
(e.g., direct gravity assist trajectory, rendezvous sequence).

This study adopts the indirect method to optimize the low-
thrust trajectory. The most fundamental method to perform
trajectory optimization began from the primer vector theory
or indirect optimization. Lion andHandelsman [14] proposed
the fundamental algorithmbehind solving thefixed-final time
impulsive thrust trajectory optimization using the primer
vector theory. Russell [8] developed an algorithm to apply
the primer vector theory in the continuous-low-thrust trajec-
tory optimization using Pontryagin’s minimum principle to
sequentially determine the switching times of the thrusting
and coasting arcs. Such algorithms were further applied to
the circular-restricted three-body problem [15] and even to
multi-body environments involving near-Earth objects.

However, there is a common drawback in these low-thrust
trajectory optimization algorithms. The highly nonlinear
dynamics and the long flight time with the minute thrust
acceleration may cause difficulty in finding a solution that
converges to a global optimum.Ahomotopy-based optimiza-
tion approach has been studied to overcome these challenges.
The term homotopy in topology represents the relationship
between two functions. The homotopic condition indicates
a continuous transformation between different shapes, inter-
preted as the transformation between different trajectories
complying with given dynamic equations in this study.

The homotopic approach can solve the low-thrust trajec-
tory optimization problem without an overly complicated
search process or initial guesses. Haberkorn et al. [16] first
applied the homotopy approach to obtaining the minimum-
fuel low-thrust trajectory from GTO to GEO. Jiang et al.
[17] further developed the homotopic algorithm to solve a
final time-fixed low-thrust trajectory optimization problem
involving the gravity assist. Guo et al. [18] combined the indi-
rect homotopy approach and the pseudospectral method to
solve the trajectory optimization. Their procedure adopts the
initial Lagrangemultiplier estimationusing theKarush–Kuh-
n–Tucker (KKT) condition. Sullo et al. [19] solved a

solar-sail trajectory optimization problem using the homo-
topy approach. They obtained the full three-dimensional
ion-thruster trajectory based on the two-dimensional opti-
mization results.

Previous homotopy-based trajectory optimization focuses
on finding a trajectory with a given (fixed) flight time—with-
out explicitlymatching the initial acceleration level. Also, the
order of magnitude of the thrust accelerations applied to the
spacecraft in these case studies is not at the realistic level
(order of magnitude: 10–3 m/s2 or higher) [16–19]. Previous
missions (e.g., Deep Space, Hyabusa, Dawn, and Lunar Ice-
Cube) were equipped with electric thrusting systems capable
of providing initial thrust acceleration (order of magnitude:
10–5 m/s2). This study proposes a homotopy-based algorithm
that can generate a spacecraft-tailored trajectory utilizing
both fixed- and free-final time problems formulated as the
two-point boundary value problems (TPBVP). Introducing
the free-final time with the transversality condition provides
flexibility to flight parameters (e.g., initial thrust accelera-
tion), yielding various solutions that abide by the specific
spacecraft hardware specifications, such as spacecraft mass
and initial thrust acceleration capabilities.

Section 2 discusses the mathematical formulation
(TPVBP) for free-/fixed-final time low-thrust trajectory opti-
mization problems. Section 3 proposes a homotopy-based
algorithm to solve the trajectory optimization problems and
generate final-time-free solutions with a specified initial
acceleration. Section 4 presents a case study (transfer trajec-
tory designs from the Earth toMars and a hazardous asteroid)
to validate the proposed approach. Finally, Sect. 5 provides
the conclusions of the study and discusses potential future
study subjects.

2 Two-Point Boundary Value Problem
Formulation

The dynamic equations describing the motion of the space-
craft in a spherical coordinate system are presented using
seven state variables as follows
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Fig. 1 Definition of coordinate system and control angles for describing
the spacecraft dynamics

Note that the expression presented in Eq. (1) assumes the
central gravitational field. In the equation, r (� [r , θ , φ])
and v (� [

Vr, Vθ , Vφ

]
) represent the position and velocity

vectors, and aT is the thrust acceleration acting upon the
spacecraft. The control variable vector u(� [α, β]T) com-
prises the in-plane (α) and out-of-plane (β) thrust pointing
angles. Figure 1 presents the coordinate system and defini-
tions of the state and control variables used for the dynamic
equations.Note that units of length and timeused in this study
are AU and TU, making the numerical value of μ (gravita-
tional parameter of the Sun) as unity.

The trajectory optimization problem, or equivalently the
optimal control problem, aims to find the state and control
histories that minimize the performance index. In this study,
the performance indexminimizes the terminal thrust acceler-
ation (aT(tf)), which is equivalent tomaximizing the terminal
spacecraft mass (m(tf)). The Bolza-form expression of the
performance index is as follows

min J � φ(xf, tf) +
∫ tf

to
L(x, u, t)dt � aT(tf). (2)

In Eq. (2), φ(xf, tf) (� aT(tf)) is the terminal cost and L(x,
u, t) (� 0) is the Lagrangian. Then we impose the terminal
constraint (�(xf, tf) � 0) and the dynamic constraint (ẋ −
f(x, u) � 0) to obtain the following equation.

(3)

min J � φ (xf, tf) + νT� (xf, tf)

+
∫ tf

to
{L (x, u, t) + λT(f(x, u, t) − ẋ)}dt .

In Eq. (3), ν and λ are the Lagrange multiplier vectors
associatedwith the terminal and dynamic constraints, respec-
tively. This equation is further modified as

min J � 	(xf, tf) +
∫ tf

t0
H(x, u, t) − λTẋ(x, u, t)dt , (4)

where 	 and H (Hamiltonian) are defined as

	(xf, tf) ≡ φ(xf, tf) + νT�(xf, tf), (5)

H ≡ L(x, u, t) + λTẋ(x, u, t). (6)

A total derivative of Eq. (4) is expressed as

(7)

dJ �
(

∂	

∂x
− λT

)
dxf +

(
∂	

∂t
+ H

)
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+ λTdxo +
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T
]
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[
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∂u
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dt .

For the solution to be optimal, the differential cost pre-
sented in Eq. (7) must be zero, leading to the following
Euler–Lagrange equations for the co-state vector (λ̇ �
−(∂H/∂x)T) and the optimality condition for the control
vector (∂H/∂u � 0) as follows:
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Table 1 Boundary conditions for
TPBVP Initial time Initial states Final time Final states

Fixed dto � 0 dxo � 0 dtf � 0 dxf � 0

Free H(0) � 0 λ(0) � 0 H(tf) � − ∂	
∂tf λ

(
t f

) � − ∂	
∂x

∣
∣
t f

Table 2 Initial and final boundary conditions

Boundary type Initial boundary condition Final boundary condition

State Energy/acceleration
matching loop

Orbit reshaping
loop

Rendezvous
loop

Energy/acceleration
matching loop

Orbit reshaping
loop

Rendezvous
loop

r ro ro ro rf rf rf

θ θo θo θo θ f θf θf

φ φo φo φo Free
∴ λφ

(
t f

) � 0
Free

∴ λφ

(
t f

) � 0
φf

Vr Vro Vro Vro Vrf Vrf Vrf
Vθ Vθo Vθo Vθo Vθf Vθf Vθf

Vφ Vφo Vφo Vφo Vφf Vφf Vφf

aT Free
∴ λaT (0) � 0

aaT, d aaT, d λaT (tf) � 1 λaT (tf) � 1 λaT (tf) � 1

Transversality
condition

Not used Not used Not used Not used H(tf) � − ∂	
∂tf H(tf) �

− ∂	
∂tf

α � arctan

(
−λVr

−λVφ

)

, (9)

β � arctan

(
λVθ

−λVr sin α − λVθ cosα

)
. (10)

We can obtain the boundary conditions to determine the
solution of the TPBVP from Eq. (7), presented in Table 1.

This paper focuses on free-final time problems, whose
formulations and boundary conditions are further discussed
in the next subsections.

2.1 Free Final-Time TPBVP Formulation

We transform the free-final-time TPBVP described in Eq. (4)
into a fixed-final time formulation by introducing a final time
parameter (tf) and a normalized time (τ ≡ t/tf ∈ [0, 1][0,
1]) as follows

min J � 	 (xf, tf)

+ tf

∫ 1

0
H (x (τ ) , u (τ ) , τ ) − λTẋ (x (τ ) , u (τ ) , τ ) dτ .

(11)

Note that the problem becomes easier to handle by this
conversion because the integral interval of the normalized
time is fixed. Then the differential equation for the co-state
vector (Eq. 8) is modified as

λ̇(t) � −∂H(x(τ ), u(τ ), τ)

∂x
· tf. (12)

The total derivative expressed in Eq. (7) provides the nec-
essary boundary conditions for the final-time-free TPBVP.
Equation (12) indicates the use τ and tf to express the time
in an optimized time unit. The number of necessary bound-
ary conditions for solving the TPBVP now becomes 15 since
each of seven state variables (x) requires two and the free
parameter (τ ) requires one.

2.2 Boundary Conditions

The final-time-free low-thrust trajectory with a specified
initial acceleration obtained using the proposed algorithm
requires three sets of initial and final boundary con-
ditions associated with the following design loops: (1)
Energy/Acceleration Matching Loop, (2) Orbit Reshaping
Loop, and (3) Rendezvous Loop. The Energy/Acceleration
Matching Loop alters themission’s final timewhile changing
the semi-major axis (or the orbital energy) of the initial and
final states. The desired final classical orbital elements and
the initial thrust acceleration are specified in this loop. The
Orbit Reshaping Loop changes the orbital shapes defined by
the initial and final states. Finally, The Rendezvous Loop
matches the arrival position of the final orbit. Table 2 lists
the boundary conditions associated with these loops.

The user inputs associated with the initial orbit param-
eters determine the initial position and velocity. The
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Fig. 2 Proposed homotopy-based
optimization procedure for
complex low-thrust trajectory
design

initial thrust acceleration is free (λaT (0) � 0) during the
Energy/Acceleration Matching Loop but fixed afterward,
characterizing the propulsion system for the spacecraft. The
flight time (fixed within the step) increases until the opti-
mized initial thrust acceleration matches with aT, d during
this step. Note that the terminal cost and the terminal bound-
ary conditions described in Eq. (5) are independent of time.
Therefore, the transversality condition forces the Hamilto-
nian at the terminal time to be zero (H(tf) � −∂	/∂tf � 0).
The orbital reshaping loop sets the arrival true anomaly value
as free (λφ(tf) � 0). When the arrival state of the space-
craft matches with the target orbit condition, we begin the
rendezvous loop where the true anomaly at arrival is fixed.
Assuming that the departure orbit is circular, the initial depar-
ture location is free (λφ(0) � 0), which minimizes the final
thrust acceleration by altering the departure time and loca-
tion.

3 Homotopy Based Optimization Algorithm

A homotopy-based trajectory optimization algorithm
addresses a complex problem by sequentially construct-
ing and solving easier but related problems. The proposed
algorithm consists of three elements: (1) user inputs, (2)
preliminary calculations, and (3) the homotopy-based opti-
mization loop. Figure 2 shows the proposed homotopy-based
approach to calculate a final-time-free low-thrust trajectory
with a specified initial acceleration.

3.1 User Input and Preliminary Calculation

The first step of the algorithm begins by creating user
inputs based on the target mission. The user inputs are the

Fig. 3 Optimization sequence: homotopy-based approach

spacecraft mass (msat), the thrust (T ), the specific impulse
(Isp), and the desired initial (i)/final (f) orbital elements (p)
for the problems at the beginning (B) and the end (E) of the
outer homotopy loop (pBi , p

B
f , p

E
i , p

E
f ). This study uses the

classical six elements (p � [a, e, i , �, ω, θ ]) to represent
the initial/final orbital parameters. Then we determine the
desired initial thrust acceleration (aT, d) and its time deriva-
tive (ȧT) as follows:

aT, d � T

msat
, (13)

ȧT � a2T
Isp · go . (14)

Equation (14) is integrated to yield the final thrust accel-
eration, which determines the final spacecraft mass.

The homotopy-based algorithm matches the desired ini-
tial thrust acceleration and its time derivative to generate
an optimal trajectory for a given spacecraft. The next step
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Fig. 4 Initial guess and preliminary solution trajectory (simple shoot-
ing)

determines the orbital element change sequence. The opti-
mizer modifies the trajectory at each sequence segment to
satisfy the orbital element constraint at the initial/final time.
Figure 3 presents a sample optimization sequence using the
homotopy-based approach. The optimization sequence was
generated with linear increments from (pBi , p

E
i ) to (p

B
f , p

E
f ).

The black dash and red dash lines represent the initial and
desired orbits, respectively. The proposed algorithm solves a
series of TPBVPswhile changing the boundary conditions. It
first matches the semi-major axis (plotted in black), then the
inclination (plotted in blue), and finally the eccentricity (plot-
ted in red). The initial problem is a simple co-planar, circular
to circular low-thrust orbital transfer trajectory optimization.
The final TPBVP is a complicated rendezvous trajectory
optimization problem involving various orbital parameter
changes.While a small orbital parameter change between the
adjacent segments of the optimization sequence improves the
convergence property, it may result in a high computational
cost. Therefore, the proposed algorithm adopts a sensitiv-
ity reduction loop to address the challenge of selecting the
proper parameter change value between segments (will be
discussed later).

The algorithm also requires a preliminary solution, an
orbital transfer trajectory involving the orbital parameter
change (pBi → pEi ). Figure 4 presents an example of the ini-
tial guess trajectory obtained using a simple shootingmethod
with various initial thrust acceleration values. The Lagrange
multiplier history associated with each trajectory is obtained
byguessing/updating its value at thefinal time and integrating
backward. The initial states of the Lagrange multipliers for

the simple shooting method are trivial and is set to zero. The
inner-loop optimization routine solves the fixed-final time
TPBVP using the stored trajectory and guessed Lagrange
multiplier history to minimize the final thrust acceleration.
The homotopic optimization loop (outer loop) uses the inner-
loop result as the preliminary solution (x(0), λ(0), t(0)).

3.2 Homotopic Optimization Loop

The homotopic optimization loop consists of four steps.
The first step is the orbital energy matching loop. The
orbital energy (E) is the function of the semi-major axis (a)
expressed as

E � − μ

2a
. (15)

In addition, the loop matches the right ascension of
ascending node (�) together with the semi-major axis to fix
the angular momentum vector after matching the inclination
in the orbital reshaping loop. The optimal solution obtained
in the previous optimization loop (x(0), λ(0), t(0)) is used as
the initial guess of the trajectory for the optimization prob-
lemwith a new semi-major axis. The orbital energymatching
loop uses the same boundary conditions as the acceleration
matching loop, resulting in the free initial thrust acceleration
(aT, d).

The second step (acceleration matching loop) aims to
make a spacecraft-tailored optimal trajectory by determining
the initial thrust acceleration (aT, d) and its derivative (ȧT, d)
presented in Eqs. (13) and (14). The boundary conditions
shown in Table 2 indicate that aT,d decreases as tf increases,
which aligns with the intuition that a smaller thrust value will
require a longer transfer time. The final-time-free TPBVP is
formulated by adding a free-final-time parameter (tf) and a
normalized time vector (τ) to the final-time fixed problem as

τ � t
tf

. (16)

Dividing the optimal time vector by tf normalizes the time
vector while keeping the mesh spacing consistent with the
previous optimal states/co-states histories.We change tf until
the initial and final constraints, including the boundary con-
dition on the initial acceleration, are satisfied.

The third optimization step is the orbit reshaping loop.
The orbit reshaping loop utilizes the optimization sequence
created in the preliminary calculation section. The classi-
cal orbital elements change sequentially—the inclination
angle (i), the argument of periapsis (ω), and the eccentric-
ity (e)—modifying the terminal boundary conditions (shown
in Table 2) gradually until the initial and terminal orbital
elements reach the desired values. The spacecraft departs
from the initial orbit while the departure time is free (a
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decision variable). When the departure orbit is circular, the
initial x–y plane angle (φo) is free (λφ(to) � 0), resulting in
the free departure position, too. Varying the initial positions
change the initial Lagrange multipliers of the optimal trajec-
tory, hence, having a smaller convergence window than the
fixed-final time TPBVP used in previous steps. A sensitivity
reduction loop enlarges the convergence window. The sen-
sitivity reduction loop decreases the difference between the
terminal boundary conditions (the previous optimal solution
versus the current solution) by choosing a set of new classi-
cal orbital elements. The previous optimal solution with the
tighter relative/absolute tolerance has a higher probability of
convergence with the chosen classical orbital elements. The
new sets of classical orbital elements were generated from
(pBi , p

E
i ) to (pBf , p

E
f ) with linear increments.

The last optimization step is the rendezvous loop that
matches the true anomaly (θ ) of the spacecraft at the final
time. Completion of the orbit reshaping loop places space-
craft on the orbit defined by pEf at the final time. However,
the arrival position must be altered so that the arrival posi-
tion of the spacecraft matches the target position at tf within
given tolerances for the position (δr) and the true anomaly
(θ ). The algorithm terminates when the obtained states/co-
states satisfy the convergence criterion, creating the optimal
solution (x∗, λ∗, τ ∗, t∗f ). Note that the multiplying optimal
normalized time vector (τ ∗) with the optimal free-flight-time
parameter (t∗f ) yields the optimal unnormalized time vector
(t∗) [5]. Algorithm 1 presents the pseudocode for the homo-
topic optimization algorithm.
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Table 3 Optimization parameters for case 1 (earth-to-mars trajectory)

Parameter Value Units

msat,0 3000 kg

T 0.1 N

Isp 2100 s

aT, d 3E−5 m/s2

pBi [1, 0, 0, 0, 0] [AU, –, deg, deg, deg]

pEi [1.1, 0, 0, 0, 0] [AU, –, deg, deg, deg]

pBf [1, 0, 0, 0, 0] [AU, –, deg, deg, deg]

pEf [1.524, 0.093, 1.5,
12.312, 32.2]

[AU, –, deg, deg, deg]

4 Case Study

We conducted a case study to demonstrate the effectiveness
of the proposed homotopy-based trajectory optimization pro-
cedure. The problem is implemented with an Intel i5-8500
CPU with 16 GB of RAM using MATLAB. The TPBVP is
solved using the bvp5c function in MATLABOptimization
Toolbox [4]. The tolerance value used to determine the termi-
nation of the iteration for both cases (δr) is selected as 10–6.

4.1 Case 1: Earth to Mars Trajectory

The first case study subject is an Earth to Mars continuous
low-thrust trajectory optimization. The departure and arrival

time for the Mars transfer trajectory is set to be free. Table
3 presents the optimization parameters (spacecraft specifica-
tion and orbital element sets) for this case study.

The initial guess for the departure time is Jan. 1, 2024,
and the desired initial acceleration (aT, d) is 3E−5 m/s2. The
arbitrary and desired initial orbits for the Earth departure
are identical. Therefore, only the arrival classical orbital ele-
ments were changed homotopically from their arbitrary to
desired values. A linear increment schedule is used for the
optimization sequence: 0.05AUfor the semi-major axis (a), 1
degree for the right ascension of ascendingnode (RAAN), 2.1
TU for the flight time, 0.05 deg for the inclination angle (i),
0.05 deg for the argument of periapsis (ω), and 0.003 for the
eccentricity (e). The orbital reshaping loop changes the true
anomaly at arrival to match the terminal spacecraft position
with Mars. Figures 5 and 6 present the control histories and
trajectories obtained during the proposed homotopy-based
optimization procedure, respectively. The objective function
(aT(tf)) obtained by the proposed procedure is 4.1•10–5 m/s2,
with the optimized terminal flight time (tf) of 1993 days
(departure: Aug. 21, 2023) and spent propellant mass of
633 kg.

4.2 Case 2: Earth to (4953) 1990MUTrajectory

The second case study deals with a trajectory from the Earth
to (4953) 1990MU, a potentially hazardous near-Earth aster-
oid with a relatively high impact probability. The departure
time is free, with an initial guess of Jan. 1, 2024. The

Fig. 5 Homotopically changing control history plot for Earth–Mars transfer
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Fig. 6 Homotopically changing control history plot for Earth–Mars
transfer

final (arrival) time is also free during the rendezvous step
(orbit reshaping loop). This setting allows the free-flight time
parameter (tf) to converge to the optimal flight time.

The value of the desired initial acceleration (aT, d) is
9E−5 m/s2. After the acceleration matching, the orbital
parameter matching procedure follows: (1) semi-major axis
(a) and right ascension of ascending node (�), (2) inclination
(i) and argument of periapsis (ω), (3) eccentricity (e), and (4)
true anomaly (θ ). Note that the flight-time adjustment after
the first optimization segment is conducted considering the
initial thrust acceleration (aT, d).

Table 4 exhibits the spacecraft parameters and the ini-
tial/target orbital elements used for the second case study.
Figures 7 and8 exhibit the control variable profiles and space-
craft trajectories for Case 2, respectively.

The boundary condition for the acceleration matching
loop is applied during a/� increment as well. Therefore,
the loop assumes the fixed-final time (tf) and obtains the
free initial thrust acceleration (aT(0)) to minimize the final
thrust acceleration (aT(tf)). Figure 9 shows the change in the
initial thrust acceleration (left y-axis) and the varying free
total flight time (right y-axis) versus the homotopy-based
optimization process (x-axis). The initial thrust accelera-
tion increases during the semi-major axis changes because
of increased orbital energy, requiring a larger thrust level
for arriving at the target orbit within the given flight time.
Similarly, the initial thrust acceleration decreases during the
acceleration matching loop as the total flight time increases
to minimize the final thrust acceleration (λaT(0) � 0). The
orbit reshaping loop solves the free-final-time problem by
changing the orbital elements (i, e, θ ) to desired values and
satisfying the transversality condition. As Fig. 9 indicates,
the loop adjusts the departure time to help the spacecraft
reach the target near the periapsis of the target orbit. Once
the loop completes the orbital shaping, it then modifies the
true anomaly for rendezvous. The optimal solution for the
Earth to 1990 MU asteroid trajectory has converged to the
objective function (final acceleration) of 2.1•10–4 m/s2, ini-
tial departure date of Jul. 2, 2023, and total flight time of
1976 days. The arrival true anomaly has converged to 178◦.

4.3 AlgorithmValidation

The proposed homotopy-based optimization algorithm was
compared with the direct collocation method (obtained using
GPOPS-II). The parameters of the collocation nodes were
updated using either the SNOPT or IPOPT. Table 5 com-
pares the optimal departure time, total flight time, final
spacecraft mass, and total computation time obtained from
the three algorithms. The collocation method did not con-
verge with a single shooting trajectory due to the complexity
of the problem. To compare the performance, the optimal
solution obtained at the end of each proposed homotopy
loop (energy matching loop, acceleration matching loop,

Table 4 Optimization parameters
for Case 2: Earth to (4953) 1990
MU trajectory

Parameter Value Units

msat,0 2000 kg

T 0.18 N

Isp 2100 s

aT, d 9E−5 m/s2

pBi [1, 0, 0, 0, 0] [AU, –, deg, deg, deg]

pEi [1.1, 0, 0, 0, 0] [AU, –, deg, deg, deg]

pBf [1, 0, 0, 0, 0] [AU, –, deg, deg, deg]

pEf [2.7241, 0.6417, 13.84, 302.67, 9.216] [AU, –, deg, deg, deg]
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Fig. 7 Control history plots for
Earth-(4953) 1990 MU transfer

Fig. 8 Homotopically changing
control history plot for
Earth-(4953) 1990 MU transfer

and orbit reshaping loop) was used as the initial condition
for direct optimizers. When the trajectory after the acceler-
ation matching loop was used as the initial guess, the direct
optimizers started to converge—but to a local optimum. The
direct optimizers performed better using the orbital reshap-
ing loop as the initial guess, but the converged solution is still
worse than that obtained using the proposed algorithm. The
direct optimizers converged to the identical solution when
the fully optimized (pBf to pEf ) trajectory using the homotopy
algorithm was used as the initial guess. However, the homo-

topy algorithmobtained an optimal converged solution solely
based on the initial guess generated by the single shooting
method from pBi to pEi , which the collocation method solver
failed to converge with, showing the advantages in perfor-
mance and operational simplicity (Fig. 10). Figures 11 and
12 show the optimal trajectories and control input histories
obtained based on the three algorithms using the trajectory
after acceleration matching as the initial guess trajectory.
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Fig. 9 Change in initial thrust acceleration

5 Conclusion

A novel homotopy-based algorithm is proposed to solve an
optimal spacecraft trajectory design problem for complex
interplanetary missions. The proposed algorithm solves a
two-point boundary value problem with free-flight time with
four homotopy optimization steps. The four steps match
different flight characteristics sequentially—initial thrust
accelerations and orbital elements, finally generating the
optimal solution for the trajectory design problem. The pro-
posed homotopy-based procedure addresses the challenge of
convergence for complex low-thrust trajectory optimization
problems. In addition, the proposed procedure can produce
a low-thrust trajectory with a specified initial acceleration
while setting the total flight time and the departure and arrival
true anomaly free. Interplanetary trajectory optimization case

Fig. 10 Initial Guesses for SNOPT and IPOPT

Fig. 11 Optimal trajectories for Case 2 obtained by SNOPT, IPOPT,
and proposed algorithm (acceleration matching loop)

Table 5 Performance comparison

Method Initial guess from
homotopy algorithm

Optimal solutions Computation time
(s)

Departure date
(UTC)

Total flight time
(days)

Final mass (kg)

Homotopy algorithm Single shooting method Jul. 2, 2023 1976 1767 172

Collocation with
SNOPT

Single shooting method Did not converge –

Energy matching loop Did not converge –

Acceleration matching
loop

Oct. 20, 2023 1985 1752 320

Orbit reshaping loop Jul. 29, 2023 1979 1762 21

Rendezvous loop Jul. 2, 2023 1976 1767 6

Collocation with
IPOPT

Single shooting method Did not converge –

Energy matching loop Did not converge –

Acceleration Matching
loop

Oct. 20, 2023 1984 1754 121

Orbit reshaping loop Jun. 26, 2023 1983 1755 76

Rendezvous loop Jul. 2, 2023 1976 1767 14
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Fig. 12 Optimal control histories for Case 2 obtained by SNOPT,
IPOPT, and proposed algorithm (acceleration matching loop)

studies (from Earth to Mars and from Earth to an aster-
oid) and comparison with other direct optimization methods
demonstrate the effectiveness of the proposed method. The
presented optimization algorithm could be integrated with
the previous homotopic algorithm with PMP conditions
to generate bang-bang solutions starting from given initial
orbital elements, avoiding the challenge of solution conver-
gence and the associated initial guess.
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