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Abstract
The aircraft industry often uses computational methods to quantify ice accretion, investigate aerodynamic penalties, and
conduct certification processes. The computational simulation of aircraft icing is computationally intensive owing to three
consecutive runs of air, droplet, and ice accretion solvers. This study developed a parallel code using MPI and Coarray
methods to reduce the computation time of an FVM-based ice accretion solver. The computational results were validated
by comparison with the experimental data. The parallel performance of the MPI and Coarray methods were compared and
found to be similar on the airflow solver. Further, the Coarray-based implementation on the water droplet solver showed good
speedup and efficiency for the given number of mesh elements and processors.

Keywords CFD · Multi-phase flow · Ice accretion · Coarray · Parallel computation

1 Introduction

In Earth’s atmosphere, two-phase flows of air and water
droplets of various sizes may exist in a cloud containing
supercooled water droplets [1–4]. Such flows can be found
in the air-mixed supercooled droplet fields around aircraft
flying inside a cloud, as well as around wind turbine blades,
communication towers, and network cables operating in cold
weather. Exposure to this condition for a considerable period
may cause significant ice accretion on the surfaces of criti-
cal components such as wings, blades, cables, sensors, and
engine inlets. This is called atmospheric icing in the field and
it remains a critical issue in aircraft safety and other structural
performance [5–8]. The study of atmospheric icing effects on
aircraft is of critical importance because of the safety risks
it poses, and the significant degradation of aerodynamic per-
formance [7, 9, 10].
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As with all other airplane components and systems, civil
aircraft certification authorities need to certify ice protec-
tion systems [11]. To obtain certification, an aircraft must
pass a strict certification process and demonstrate its per-
formance under various metrological conditions dictated by
civil aircraft certification authorities. Different icing certi-
fication methods may be employed to demonstrate aircraft
safety under different icing envelopes and known icing con-
ditions.

Computational methods are playing an increasing role in
the icing certification process. They can be used to deter-
mine ice accretion and the effect of an ice protection system
on an airplane under various metrological conditions. Com-
putational analysis is also used in the pre-design of ice
protection systems, and for metrological conditions that can-
not be reproduced in wind tunnels or during natural flight
tests. The computational cost of such analyses is far lower
than the cost of wind tunnels and other flight tests. In addi-
tion to being able to simulate metrological conditions which
cannot be reproduced by other methods, computational sim-
ulation permits the study of a wide range of metrological
conditions. There is no restriction on the size of the model.
Hence, scaling is unnecessary, allowing the real model with
full configurations to be simulated.

Numerical ice accretion modeling requires a deep knowl-
edge of fundamental icing physics, efficient mathematical
techniques, and sufficient computation power. Generally, as
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Fig. 1 The flow of ice accretion simulation solver

illustrated in Fig. 1, the ice accretion modeling starts by
predicting the flow field around the model and continues
with a droplet model, which predicts droplet impingement
on the surface. Finally, a thermodynamic model is necessary
to predict ice accretion and surface water flow. One of the
challenging issues of icing simulations is the higher compu-
tational cost. This high cost is due to the large number of
cells used to maintain the desired Y-plus value, needed to
accurately evaluate shear stress and heat flux. In the growing
computational world, parallel computing would be a better
option to reduce computing time and avoid higher computa-
tional costs.

The air solver and droplet solver can be parallelized
by using a Message Passing Interface (MPI) library [12,
13], Coarray Fortran library (Opencoarrays) [14], CUDA,
OpenCL, etc. MPI and Opencoarrays guarantee maximum
flexibility with parallel programming, as well as portability,
and scalability of the distributed memory parallel architec-
tures. Further, MPI and Coarray are easy to implement with
unstructured computational fluid dynamics solvers, com-
pared with any GPU-based parallel methods.

In the present work, a two-dimensional computational
model based on partial differential equations for evaluat-
ing water film thickness, ice height, and equilibrium surface
temperature was developed to investigate glaze ice accretion
on complex configurations. As the first step, a compressible
Navier–Stokes–Fourier air flow solver is used to determine
the flow field around the model. A shallow water droplet
model based on the Eulerian framework is then employed
to estimate droplet impingement and the collection effi-
ciency around the model. The airflow solver is parallelized
byMPI andCoarray Fortran (CAF). It was found that the effi-
ciency of Coarray Fortran was comparable to MPI. Then the
droplet solver is parallelized using Coarray Fortran, because
of its easy implementation and efficiency. The parallel per-
formance, such as speedup and efficiency, was calculated and
discussed in detail.

2 Computational Modeling of Ice Accretion

Numerical ice accretion modeling requires an in-depth
knowledge of icing physics, efficient mathematical tech-
niques, and sufficient computation power. Generally, ice
accretion modeling starts by predicting the flow field around
the model, followed by a droplet model, which predicts the
droplet impingement on the surface. Finally, a thermody-
namic model is necessary to predict ice accretion and surface
water flow [15].

2.1 Airflow Solver

The present computational methodology is based on a one-
way coupling model, in which the airflow field data are
used as inputs to the water droplet solver through the source
terms [15]. For this purpose, a well-known compressible
Navier–Stokes–Fourier equation is employed. A finite vol-
ume method (FVM) based airflow solver coupled with the
Spalart–Allmaras turbulent model was used [4, 16]. Gener-
ally in aerodynamic simulations, surfaces are considered to
be smooth. However, since surface roughness increases with
ice accretion, it is essential to include the roughness effect
in the airflow simulations. The increase in surface roughness
also increases the chance that flow will turn into turbulence.
Surface roughness increases surface heat transfer by increas-
ing the effective area on the surface due to growing skin
friction. A correlation developed by NASA, which relates
the metrological condition to equivalent sand-grain rough-
ness, was used in the current simulations.

For the boundary conditions, non-slip andRiemann invari-
ant conditions are applied to the solid surface and the far
fields, respectively. An ideal gas equation is used to close the
system of equations,
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(1)

where,

τ � 2μ[∇ua](2), Q � k∇T . (2)

Here ρa, ua, p, and E represent the density, the veloc-
ity vector, the pressure, and the total energy of the air,
respectively. The non-conserved variables τ and Q denote
the viscous shear stress tensor and the heat flux vector,
respectively. Further, μ and k are the viscosity and thermal
conductivity, respectively, and depend on the air tempera-
ture. The symbol [A](2) in the shear stress tensor stands for
the traceless symmetric part of tensor A. The ideal equation
of state p � ρRT is used for the airflow.
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2.2 Water Droplet Solver

A shallow water droplet model based on the Eulerian frame-
work developed in previous work is employed for the water
droplet solver [4, 16]. The conservative form of SWDE can
be written as,

[
ρ

ρu

]

t

+ ∇ ·
[

ρu
ρuu + ρgdI

]
�

[
0

SD + SG + SS

]
. (3)

Here ρ, u, and d denote the density of droplets in terms of
liquid water content (LWC), the velocity components of the
droplet, and the reference size of droplets (MVD), respec-
tively. Further, SG � ρg[0, 0, 1 − ρg/ρw]T is the resultant
force of gravity and the buoyancy of droplets, and the term
SD � Au(ug − u) denotes the drag on droplets caused by the
airflow. And SS � ∇ · (ρgd)I is the added source term to
circumvent the non-strictly hyperbolic nature of the droplet
equations. The coefficient Au can be expressed as,

Au � 0.75 · ρ · CD · Re · μ
/

ρw · d2,
Re � ρg · d · ∣∣ug − u

∣∣/μ. (4)

The drag coefficient (CD) can be obtained from Lapple
[17] as follows,

CD � 24

Re

(
1 + 0.0197Re0.63 + 2.6e−4 · Re1.38

)
, (5)

which is valid for Re < 1000. The second-order positivity-
preserving finite volume framework based on cell-centered
unstructured grids is employed to solve the Eulerian-
based shallow water droplet equations. The Harten–Lax–van
Leer–Contact (HLLC) approximate Riemann solver is used
for the flux calculation. A five-stage Runge–Kutta temporal
discretization is implemented.

2.3 Ice Accretion Solver

The ice accretion solver was developed using the Messinger
model [18], based on a partial differential equation (PDE)
formulation, instead of the commonly used control volume
method. When implementing the high-fidelity PDE-based
thermodynamic model similar to the ICE3D module of
FENSAP-ICE [19], a recalibrated equationwas used to avoid
having different units on both sides of the original energy
equations. The revised equation can be written as [15],

∂U
∂t

+ ∇ · F(U) � S. (6)

Equation (6) can be written as
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[
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+ṁice
[
L fus − Cp, iceTequi

]
+ hc

(
Tequi − T∞

)
+ σoε

[
T 4
equi − T 4∞

]
.

(8)

Here, μw, Cpw, Cpice represent the dynamic viscosity,
the specific heat at constant pressure for water, and the
specific heat at constant pressure for ice, respectively. The
instantaneous evaporation mass, latent heat of fusion, and
latent heat of evaporation are represented by ṁevap, L fus and
Levap, respectively. Further, Tc, T̃d ,∞ and ud represent the
critical temperature (Tc � 273.15 K), droplet temperature in
Celsius, and droplet impact velocity vector, respectively. The
terms ε and σ represent the solid emissivity and Boltzmann
constant (σ a � 1.38064852× 10–23 m2 kg s−2 K−1), respec-
tively. By assuming a linear velocity distribution within the
film, the velocity of the water film

(
u f

)
can be represented

as a function of the water film thickness and shear stress, as

u f � f
(
h f

) � 1

h f

h f∫

0

u f dh � h f

2μw

τwall. (9)

The clean airflow solver provides shear stress (τwall) and
heat transfer coefficient (hc) as inputs to the ice accretion
solver. The shallow water type droplet solver provides the
droplet impact velocity and collection efficiency as inputs
to the ice accretion solver. There are three unknowns to be
computed: water film thickness (hf ), equilibrium tempera-
ture (T equi), and mass accumulation (ṁice). Since only two
governing equations are available, compatibility relations are
necessary to close the system. Based on the physical behav-
ior, the following compatibility equations can be derived,

h f ≥ 0, ṁice ≥ 0, h f Tequi ≥ h f TC , ṁiceTequi ≤ ṁiceTC .

(10)

The first compatibility relation ensures that the film thick-
ness remains positive. The second compatibility relation
prevents the melting of accreted ice. The third compatibil-
ity relation enforces that the water film only can exist at an
equilibrium temperature above freezing point. Finally, the
fourth compatibility equation stipulates that ice cannot form
for equilibrium temperatures above freezing. Each cell of the
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domain is explicitly solved individuallywith small time steps
using the compatibility equations.

The governing equations and the compatibility relations
for thewater filmon the body’s surface are solvedusing a cell-
centered finite volume method. The computation elements
are spread over the body’s surface and must be solved using
numerical techniques. Roe’s approximate Riemann solver
is used to discretize the divergence terms in the governing
equations. Overall, all of the essential solvers for clean air,
large droplet impingement, ice accretion, and the aerody-
namic analysis of ice effects were developed within a unified
computational framework based on an unstructured finite
volume method in which all the information can be easily
communicated in a single grid system during the simulation
[15]. More details about the numerical methods used in this
current work can be found in the past literature [4, 6, 16, 20].

3 Parallelization of the FVM-Based Ice
Accretion Package

The local nature of discretization renders the cell-centered
finite volume method compact and highly parallelizable.
Since the solution is independently approximated for each
element of the inter-element data, to calculate numerical
fluxes sharing is only needed among the facing neighbor
elements, or elements sharing a common face. Inter-process
communication is only required between the corresponding
neighboring processes for computations at partition bound-
ary faces, or for faces whose left and right elements have
different processes.

The present FVM code was parallelized using a sin-
gle program multiple data (SPMD) parallel model [4]. The
air and droplet solver was parallelized using a Message
Passing Interface (MPI) library OpenMPI 4.0 and Coarray
Fortran library OpenCoarrays 2.0, respectively. MPI and
Opencoarrays guarantee maximum flexibility for the paral-
lel programming and the portability and scalability of the
distributed parallel memory architectures. As seen in Fig. 2,
all the parallel processing steps were unified using a shell
program [4].

A software setup including a high-performance and
widely portable implementation of the parallel library and
64-bit compilers with double precision was used for all
the floating point operations. Furthermore, using Intel Xeon
Gold 6136 Processor with a base frequency of 3.0 GHz, a
Linux cluster was established that is shareable among mul-
tiple users, equipped with eighty cores interconnected by
dual-port Gigabit Ethernet. Parallelization of the FVM solver
for airflow included the following steps: (1) domain decom-
position (mesh partitioning); (2) communication process; (3)
merging of sub-domains, and (4) parallel performance mea-
surements. These steps are further described in the following
sub-sections.

3.1 Domain Decomposition

As the first step in parallel programming, the computational
domain is decomposed into several sub-domains. Then each
sub-domain is assigned to each processor using open-source
software, ParMETIS [21], an MPI-based parallel library
that implements various algorithms to compute fill-reducing
orderings of sparse matrices. To partition the unstructured
graphs, the given mesh is decomposed so that each processor
has approximately the same number of elements to balance
the load for the processors, minimizing the number of links
cut by the decomposition. The partitioned results and the
included node and element connectivity information after
the decomposition of the domain are assigned to the pro-
cessors. The sub-domains generated by ParMETIS for flows
around an airfoil and a three-element airfoil with approxi-
mately 50,000 elements are illustrated in Fig. 3.

3.2 Communication process

The present parallel solver for both air and droplet is based on
a single programmultiple data (SPMD) programming model
[4]. It executes the same program in all processors using
different data and canmanage the processors to conditionally
execute only certain parts of the program so that some of the
processors may not necessarily need to execute the entire
program.

Fig. 2 Schematic diagram of the unified shell program for parallel processes
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Fig. 3 The mesh partition by ParMETIS. Different colors represent sub-domains owned by different processors

Fig. 4 Point-to-point communication between the cells from different
processor groups

The MPI library and Opencoarray library were used to
parallelize the air solver to compare the performance. Then
Coarray Fortran was utilized to parallelize the Eulerian-
based droplet solver. Both libraries have point-to-point and
collective communication modules that can be utilized for
the present work. A parallel solver’s communication pro-
cess is the parallelization engine, which should be smooth
and fast for better performance. A delay in communication
may lead to performance loss in the parallel solver. Both
parallel libraries have various communication modules that
can be applied to parallelize present air and droplet solvers.
Hence, selecting a communication module is critical and
tricky to avoid unnecessary performance penalties. In gen-
eral, communication is conducted between two adjacent cells
belonging to different processors and sharing the same face.
Figure 4 illustrates the point-to-point data communication on
the face of the cells.

3.3 Merging of Sub-domains

All the partitioned sub-domains execute the same solver
with respective data inputs and solve the flow fields in their

local domain during the parallel computations. An individ-
ual processor plots its solution after the solution converges
for post-processing purposes. However, the results were not
visually smooth at the boundaries of the sub-domains, due
to the biased interpolation of the solution, and because not
all of the vertex neighborhoods for interpolations were con-
sidered. Hence, a merging subroutine was devised for better
post-processing of the solutions of the parallel computations,
where all subdomain results were exported into a single uni-
fied domain for better visualization. All the solutions are
needed to be interpolated to the node for post-processing
software such as TECPLOT although each element contains
its own solution so that the biased interpolation that consid-
ers all the neighbors of the node could not result in very poor
visualization.

Merging of sub-domains was performed to avoid such
limitations in post-processing, after terminating parallel pro-
cessing. The results were irrespective of the number of
processors, since the solution in each element is calculated
locally and located at the cell center. The unmerged (left) and
merged (right) results are illustrated in Fig. 5.

3.4 Measurement of Parallel Performance

Measuring parallel computation is essential, to assess the
efficiency and applicability of the parallel solver. Generally,
parallel performance is measured by relative speedup, rela-
tive efficiency, or scalability. Amdahl’s law established the
definition of speedup (Sp) [22]. According to this law, Sp is
a metric for measuring the relative improvement in perfor-
mance when executing a task. However, the speedup can also
be usedmore generally to show the effect of any performance
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Fig. 5 Merging of the sub-domains for post-processing of the solutions; a LWC contour of unmerged sub-domains, and b LWC contour of the
merged domain

enhancement. The relative speedup is given by

Sp � ts
tp
, (11)

where Sp is speedup, ts and tp denote the elapsed time taken
by a single processor and p processors, respectively. Relative
efficiency (E) is a metric of the utilization of the resources
of the improved parallelized system, read as

E � Sp
p

. (12)

A performance analysis determines the level of speedup
and the efficiency of the parallel solver. Speedup of the code
varies with the number of processors for a fixed problem size.
Linear speedup usually remains less than p, and efficiency
lies between 0 and 1. In ideal cases, elapsed time taken by p
processors is equal to tp � t1/p, the relative speedup is equal
toSp � p, and the relative efficiency is equal to E � 1.

4 MPI and Coarray Fortran FVM
Implementation

4.1 MPI Implementation for Air Solver

The present air flow field solver was parallelized using the
MPI library and Coarray libraries. The parallelization in the
present study was achieved without compromising the serial
algorithm for higher parallel performance and allowed MPI
communications to completely overlap with the computa-
tions [4]. As summarized in Fig. 6, this algorithm is easier to
achieve in explicit time marching schemes, which is usually

referred to as hiding communication behind computation.
The point-to-point communication methodology of MPI, in
which a message-passing operation may only occur between
two different processors, was used so that while one proces-
sor performs a send operation, the other performs a matching
receive operation.

Several types of send and receive routines are available in
MPI point-to-point communication, including blocking and
non-blocking routines, which are often used in the SPMD
model due to their flexibility and implementation. Bothmeth-
ods use a buffer to avoid data loss and confusion during
data transmission, such that the data will be copied to the
buffer before the partner processor receives it. During the
communication process, the data can be temporarily stored
in a buffer, which is a region of memory storage. In the
blocking send and receive routines, the send routine will
only return (block) after the completion of communication so
that the computations cannot be performed by the respective
processors involved in the communication until the process
is completed. In contrast, the non-blocking communication
functions return immediately (do not block) even if the com-
munication is not finished. Hence, care should be taken to
use the proper wait comment to see whether the communi-
cation has finished. The latter communications are primarily
used to overlap computationwith communication and exploit
possible performance gains.

Initially, the communication module of the FVM solver
works by sending data adjacent to partition boundaries to
neighbor partitions, and then by receiving data from a cor-
responding neighbor. To save processor waiting time and
avoid deadlock, non-blocking sending and receiving were
used in the parallelization of the solver. The MPI_TEST
and MPI_WAIT routine is used to confirm the completion
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Fig. 6 Flow chart of explicit parallel air solver

of communication without data loss as started by calling
standard MPI routines, MPI_ISEND and MPI_IRECV. It
is worth mentioning that the MPI_TEST routine is used to
check the completion of the communication, and a call to
MPI_WAIT returns when the operation identified by request
(MPI_TEST) is complete. Figure 7 illustrates the block dia-
gram of the communication algorithm. Once communication
is completed, the data received from the neighboring proces-
sors are used for further computations.

Fig. 7 Isend and Irecv block diagram based on non-blocking commu-
nication

4.2 Coarray Implementation for Air and Droplet
Solver

Generally, CAF is based on the SPMD programming model,
and the user can select the number of parallel sections (pro-
gram replications) through command line instructions [23,
24]. In CAF, each program replication is called an image, has
its own variable set, is executable, and runs asynchronously.
The intrinsic function num_images() is used to determine
the available number of images. Each image has its image
index, numbered from 1 to num_images(); the index of
an image can be readily available by using an intrinsic func-
tion image_index().

Unlike MPI, the objects in the CAF program to be shared
should be declared as a coarray variable, and then they can
be accessed from their own image and other images. For
example,
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Here, the variables x and y are available in all images,
but only y is accessible by all images, and the variable x is
a local variable that only its own image can access. We can
access the y variable of other images as follows,

x(5) � y(5)[4].

The number 4 indicates the image number; hence the val-
ues in y are copied from image number 4 to the variable x of
the current image. In the parallelization of any program, a few
commands, such as synchronization, point-to-point commu-
nication, broadcasting, and collective operations, are highly
essential.

In Coarray Fortran, all the routines required to imple-
ment CFD codes are readily available. For instance,
the synchronization is performed using a simple com-
mand, sync_all, and generally, synchronization is used
before and after collective operations. Further, Broadcast-
ing and collective operations such as co_min, co_max,
co_sum, and co_reduce are available and can be used in
the parallel CFD solver development.

In short, implementing the coarray is easy, and the number
of lines of the program is also effectively reducedwithout any
drastic performance loss.Moreover, the coarray implementa-
tion does not need special syntax and call functions. Hence,
the program is readable and easy to understand, maintain
or extend. In the present work, the Opencoarrays library, an
open-source software project which produces an interface
used by the GNU Compiler Collection (GCC) Fortran front
end to build parallel executable programs, was used to imple-
ment CAF. The Opencoarrays library is easy to install and
is used in Linux and macOS. It is reliable since it has been
tested in several of the world’s fastest supercomputers and
various operating systems [23–25].

The water droplet solver also follows the basic steps and
processes mentioned in Fig. 6 but uses a droplet solver
and Opencoarrays library instead of a flow solver and MPI
library, respectively. The compiler identifies coarrays during
the compile time, from the declaration of variables. Hence,
initialization commands are not necessary to initiate coarray
execution. There are two options available to copy data from
one image to another, "push" and ’pull." In the "push’ mode,
local data is stored in the remote image, and in the "pull"
mode, data is copied from the remote to the local image. For
example,

Previous research [26] has noted that the “pull” mode is
more efficient than the “push” mode of data transfer. There-
fore, the “pull” data transfer mode is used in the present
code. Furthermore, it is possible to combine both theMPI and
coarray libraries in a single program, which may improve the
parallel performance.

5 Results and Discussion

5.1 Validation of Ice Accretion Simulation Package

To validate the aerodynamic solver, an unstructured mesh
was used, as shown in Fig. 8 (left), and the computed pres-
sure coefficient over a NACA652-415 airfoil was compared
with the experimental result shown in Fig. 8 (right). NASA
experimented on NACA652-415 with a 0.9144 m chord air-
foil model at a Mach number of 0.23, an angle of attack of

Fig. 8 Grid distribution (left) and Pressure coefficient (right) around the NACA652-415 airfoil at α � 8o, M � 0.23, Re � 4.9 million

123



1132 International Journal of Aeronautical and Space Sciences (2023) 24:1124–1135

Fig. 9 LWC contour (left) and collection efficiency (right) around the NACA652-415 airfoil at α � 8,M � 0.23, LWC � 1.0 g/m3, MVD � 21 µm

Fig. 10 Ice accretion result comparison with NASA IRT experiments
of glaze ice shape on a NACA0012 airfoil at temperature 262.04 K,
velocity 102.8 m/s, angle of attack 4°, LWC 0.55 g/m3, MVD 20 µm,
and exposure time 420 s

8°, and a Reynolds number of 5.2 million. The computed
droplet collection efficiency was compared with the experi-
mental results to validate the droplet solver. The comparison
between the computed result and NASA data is depicted in
Fig. 9, where the LWC is 1.0 g/m3, and the MVD is 21 µm.

Finally, the ice accretion shapes on NACA0012 for glaze
ice cases were validated against experiments [24], as elu-
cidated in Fig. 10. The icing conditions selected for the
simulation were temperature 262.04 K, velocity 102.8 m/s,
angle of attack 4°, LWC 0.55 g/m3, MVD 20 µm, and expo-
sure time 420 s.

Further, a complex multielement airfoil simulation was
conducted to validate the current solvers. Figure 11 (left)
shows the LWC distribution, while Fig. 11 (right) shows the
collection efficiency around the multielement airfoil at the

angle of attack 4°, Mach number 0.24, temperature 276 K,
LWC 0.15 g/m3, and MVD 21 µm. The impingements of
droplets are higher on the leading edgeof the slat and the pres-
sure side of the flap, while the main element does not acquire
significant impingements due to the presence of the leading
edge slat. Finally, the ice accretion around the multi-element
at an angle of attack 8°, Mach number 0.26, temperature
268.2K,LWC0.6 g/m3, andMVD20µmis shown inFig. 12.
Overall, the computed results qualitatively agreed with the
experimental results. Consequently, the current computation
model can be applied for further investigations.

5.2 Parallel Performance of MPI and Coarray Fortran
for Air and Droplet Solvers

Figure 13 (left) illustrates the speedup [calculated using
Eq. (11)] for the MPI and Coarray parallel implementations
of the air solver for elements ranging from37,000 to 300,000,
and with a range of 1–32 processors. It is worth mentioning
that the scalability test considered in thisworkwas performed
on a single-nodemachine. The simulationswere repeatedfive
times to statistically measure the computational cost. It was
observed that the speedup gradually increased at the lower
number of processors and began declining as the number of
processors grew higher. Further, it was noted that the speedup
of the MPI parallel implementation was almost identical to
the Coarray implementation.

Figure 13 (right) shows the relative efficiency [calculated
using Eq. (12)] of the parallel code for MPI and Coarray par-
allel implementations on the air solver. The communication
overload increases as the number of processors increases,
and, as a result, the required run-time for communication
between processors becomes comparable to the computa-
tional time of the simulations for caseswith a smaller number
of elements. Overall, the speedup and efficiency show that
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Fig. 11 LWC contour (left) and comparison of collection efficiency (right) around the multi-element airfoil at the angle of attack 4o, Mach number
0.24, temperature 276 K, LWC 0.15 g/m3, and MVD 21 µm

Fig. 12 Ice accretion result comparison with NASA IRT experiments of ice shape on the slat (a), main element (b), and flap (c) of the multi-element
airfoil at temperature 268.2 K, Mach number 0.26, angle of attack 8°, LWC 0.6 g/m3, and MVD 20 µm

Fig. 13 Comparison of parallel speedup (left) and efficiency (right) of airflow solver for the MPI and Co-array parallel implementations

the MPI and Coarray performance is almost the same at the
given number of cells and processors. Hence, only the Coar-
ray implementation was carried out for the droplet solver,
because of the easy implementation of Coarray.

Figure 14(left) illustrates the Coarray-based parallel water
droplet solver’s speedup at various element sizes. The results

show that the speedup is increasing linearly and drops at a
higher number of cells due to the increase in communication
loads. Further, Fig. 14(right) shows the Coarray-based par-
allel droplet solver’s parallel efficiency at various element
sizes. It was found that the efficiency was low for the lower
number of cells case, and it increased with a large number of
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Fig. 14 Comparison of parallel speedup (left) and efficiency (right) of water droplet solver for the Co-array parallel implementations

cells under the given conditions. Overall, the results showed
that the Coarray-implemented parallel code performed well,
similar to the MPI implementation.

6 Conclusion

An SPMD-based parallel two-dimensional solver for the
ice accretion simulation was developed using the MPI and
Coarray libraries. For the study, a unified upwind finite
volume solver based on a single unstructured grid system
was used, which could handle all the modules of airflow,
droplet impingement, and ice accretion. The present parallel
solver adopts domain decomposition using ParMETIS, and
the Coarray library to parallelize the droplet solver. Further,
parallelization of the air solverwas developedusingbothMPI
and Coarray. The results show that the parallel performance
of Coarray is similar to that of MPI for the air solver under a
given number of processors. The current parallel implemen-
tation of the ice accretion package is intended for stand-alone
PCs equipped with a large number of processing cores and
for clusters of PCs.

Based on the successful implementation of the parallel
ice accretion solvers in the present work, the next topic of
research will be the application of these methods to the ice
accretion simulation of complex geometry. Notably, the cur-
rent methodology can be extended to the three-dimensional
ice accretion package using Coarray, reducing computation
time significantly. We hope to report the results of studies on
these problems in due course.
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