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Abstract
In this study, we developed an implicit multicloud method using geometric conservative meshless discretization. The Geo-
metric Conservation Least Squares Method (GC-LSM) was used for meshless discretization which allowed lower–upper
symmetric Gauss–Seidel (LU-SGS) time integration to be implemented in a multicloud context. The LU-SGS algorithm
for meshless discretization was implemented in the same framework as the unstructured finite volume method owing to the
properties of the GC-LSM. The developed method was tested for three-dimensional inviscid flows on unstructured grids. The
explicit 4th-order Runge–Kutta method and the implicit LU-SGS algorithm were compared to demonstrate the effect of the
proposed implicit multicloud method. Furthermore, the restriction functions were modified for three-dimensional space. The
results highlight the capability of the implicit multicloudmethod combinedwith the original multicloud coarsening procedure,
which is straightforward and mesh-transparent, by only applying GC-LSM for discretization.

Keywords Multigrid · Meshless · Implicit · Unstructured

1 Introduction

Multigrid methods are the most widely used techniques
for accelerating the convergence rates of iterative meth-
ods. The first multigrid method was formulated for solving
Poisson equation on structured grids [1]. Subsequently,
multigrid methods have been improved then the techniques
were applied to three-dimensional hyperbolic equations on
unstructured grids [2].

Unstructured type grid is the most widely used grid type
thus unstructured multigrid methods have been mainly stud-
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ied. For unstructured grids, it is difficult to form coarse level
grids. Therefore, a variety of approaches for forming coarse
level grids have been suggested, such as retriangulation [3]
or agglomeration [4–6].

In practical computational fluid dynamics(CFD) prob-
lems, grid agglomeration is the preferred method for man-
aging unstructured grids owing to the automation process.
Even for grid agglomeration, meshing steps, such as edge
fusing, are accompanied by the formation of a coarse grid. To
bypass the re-meshing process, the multicloud method was
proposed by Katz [7]. The multicloud method uses meshless
discretization on coarse level domains; thus, no re-meshing
step is required to form coarse level domains. Without the
re-meshing step, the coarsening procedure can be simple and
storage-efficient. In the absence of a re-meshing step at the
coarse level, the multicloud method has been demonstrated
to be as quick as traditional multigrid methods [7,8].

Although it is obvious that the implicit time integration
scheme is significantly quicker than the explicit time integra-
tion scheme, previous multicloud study was been presented
based on an explicit time integration scheme [7]. Because
the application of an implicit time integration scheme to a
meshless method had rarely been studied, the presentation
of an implicit multicloud was beyond the scope of the initial
multicloud paper [7].
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In this study, we introduced the LU-SGS [9] algorithm
(abbreviated as “LU-SGS” in what follows) for unstructured
grids [10] as a means of achieving multicloud time integra-
tion. Generally, LU-SGS for unstructured grids cannot be
directly implemented for meshless discretization owing to
its nonconservative properties. Despite formulating LU-SGS
for the meshless method, we used the least squares method
with the geometric conservation law (the GC-LSM) [11] in
this study. The geometrically conservative property of the
GC-LSM allows time integration to be performed implicitly.

Because the explicit multicloud method has already been
compared with the conventional multigrid method [7], a
comparison between the implicit and explicit methods is pre-
sented in this study. Detailed comparisons with other implicit
unstructured multigrid methods are beyond the scope of this
study, because numerous sets of implicit schemes and coars-
ening strategies exist [12,13].

The remainder of this paper is structured as follows.
First, the meshless discretization method is described as the
basis for numerically analyzing the three-dimensional Euler
equations based on the GC-LSM. Second, the coarsening
procedure and multicloud operator are introduced. Next, the
LU-SGS method with GC-LSM is described. Finally, the
implicit multicloud results are compared with the single grid
implicit and explicit results.

2 Meshless Discretization

2.1 Least Squares Method

In this study, a Taylor series was used to estimate the deriva-
tives of a trial function φ. A trial function φ at point r i can be
approximated by its value at a neighboring point at r0 using
the Taylor series expansion:

φ̂ (r i ) ≈ φ (r0) + �r0i · ∇φ (r0), (1)

where �r0i = r i − r0 and Eq. (1) may be recast as

�φ0i ≈ pT(�r0i ) · ∇φ(r0), (2)

where �φ0i = φ̂(r i ) − φ(r0) and p is a three-dimensional
monomial basis function:

p(r) = [x y z]T. (3)

To estimate the gradient of φ(r0), the least squares prob-
lem is established using its nearest points (See Fig. 1):

J =
N∑

i

ω0i

[
pT(�r0i ) · ∇φ̂(r0) − �φ0i

]2
, (4)

Fig. 1 Illustration of local point cloud

where ω0i = 1/|�r0i | and N is the number of neighboring
points of the point at r0, as shown in Fig. 1.

∇φ̂(r0), the estimation of the gradient of φ(r0), may be
obtained by finding the coefficients that minimize the func-
tion J , expressed as

∂ J

∂∇φ̂(r0)
= 0. (5)

Equation (5) can be written as

N∑

i

ω0i p (�r0i ) · pT (�r0i )∇φ̂ (r0)

=
N∑

i

ω0i p (�r0i ) �φ0i . (6)

Equation(6) may be simplified as

S∇φ̂(r0) = T�φ0i , (7)

where

S =
⎡

⎢⎣

∑N
i ω0i�x20i

∑N
i ω0i�x0i�y0i

∑N
i ω0i�x0i�z0i∑N

i ω0i�y0i�x0i
∑N

i ω0i�y20i
∑N

i ω0i�y0i�z0i∑N
i ω0i�z0i�x0i

∑N
i ω0i�z0i�y0i

∑N
i ω0i�z20i

⎤

⎥⎦ ,

(8)

T = [
ω01�r01 ω02�r02 . . . ω0N�r0N

]
. (9)

By Eqs. (8) and (9), the estimation of the gradient can be
expressed as:

∇φ̂(r0) = S−1T�φ0i , (10)
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where

S−1T =
⎡

⎣
a01 a02 · · · a0N
b01 b02 · · · b0N
c01 c02 · · · c0N

⎤

⎦ . (11)

Thus, the estimation of the partial derivatives of function
φ at point r0 may be expressed as

∂φ(r0)
∂x

≈
N∑

i

a0i�φ0i , (12)

∂φ(r0)
∂ y

≈
N∑

i

b0i�φ0i , (13)

∂φ(r0)
∂z

≈
N∑

i

c0i�φ0i . (14)

2.2 Geometric Conservative Least Squares Method

The geometric conservation law and first-order consistency
with respect to meshless coefficients may be expressed as

N∑

i=1

a0i = 0,
N∑

i=1

b0i = 0,
N∑

i=1

c0i = 0, (15)

N∑

i=1

a0i�x0i = 1,
N∑

i=1

b0i�x0i = 0,
N∑

i=1

c0i�x0i = 0,

N∑

i=1

a0i�y0i = 0,
N∑

i=1

b0i�y0i = 1,

N∑

i=1

c0i�y0i = 0,

N∑

i=1

a0i�z0i = 0,
N∑

i=1

b0i�z0i = 0,

N∑

i=1

c0i�z0i = 1. (16)

To satisfy the geometric conservation law and first-order
consistency, the Lagrange multiplier takes the form

� = J +
3∑

p=1

μpMp +
3∑

p=1

3∑

q=1

νp,q Np,q , (17)

where J is the object function denoted in Eq. (4), whereas
M and N take the form

M1 =
N∑

i=1

a0i = 0, M2 =
N∑

i=1

b0i = 0,

M3 =
N∑

i=1

c0i = 0,

N1,1 =
N∑

i=1

a0i�x0i = 1,

N1,2 =
N∑

i=1

b0i�x0i = 0,

N1,3

N∑

i=1

c0i�x0i = 0,

N2,1 =
N∑

i=1

a0i�y0i = 0,

N2,2 =
N∑

i=1

b0i�y0i = 1,

N2,3

N∑

i=1

c0i�y0i = 0,

N3,1 =
N∑

i=1

a0i�z0i = 0,

N3,2 =
N∑

i=1

b0i�z0i = 0,

N3,3

N∑

i=1

c0i�z0i = 1. (18)

The constrained least squares problem with a Lagrange
multiplier can be solved in a similar fashion to the simple
least squares problem by finding ∇� = 0 with respect to
∇φ̂0, μp and νp,q . ∇� = 0 can be written in matrix form,
as follows:

Ax = b, (19)

where

A =
[
D E
ET 0

]
,

D =

⎡

⎢⎢⎢⎣

S 0 . . . 0
0 S . . . 0
...

...
. . .

...

0 0 . . . S

⎤

⎥⎥⎥⎦ ,

E =

⎡

⎢⎢⎢⎣

e1
e2
...

eN

⎤

⎥⎥⎥⎦ , (20)

ei = [
I �x0i I �y0i I �z0i I

]
, (21)
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x =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a01
b01
c01
...

a0N
b0N
c0N
μ1

μ2

μ3

ν1,1
ν1,2
...

ν3,3

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ω01�rT01
...

ω0N�rT0N
0
0
0
1
0
0
0
1
0
0
0
1

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (22)

where I is a 3 × 3 identity matrix and S is the matrix in Eq.
(8). As a consequence, D is a 3N × 3N matrix, because S is
a 3 × 3 matrix. The meshless coefficients may be obtained
by multiplying the inverse matrix of A by b.

The meshless coefficients derived from Eq. (19) satisfy
geometric conservation laws because the geometric conser-
vative conditions in Eq. (15) are constrained when solving
the least squares problem. It is known that geometric con-
servative meshless coefficients are robust, even in randomly
distributed point clouds [11].

2.3 Governing Equation

In this study, three-dimensional Euler equationswere consid-
ered to verify the effect of an implicitmulticloud convergence
accelerator. We proceeded as follows:

∂q
∂t

+ ∂ f
∂x

+ ∂ g
∂ y

+ ∂h
∂z

= 0, (23)

where q represents the set of conservative variables
[
ρ ρu ρv

ρw ρE
]T, and the convective fluxes f , g, h are expressed as

f =

⎡

⎢⎢⎢⎢⎣

ρu
ρu2 + p

ρuv

ρuw

ρuH

⎤

⎥⎥⎥⎥⎦
, g =

⎡

⎢⎢⎢⎢⎣

ρv

ρvu
ρv2 + p

ρvw

ρvH

⎤

⎥⎥⎥⎥⎦
, h =

⎡

⎢⎢⎢⎢⎣

ρw

ρwu
ρwv

ρw2 + p
ρwH

⎤

⎥⎥⎥⎥⎦
.

(24)

In Eq.24, p is the pressure and ρ, u, v, w, E, H are the
mass density, Cartesian velocity components, total energy,
and total enthalpy (that is defined as E + ρ/p), respectively.
From the equation of state of an ideal gas,

E = p

(γ − 1)ρ
+ 1

2

(
u2 + v2 + w2

)
. (25)

The Euler equations may be discretized as follows:

∂q
∂t

+
[

N∑

i

a0i
(
f i − f 0

)+
N∑

i

b0i
(
gi − g0

)+
N∑

i

c0i (hi − h0)

]
= 0.

(26)

In Eq. (26), the coefficients a0i , b0i , and c0i may be
obtained in various ways. In this study, meshless discretiza-
tion was applied to the residual computation for all levels.
Meshless discretization using the GC-LSM was exploited to
obtain a fine-level solution and accelerated convergence. At
the fine level, the nodes of the unstructured grids formed
by the advancing-front algorithm [14] were used, and its
edge-connected nodes were used for its local point cloud dis-
cretization, as shown in Fig. 2. AUSMUP+[15] was used for
the flux scheme because of its stable convergence behavior
for all speeds, and TVD-Minmod was used for unstructured
grid types [16,17].

Meshless discretization is known to be less accurate
because of its non-conservative behavior. Thus, the GC-LSM
was used because the method performs well in three-
dimensional space compared to finite volume methods,
owing to its conservative properties, while other meshless
discretizations exhibit substantial errors in themass flux [11].

3 Coarsening Strategy

In this study, the methodology of the multicloud coarsening
procedure described by Katz and Jameson [7] (which orig-
inated from Chan and Smith [3]) was used. The coarsening
proceeded as shown in Algorithm 1.

Algorithm 1Multicloud coarsening
1: For each node vi , Set 
(vi ) = .True., where 
 denotes the logical

function that defines validity on the next coarse level. The nodes
with 
(vi ) = .True. are shown as black dots in Fig.3a.

2: DefineV (vi ) = {v j‖v j is a vertex that forms the edge with the vertex vi }
which is denoted as a red dashed circle in Fig.3a.

3: while i ≤ Nc do, where Nc is the number of computational points
4: if 
(vi ) is .True. then
5: 
(V (vi )) =.False.
6: end if
7: end while
8: The loop results in point validity determination as shown in Fig.3c.
9: Form coarse-level local clouds V k+1(vi ), where k + 1 denotes the

coarse level as shown in Fig.3c.
10: Perform the coarsening through coarse-level local point clouds

V k+1(vi ) until the coarsest level is reached

This strategy is applicable to a three-dimensional unstruc-
tured grid for node-based computational methods.
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Fig. 2 Illustration of global
point cloud from unstructured
grid nodes

Fig. 3 Multicloud coarsening procedure

4 Restriction and Prolongation

For the implicit multicloud method, the Full Approxima-
tion Storage (FAS) algorithm of Brandt [18] is also used,
as described in Algorithm 2.

Algorithm 2 FAS algorithm
1: Fine level state variables at a node are directly transferred to the

coarse level point. The fine level state vector qk0 at node 0 is trans-
ferred to the coincident coarse level point qk+1

0 .
2: Compute forcing function P using fine-level residuals of nearest

points as in Eq. (27)
3: Perform iteration on the coarse levelwith restricted residuals Rk+1+

P
4: From the solutions computed on the coarse level, correct the fine-

level solutions by the nearest coarse-level valid point denoted as
black nodes in Fig.4b.

The residual forcing function P is computed as follows:

P = TRRk(qk) − Rk+1

(
q(0)
k+1

)
, (27)

where

T T
R =

⎡

⎢⎢⎢⎣

β0

β1
...

βN

⎤

⎥⎥⎥⎦ , R =

⎡

⎢⎢⎢⎣

R0,1 R0,1 . . . R0,m

R1,1 R1,2 . . . R1,m
...

...
. . .

...

RN ,1 RN ,2 . . . RN ,m

⎤

⎥⎥⎥⎦ . (28)

In Eq. (28), N denotes the number of nearest points at level
k in Fig. 4a, whereas m denotes the number of equations. In
this study, m equalled five because three-dimensional Euler
equations were considered. The parameter βi is defined as
follows:

β0 = (dsk/dsk+1)
3 , (29)

βi =
(

1 − β0∑
j∈V k (0) c j

)
ci , (30)

where V k(0) denotes the set of restriction stencils in Fig. 4a,
and dsk and dsk+1 denote the average distances between the
nearest points of thefine and coarse level local clouds, respec-
tively. Because β0 is a function similar to the ratio of the
volume of the fine and coarse level cells, it is a cube of the
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Fig. 4 Stencils for multicloud
operators

ratio in three-dimensional space (whereas it is a square in the
original multicloud method). The parameter ci is the inverse
distance between points, which is expressed as

ci =
{

| ri − r0 |−1 if i �= 0

1 if i = 0.
(31)

Fine level solutions are corrected by the change caused by
an iteration at the coarse level, as shown in Fig. 4b. Prolon-
gation of the solution is performed by the inverse weighted
sum, as follows:

q+
0 = q0 +

∑
i ci

(
q+
i − qi

)
∑

i ci
. (32)

In Eq. (32), i is the set of nearest coarse-level valid
points, depicted as black-colored nodes in the dashed circle
in Fig. 4b. Both restriction and prolongation were formulated
using a pure meshless process for a multicloud.

5 Meshless LU-SGS

LU-SGS was used for the implementation of implicit time
integration because its suitability for this purpose is well
established in industrial CFD, for both structured and
unstructured methods.

Equation (26) may be implicitly recast as

�qn0
�τ

+
N∑

i

Hn+1
0i = 0, (33)

where

H0i = a0i
(
f i − f 0

) + b0i
(
gi − g0

) + c0i (hi − h0) .

(34)

Then, Eq. (34) may be linearized as

Hn+1
0i = Hn

0i + A+
0i�q0 + A−

0i�qi , (35)

where

A±
0i = 1

2
(A0i ± λ0i I ) , (36)

A = ∂H/∂q, (37)

where λ0i is the eigenvalue of the Jacobian matrix A0i . By
Eq. (35), Eq. (33) may be written as

(
1

�τ0
+ 1

2

N∑

i

λ0i

)
I�q0 +

N∑

i

A−
0i�qi −

N∑

i

A0i�q0

= −
N∑

i

Hn
0i .

(38)

For finite volume methods,
∑N

i A0i in Eq. (38) must
equal 0 because of the geometric conservation law. Thus,∑N

i A0i = 0 for GC-LSM because GC-LSM satisfies the
geometric conservation law, as shown in Eq. (15), whereas
non-conservative meshless schemes cannot be combined.
Consequently, Eq. (38) may be recast as

(
1

�τ0
+ 1

2

N∑

i

λ0i

)
I�q0 +

N∑

i∈L(0)

A−
0i�qi

+
N∑

i∈U (0)

A−
0i�qi = Rn

0,

(39)

where L(0) and U (0) are the set of nearest points whose
indices are less than and greater than those for point 0, respec-
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Fig. 5 Coarsening results and the original geometry of ONERA M6

Table 1 Units of work and CFL for each case

Scheme RK4 SG RK4 MC LU SG LU MC

Unit work 1.00 1.59 0.39 0.78

CFL 1 1 20 20

tively. Consequently, Eq.(39) may have the same form with
unstructured LU-SGS so that the equation may be decom-
posed in the same way as for the unstructured method:

�q∗
0 = D−

0

⎡

⎣Rn
0 −

n∑

i∈L(0)

A−
0i�q∗

i

⎤

⎦ , (40)

�q0 = �q∗
0 − D−

0

N∑

i∈U (0)

A−
0i�qi , (41)

where

D0 =
(

1

�τ0
+ 1

2

N∑

i

λ0i

)
I . (42)

Equations (41) and (40) are forward andbackward sweeps,
respectively. Thus, LU-SGS may be implemented for mesh-
less discretization, which accelerates convergence without
algorithm complexity using only GC-LSM.

6 Results

6.1 ONERAM6

The first test case in this study consists of transonic flow
around the ONERAM6wing, which is the most widely used
model for the three-dimensional validation case. The fine
level tetrahedral grid is shown in Fig. 5b. In this study, mesh-
less discretization was used for all levels, such that the nodes
of the grids were considered as meshless points, as shown
in Fig. 5c. The coarsening results are shown in Fig. 5d, e.
The Mach number of the flow was 0.8395 with an angle of
attack of 3.06◦. Four cases were tested: the explicit 4th-order
Runge–Kutta (RK4) method and implicit LU-SGS, for both
single grid and multicloud methods.

With respect to the Courant–Friedrich–Lewy (CFL) con-
dition, theCFDnumbers for the explicit and implicit schemes
were set to 1 and 20, respectively. Here, we define the unit
work as CPU time per iteration on the finest grid compared
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Fig. 6 Convergence history of ONERA M6 test case

Fig. 7 Surface pressure of ONERA M6 test case
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Fig. 8 Coarsening results and the original geometry of DLR-F6

Fig. 9 Convergence history of DLR-F6 test case
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Fig. 10 Surface pressure of DLR-F6 test case

to the single RK4method, such that the work associated with
RK4 is unity, as shown in Table 1. The convergence history is
presented in Fig. 6. Figure6a displays the density residual per
iteration on the finest grid, and Fig. 6b displays the density
residual per unit work. In Fig. 6a, the four-level procedure
with LU-SGS exhibits dramatic convergence speedup with
respect to the number of iterations. Four levels with RK4 also
exhibited substantial speedup, exceeding that of single LU-
SGS. However, the work unit associated with RK4 exceed
those associated with LU, such that the convergence history
with respect to the number of work units shows a different
result compared to the history with respect to the number of
iterations, as shown in Fig. 6b. In terms of unit work, four
levels with LU-SGS exhibited the highest convergence rates,
as formulated in this study. For the ONERAM6 wing, invis-
cid analyses exhibited slight differences in surface pressure
because turbulence is not a crucial factor in that context [19].
The surface pressure results are compared with the exper-
imental results [20] in Fig. 7. The surface pressure results
agree well with the experimental results. However, slight dif-
ferences in the location of the shock on both the 0.2 and the
0.8 span are shown. These differences are typical of inviscid
methods [21]. Finally, the four-level procedure and single
LU display satisfactory agreement with each other as well as
with the experimental results.

6.2 DLR-F6

To highlight the performance of the implicit multicloud
method, the flow around the baseline wing-body DLR-F6
[22], whose geometry is complicated, was analyzed. The

Mach number of the flow was 0.75 with an angle of attack of
0.49◦. In Fig. 8, the finest and coarse level clouds are shown.
It appears that the coarsening procedure works well, even for
complex geometries.

In Fig. 9, residual history results are plotted in the same
manner as for the ONERA M6 test case. For the compli-
cated geometry, the four-level LU-SGS procedure exhibits
the highest convergence speed compared to other methods.
In Fig. 10, the results of surface pressure are compared for
the four-level, single, and experimental [23] cases. As seen in
Fig. 10, the four-level and single results show strong agree-
ment. However, a disagreement with the experimental results
is shown downstream, where the shock is located, while
strong agreement is shown around the stagnation line. As
mentioned previously, these disagreements are typical for
the inviscid method [21]. Furthermore, the DLR-F6 model
is more sensitive to turbulence than the ONERA M6 model
because the DLR-F6 geometry has a large separation bub-
ble on the wing [22]. Although it is necessary to solve the
Navier–Stokes equationswith turbulencemodelling to obtain
accurate surface pressure results, considering turbulent flow
is beyond the scope of this study, and a multicloud for vis-
cous flow will be discussed in a future study. Such that it
seems that disagreement is acceptable for inviscid method.
The L2 norm of the surface pressure difference between
the single and four-level procedures is also less than 1e-11,
such that the four-level and single methods display the same
results.
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7 Conclusion

An implicit multicloud convergence accelerator using the
GC-LSM has been considered in this study. Owing to the
geometric conservative feature of GC-LSM, the original LU-
SGS algorithm for unstructured methodology was easily
combined with meshless discretization, maximizing the con-
vergence speedup of the multicloud method. Furthermore,
the convergence acceleration effect was demonstrated for
complex geometries such as the DLR-F6 model, display-
ing no differences with respect to the single grid method.
As a result, we conclude that the implicit multicloud method
presents a dramatic speedup effect compared to the original
explicit multicloud method using the 4th-order Runge–Kutta
scheme, without incurring programming and mathematical
complexity.
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