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Abstract
Tethered quadrotors, unmanned aerial quadrotors connected to a fixed point via tether cables, have been widely applied in
numerous aerial tasks. However, their structural parameters and external disturbances give rise to dynamic stability issues,
resulting in uncontrolled autonomous flight, shaking, and vibrating. Thus, this article investigates the quantitative stability
of a tethered quadrotor using the Lyapunov exponent approach. First, a mathematical model of the tethered quadrotor is
developed, and its dynamic stability is quantified to verify the rationality of the designed physical prototype and enhance the
aerial system’s stability. Both simulation and experimental results show that the dynamic stability during the landing phase is
better than that during takeoff. Finally, optimizing the structural parameters enhances the dynamic stability, which is sensitive
to cable length, wind gusts, and yaw angle.

Keywords Tethered quadrotor · Stability analysis · Lyapunov exponent · Structural parameters · Dynamic stability

1 Introduction

In recent years, there were numerous progressive advance-
ments in the field of rotorcraft unmanned aerial vehicles
(RUAVs) due to their broad application in daily life. RUAVs
have been promoted in both civilian and military mis-
sions, including aerial manipulation [1], aerial photography
[2], agricultural spraying [3], and military reconnaissance
[4]. However, RUAVs’ potential is limited by several cru-
cial characteristics, including endurance time, computational
efficiency, and load capacity [5].

One feasible approach to mitigating these limitations is
to connect an RUAV to a ground station via a tether cable
to supply energy, apply forces, and transmit flight informa-
tion. Fortunately, the tethered quadrotor is of this type RUAV,
which is novel aerial robots consisting of a ground moor-
ing unit, tether cables, and a rotorcraft. However, like other
aerial robots, tethered quadrotors are prone to fuselage vibra-
tion, instability, crashing, loss of the command and control
link, and other dynamic stability problems in the presence of
internal uncertainties and external disturbances [6]. Further-
more, the tether cable significantly influences the tethered
quadrotor’s dynamics. Thus, safe deployment of a tethered

B Li Ding
nuaadli@163.com

1 College of Mechanical Engineering, Jiangsu University of
Technology, Changzhou, China

quadrotor requires the analysis of their structural stability
and dynamic stability.

Stability analysis inspects whether the system states
remain stable under the influences of internal uncertainties
and external disturbances. As such, it promotes optimization
of the system’s structural parameters and control commands.
Generally, there are two stability analysis methods for non-
linear dynamic systems. The first relies on analyzing the
dynamics model, whereas the second utilizes Lyapunov sta-
bility theory [7, 8]. More precisely, the first method analyzes
the stability of the dynamicsmodel established via parameter
identification. However, this method depends on the model
accuracy and the efficiency of solving dynamic equations.
For the tethered quadrotor system with noise interference,
nonlinearity, and strong coupling, the dynamic model is very
complicated, and theLyapunov function cannot be accurately
constructed or even obtained.

The second method constructs a Lyapunov function for
nonlinear systems. The Lyapunov exponent can describe the
average exponential rate of divergence or convergence of the
states when the system is subjected to disturbances, so it can
be used to quantitatively analyze the motion stability of the
tethered quadrotor system. Compared with the first method,
the Lyapunov exponent method is easier to construct and
more suitable for the stability analysis of complex nonlin-
ear system dynamics models [9, 10]. For instance, Amiri
et al. [11] utilized the Newton–Euler equations to derive the
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dynamics model of a small-scale unmanned helicopter and
analyzed its stability by applying Lyapunov stability the-
ory. Pfimlin et al. [12] adopted the Lyapunov method to
analyze the stability of the dynamics model for a ducted-
fan unmanned aerial vehicle. However, the authors omitted
the influence of external disturbances to decrease the algo-
rithm complexity. Under the assumption that all system states
are measurable, Islam and Liu [13] used a Lyapunov-like
energy function to evaluate a quadrotor’s controller design
with uncertain parameters, unknown environmental effects,
and unmodeled dynamics.

Nevertheless, while the discussed works provide an
approach to analyze the aerial robots’ stability, they are
usually constrained by the dynamicsmodel’s calculation effi-
ciency. Meanwhile, the stability of the tethered quadrotors
executing complex flight missions in a dynamic environment
is hampered by their inherent instability, strong coupling of
their dynamics, and high nonlinearity. Furthermore, tethered
quadrotors are susceptible to underactuated behavior, mod-
eling errors, and external disturbances. Hence, there is a need
for an efficient and practical method for the tethered quadro-
tor’s stability analysis.

TheLyapunov exponent approach has attracted significant
attention from the research community, because it enables
quantitative dynamic stability analysis [14, 15]. For exam-
ple, Chen et al. [16] aimed to improve the dynamic stability
of a ducted-fan unmanned aerial vehicle using the Lyapunov
exponent. Similarly, Liu et al. used the Lyapunov exponent
to analyze the dynamic stability of quadrotors during takeoff,
landing, yawing, rolling, and pitching [7, 17, 18]. Moreover,
the Lyapunov exponent has been identified as the promi-
nent approach for the stability analysis of other robots, such
as mobile vehicles [19], underwater robots [20], and biped
robots [21].

The discussed works optimized the structural parameters
to improve the movement stability of the robotic systems.
Furthermore, the effect of external disturbances on robots’
dynamic stability was studied by evaluating it via the Lya-
punov exponent method [22]. These works suggest the
suitability of the Lyapunov exponent method for quantita-
tive analysis of the tethered quadrotors’ dynamical stability
when subjected to parametric uncertainties and external dis-
turbances.

Therefore, this study utilizes the Lyapunov exponent
method in dynamic stability analysis of the tethered quadro-
tor, demonstrating its efficacy and efficiency. Extensive
simulations in the virtual environment are performed to eval-
uate the performance of the proposed Lyapunov exponent
approach. In addition, real-world flight experiments are con-
ducted to validate the proposed approach further. Although
the Lyapunov exponent theory is a proven effective method
for stability analysis of nonlinear systems, to the best of the

authors’ knowledge, it has never been used for dynamic sta-
bility analysis of tethered quadrotors. This aspect constitutes
one of the main contributions and novelties of the present
work. Another contribution is reflected in the rationality of
the designed physical prototype, which has been verified
through both simulation and experiments. The main con-
tributions and features of this work can be summarized as
follows:

(1) Compared with the existing works [7–13], this paper
extends the previous theoretical work by providing
Lyapunov exponent approach for stability analysis.
Meanwhile, theoretical results are first experimentally
verified using a tethered quadrotor.

(2) This work develops a novel tethered quadrotor which
addresses the shortcomings of conventional drones,
such as endurance time, computational efficiency, and
load capacity. Compared with the conventional drones,
the stability analysis of the tethered quadrotor has more
challenging due to the flexible ropes.

(3) Thiswork analyzes the stability of the tethered aircraft in
different flight stages, which is conducive to the design
of a reasonable aircraft. In particular, the effects of cable
length and wind gusts on system stability are explored.

The remainder of this paper is organized as follows.
Section 2 introduces the tethered quadrotor’s design con-
cepts. System modeling is presented in Sect. 3, establishing
the quadrotor dynamics model and tether cable model.
Section 4 describes the Lyapunov exponents’ calculation
method. Then, the simulation and experiment results are
shown in Sect. 5. Finally, the main conclusions are given
in Sect. 6.

2 Design Concepts

In this section, a tethered quadrotor is designed to increase
endurance time, critical for a classical aerial robot. The
tethered quadrotor consists of an X450 quadrotor and a
ground mooring unit, which communicate via a tether cable
and wirelessly. Its architecture is illustrated in Fig. 1. The
aircraft comprises the following modules: a global posi-
tioning system (GPS), gyroscope, accelerometer, magne-
tometer/compass, inertial measurement unit (IMU), wireless
modem, and embedded control processor. The ground moor-
ing unit contains a diesel generator connected to a cable
capstan and a power conversion module to boost 220 V alter-
nating current (AC) to 380 V direct current (DC) through
the tether cable. The tether cable is wrapped around the
cable capstan (Fig. 2), which adopts a reciprocating screw
mechanism to ensure the cable neatly rolls on the drum. The
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Fig. 1 The system architecture of the tethered quadrotor

Fig. 2 The cable capstan

Fig. 3 Sketch map of the cable wheel

unit tether cable has one core 1550 nm single-channel opti-
cal fiber and two 0.75 mm2 aviation wire cores, covered
with high-temperature resistant Teflon composite film and
woven aramid fibers (Fig. 3). Finally, a computer serves as
the ground station, running programs for retrieving informa-
tion regarding the aircraft’s status.

Fig. 4 Structure sketch of the tethered quadrotor

3 SystemModeling

3.1 Quadrotor Dynamics Model

Themodel of quadrotor dynamics is established by represent-
ing the aircraft as a solid body evolving in a 3D space while
subjected to the thrust and three moments: pitch, roll, and
yaw. The two coordinate frames of the tethered quadrotor,
namely the body-fixed frame ({OB}) and earth-fixed frame
({OE }), are depicted in Fig. 4. Frame {OB} is fixed at the
center of the aircraft, whereas frame {OE } is fixed at the cen-
ter of the ground mooring unit. The quadrotor’s generalized
coordinates are

q = [x , y, z, φ, θ , ψ]T , (1)

where [x , y, z] ∈ R3 is the position vector of the aircraft’s
center of mass relative to frame {OE }. Euler angles [φ, θ ,
ψ]T ∈ R3 capture the quadrotor’s orientation, where φ is
the roll angle about the XB-axis, θ is the pitch angle about
the YB-axis, and ψ is the yaw angle about the ZB-axis.

In tethered quadrotor system, the dynamics model of
quadrotor subsystem is established via the Euler–Lagrange
method [25]

{
Pq = V(q)p
M(q)Pp + C(q, p)p + F(p, q, u)= 0

, (2)

where p = [u, v, w, p, q, r ]T denotes the vector of the gen-
eralized linear and angular velocities. Further,V(q) captures
the relationship between generalized coordinates and gener-
alized velocities and consists of a transformation matrix R1

from {OB} to {OE } and an orientation transformation matrix
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R2 [26], which is described as

V(q) =
[
R1 0
0 R2

]
, (3)

where

R1 =
⎡
⎢⎣CθCψ SφSθCψ − CφSψ CφSθCψ + SφSψ

Cθ Sψ SφSθ Sψ + CφCψ CφSθ Sψ − SφCψ

−Sθ SφCθ CφCθ

⎤
⎥⎦, (4)

and

R2 =
⎡
⎢⎣ 1 SφSθ /Cθ CφSθ /Cθ

0 Cφ −Sφ

0 Sφ/Cθ Cφ/Cθ

⎤
⎥⎦, (5)

where S(·) and C(·) are abbreviations of sin(·) and cos(·),
respectively.

M(q) ∈ R6×6 denotes the inertial matrix, which is
described as

M(q) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

m 0 0 0 0 0
0 m 0 0 0 0
0 0 m 0 0 0
0 0 0 Ixx 0 0
0 0 0 0 Iyy 0
0 0 0 0 0 Izz

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
, (6)

wherem is the quadrotor’s mass, and Ixx , Iyy , and Izz are the
moment of inertia.

C(q, p) ∈ R6×6 is the gyroscopic matrix that includes the
Coriolis and centrifugal forces and can be expressed as

C(q, p) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0 −mr mq 0 0 0
mr 0 −mp 0 0 0

−mq mp 0 0 0 0
0 −mw mv 0 Iyyr −Izzq

mw 0 −mu Izzr 0 −Ixx p
−mv mu 0 Ixxq −Iyy p 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Finally,F(p, q, u) denotes an input matrix containing
active forces/moments (e.g., motor drive force and motor
drive moments) and passive forces/moments (e.g., gravity,
the tension of the cable, and air drag). The quadrotor motor’s

driving force/moments u = [U1, U2, U3, U4]T can be cal-
culated as [27]⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U1 = F1 + F2 + F3 + F4

U2 =
(√

2

2
F1 −

√
2

2
F2 −

√
2

2
F3 +

√
2

2
F4

)
L

U3 =
(√

2

2
F1 +

√
2

2
F2 −

√
2

2
F3 −

√
2

2
F4

)
L

U4 = M2 + M4 − M1 − M3

, (8)

where L is the distance between the center of the propeller
hub and the center of the quadrotor’s mass, and U1, U2, U3,
andU4 are the thrust input, pitch moment input, roll moment
input, and yawmoment input, respectively. Fi andMi (i = 1,
2, 3, 4) are the force andmomnet produced by each propeller,
which are expressed as [23, 24]{
Fi = ρaCT AR2�2

i
Mi = ρaCM AR3�2

i

, (9)

where�i denotes the propeller speed, ρa is the air density, A
is the propeller disk area, R is the propeller’s radius, and CT

andCM are the thrust coefficient and the moment coefficient,
respectively.

3.2 Tether Cable Model

Remark 1 Assuming the cable only bears tension and grav-
ity, the angle between the cable and longitudinal plane
OEYE ZE is set as β. Since the β is almost unchanged during
the takeoff and landing process, it can be taken as a particular
vale. Therefore, the force analysis of the entire system can
be restricted to the longitudinal plane OEYE ZE .

Remark 2 Assuming the cable tension in 3D space is set as
Th , the cable tension T1 in the longitudinal plane OEYE ZE

can be calculated as T1 = Th cosβ.

The planar model of the tethered quadrotor is illustrated
in Fig. 5. The tether cable is subject to gravity acceleration
g and the aircraft’s tension T1. Similar analysis can be found
in [5]. The forces acting on the cable can be expressed as{
T1 sinϒ = T0

T1 cos γ = g · ρsl = Gc
, (10)

whereϒ is the angle between the gravity and cable tension, ρ
is the cable density, s denotes the sectional area of the cable,
and l is the cable length.

Consider the following equation:

dz

dy
= Gc

T0
. (11)
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Fig. 5 Tether cable longitudinal simplified scheme

Using Eq. (9), one obtains

gρsl = T0
dz

dy
. (12)

Then, the derivative of Eq. (12) satisfies

gρsdl = T0
d2z

dy
, (13)

where the infinitesimal dl is defined as

dl =
√

(dy)2 + (dz)2 =
√
1 +

(
dz

dy

)2

dy. (14)

Equation (13) can now be transformed into

ρsg

√
1 + (

dz

dy
)2 = T0

d2z

dy2
= T0

d
(
dz
dy

)
dy

. (15)

Since ε = dz/dy, integrating Eq. (15) yields∫
ρsg

T0
dy =

∫
1√

1 + ε2
dε. (16)

Solving the integral equation results in

ε = dz

dy
= sinh

(
ρsg

T0
y − c1

)
. (17)

Since y = 0 and ż = 0, one obtains c1 = 0. Then, the
integration of Eq. (16) is

z = T0
ρsg

cosh

(
ρsg

T0
y

)
+ c2. (18)

Again, since y = 0 and ż = 0, c2 = −T0/ρsg. Using
the catenary theory [28], the tether cable length model can
be formulated as

z = D cosh

(
1

D
y

)
− D, (19)

where D = T0/ρsg denotes the equivalent cable length.
By combining Eqs. (10) and (19) with the Euler formula

cosh(x) = (
ex + e−x

)
/2, the tether cable tension model is

T = T1 = T0
1

cosα
= T0

√
1 + ż2 = T0 + ρszg, (20)

where α represents the angle between the tension T1 and the
axis YE .

Let symbol β represent the angle between the cable and
the longitudinal plane. Now, the cable tension in 3D space
can be expressed using a 6 × 1 column vector

T =
[
−T Sβ/Cβ −TCα T Sα 0 0 0

]T
. (21)

3.3 State-Space Model

In control engineering, a state-space representation is amath-
ematicalmodel of a physical system that relates input, output,
and state variables via first-order differential equations [29].
Under the state-space representation, the dynamical model
of the tethered quadrotor can be expressed as

Ẋ = f (X), (22)

where X = [q, p]T .

Remark 3 The variation Eq. (22) is a matrix-valued time-
varying linear differential equation. It is derived by lineariza-
tion of the vector field along the trajectory X(t).

Combining Eqs. (4), (21), and (22), one obtains the first-
order derivative of the state variables as

q̇ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

w
(
SφSψ + CφCψ Sθ

) − v
(
CφSψ − Cψ SφSθ

) + CψCθu
v
(
CφCψ + SφSψ Sθ

) − w
(
Cψ Sφ − CφSψ Sθ

) + CθuSψ

CφCθw − uSθ + Cθ vSφ

p + Cφ Sθ r
Cθ

+ Sφ Sθ q
Cθ

Cφq − Sφr
Cφr+Sφq

Cθ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

(23)

Ṗ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

U1(Sφ Sψ+CφCψ Sθ )−mqw+mrv−T Sβ/Cβ

m

−U1(Cψ Sφ−Cφ Sψ Sθ )−mpw+mru+T1Sϒ

m

−mg+mpv−mqu−U1CφCθ+T1Cϒ

m
U2−Iyyqr+Izzqr

Ixx
U3−Izz pr+Ixx pr

Iyy
U4−Ixx pq+Iyy pq

Izz

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (24)

123



910 International Journal of Aeronautical and Space Sciences (2023) 24:905–918

4 Lyapunov Exponent Method

Dynamic stability analysis assumes that convergence (or
divergence) of motion trajectories with close starting points
continues as time approaches infinity. Such a behavior can
be analyzed by the Lyapunov exponent proposed in [30].
Given a continuous dynamical system in an n-dimensional
phase space, we track the long-term development of an
infinitesimal n-sphere of starting conditions.Due to theflow’s
locally deforming character, the sphere will deform into an
n - ellipsoid.Define the i th one-dimensionalLyapunov expo-
nent in term of the length of the ellipsoidal principal axis
‖δxi (t)‖ as

γi = lim
t→∞

1

t
ln

‖δxi (t)‖
‖δxi (t0)‖ (i = 1, . . . , n), (25)

where xi (t0) and xi (t) denote the state variables at the initial
and the current time, t0 and t , respectively. The function (25)
of Lyapunov exponents indicates the stability property of the
dynamic system. If γi < 0, the system is stable, and the lower
the exponent, the more stable the system. If γi > 0, the sys-
tem implies instability. If γi=0, the system is asymptotically
stable.

Remark 4 The Lyapunov exponents are proportional to the
expanding or contracting character of certain phase space
directions. Due to the fact that the ellipsoid’s orientation
changes continually as it evolves, the directions associated
with a particular exponent fluctuate in a complex manner
along the attractor. As a result, one cannot talk of an expo-
nent having a well-defined direction.

The Jacobian matrix of Eq. (22) can be calculated as

∣∣∣∣d f (X)

dX

∣∣∣∣ =

∣∣∣∣∣∣∣∣∣∣∣

∂ Ẋ1
∂X1

∂ Ẋ2
∂X1

· · · ∂ Ẋ12
∂X1

∂ Ẋ1
∂X2

∂ Ẋ2
∂X2

· · · ∂ Ẋ12
∂X2

...
...

...
∂ Ẋ1
∂X12

∂ Ẋ2
∂X12

· · · ∂ Ẋ12
∂X12

∣∣∣∣∣∣∣∣∣∣∣
= η

′
, (26)

where Ẋi (i = 1, 2, . . . , 12) is the derivative of the system
state variables.

To calculate the Lyapunov exponents based on the dynam-
ical model (22), fiducial trajectories are constructed by inte-
grating nonlinear equations ofmotion for somepost-transient
initial conditions. Meanwhile, an arbitrarily oriented frame
of n orthonormal vectors is constructed by simultaneously
integrating the linearized equations of motion for n differ-
ent initial conditions. On the initial frame of orthonormal
vectors, let the linearized equations of motion create the set
of vectors [δx1(t), δx2(t), · · · , δxn(t)]. The Gram–Schmidt
reortho-normalization (GSR) is applied to avoid a misalign-
ment of all vectors along the direction of maximal expansion

Fig. 6 Flowchart of the dynamic stability analysis based on the Lya-
punov exponent

[31]. GSR provides the orthonormal set [η′
1, η

′
2, · · · , η

′
n]

shown below

η′
1 = η1

‖η1‖ ,

η′
2 = η2 − 〈

η2, η′
1

〉
η′
1∥∥η2 − 〈

η2, η′
1

〉
η′∥∥ ,

· · ·

η′
n = ηn − 〈

ηn , η′
n−1

〉
η′
n−1 − · · · − 〈

ηn , η′
1

〉
η′
1∥∥ηn − 〈

ηn , η′
n−1

〉
η′
n−1 − · · · − 〈

ηn , η′
1

〉
η′
1

∥∥ ,
(27)

where 〈·〉 denotes the inner product. GSR procedure allows
the integration of the vector frame for as long as required for
the convergence of Lyapunov spectrum.

Combining Eqs. (22), (25) and (27), the Lyapunov expo-
nent for the tethered quadrotor can be written as [32]

γ = lim
n→∞

1

n

n−1∑
i=0

ln
∣∣∣η′ ∣∣∣, (28)

describing the quantitative relation between the quadrotor’s
structural parameters and the dynamic stability.

Figure 6 summarizes the tethered quadrotor’s motion sta-
bility analysis based on the Lyapunov exponent concept in a
block diagram.
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Fig. 7 The test platform designed to assess rotational inertia

5 Simulation and Experiments

5.1 Parameters’ Identification

Structure parameters of the tethered quadrotor can be
assessed through direct and indirect measurement. Several
physical parameters (such as the quadrotor’s mass m and
length L) can be obtained using standard measurement tools.
However, specific physical parameters cannot be directly
obtained unless specialized testing platforms are utilized.
Such parameters include the rotational inertia, thrust coef-
ficient, and moment coefficient.

The aircraft’s rotational inertia can be measured using the
bifilar pendulummethod [33]. As seen in Fig. 7, the aircraft is
suspended with two thin wires of the same length. Taking the
rotational inertia (Ixx ) as an example, the aircraft is rotated
manually about OX axis by a small angle. Once released, the
aircraft proceeds to periodically move back-and-forth about
OX axis.

The rotational inertia is calculated as

I = mgr2

ω2a
, (29)

where r denotes the distance between the aircraft mass and
the wire, a is the wire length, and ω is the oscillation period.
The calculated rotational inertia parameters are listed inTable
1.

The propeller’s thrust and moment coefficients assess-
ment is conducted on a specific test platform shown in
Fig. 8. One propeller is fixed on the support frame, and its
thrust and moment are collected by a tension sensor (model
MT1022-15, METTLER TOLEDO) and a torque sensor
(model MT1022-3, METTLER TOLEDO). The electrical
signals from the sensors are converted into 0–5 V voltage
signals through the transducer, and an acquisition board sam-
ples the voltage signals at a frequency of 500 Hz. These
sensors have a measurement sensitivity from 1.8 to 2.2 mV.
Figure 9 shows the relation between the propeller speed and
thrust. Similarly, the connection between moment and pro-
peller speed is estimated in Fig. 10.

Fig. 8 The test platform designed to assess the propeller’s parameters

Fig. 9 The thrust coefficient assessment results

Fig. 10 The moment coefficient assessment results
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Table 1 Parameters of rotational
inertia of the quadrotor Parameter r(m) ω(rad/s) a(m) Value (kg · m2)

Ixx 0.287 3.738 0.316 0.287

Iyy 0.282 3.717 0.325 0.314

Izz 0.235 5.180 0.605 0.147

Table 2 Tethered quadrotor intrinsic parameters

Parameter Physical explanation Value

L Distance between the center of the
propeller hub and the center of
mass of the quadrotor

0.63 m

m Mass of quadrotor 3.465 kg

g Gravitational acceleration constant 9.8 m/s2

R Radius of the propeller 0.226 m

ρa Air density 1.293 kg/m3

CT Thrust coefficient 1.1719e−05

CM Moment coefficient 0.198e−05

Ixx Rotational inertia around x-axis 0.287 kg/m2

Iyy Rotational inertia around y-axis 0.314 kg/m2

Izz Rotational inertia around z-axis 0.147 kg/m2

ρ Cable density 0.870 kg/m3

s Sectional area of the cable 0.0012 m2

The derived intrinsic parameters of the tethered quadrotor
are listed in Table 2.

5.2 Simulation Results

This section presents four simulation cases conducted to
investigate the proposed tethered quadrotor’s dynamic sta-
bility under different conditions.

Case 1. The aircraft flied from the ground to a hovering
altitude of 100 m, increasing the propeller speed from 0 to
10,800 rpm. Then, the aircraft returned to the ground, and
the propeller speed dropped to zero. As seen in Fig. 11, the
Lyapunov exponents during takeoff are smaller than those
during landing. Therefore, the tethered quadrotor has bet-
ter dynamic stability during landing. This result stems from
the tether cable’s shortening, revealing the stability perfor-
mance’s sensitivity to the tether cable tension.

Furthermore, the stability performance during takeoff and
landing was quantified using evaluation Eq. (30), and the
results are listed in Table 3

�γ (·) = γi (·) − γ j (·)∣∣γi (·) + γ j (·)
∣∣ × 100%. (30)

The results show that the stability is higher during landing
than during takeoff, which contradicts the stability analysis

Fig. 11 The Lyapunov exponents during takeoff and landing

Table 3 Final Lyapunov exponents during takeoff and land

Channel Takeoff Landing

x 0.0481 − 0.001(↑100.35%)

y − 0.0084 − 0.0170(↑33.95%)

z − 0.0164 - 0.0447(↑17.38%)

φ 0.0362 0.0239(↑20.54%)

θ 0.0118 − 0.0166(↑597.29%)

ψ − 0.0002 − 0.0147(↑97.27%)

results for conventional free-flying vehicles [7, 16]. If chan-
nel x is taken as an example, the Lyapunov exponent for
landing is 100.35% higher than that for takeoff.

In addition, Fig. 12 displays a variation in the Lyapunov
exponents for different cable tensions. It can be observed that
the cable tension’s effect on the tethered quadrotor’s takeoff
phase is greater than that on the landing phase. As the cable
tension increases, the Lyapunov exponents of θ channel and
ψ channel approach either zero or a negative value. More
precisely, when the cable tension exceeds 150 N, the con-
vergence speed of these two channels is almost zero. These
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Fig. 12 The Lyapunov exponents for different cable tensions

results demonstrate that the channels are not sensitive to the
variation in the cable tension. Furthermore, the overlarge
cable tension leads to an unstable aircraft position, which
is not allowed in practice.

Case 2. This case provides three scenarios to investigate
the propeller’s impact on stability performance during the
yawing phase. Three cases with varying propeller speeds are
selected as follows:

Scenario 1: �2 = �4 = 10800 rpm, �1 = �3 =
5800 rpm,

Scenario 2: �2 = �4 = 10800 rpm, �1 = �3 =
7800 rpm,

Scenario 3: �2 = �4 = 10800 rpm, �1 = �3 =
9800 rpm.

From the results in Fig. 13, it can be seen that the chan-
nels display the quickest convergence to zero or a negative
value for Scenario 1. Furthermore, the Lyapunov exponents
of Scenario 1 are the smallest when the algorithm reaches
the iteration maximum. The larger the yaw angle, the better
the aircraft’s stability at yawing phase. In practice, the sys-
tem’s stability at the yawing phase is sensitive to the speed
difference between two propeller pairs. Thus, the system’s
stability can be enhanced by expanding the speed difference.

Case 3. This case studies the influence of different pro-
peller radius on the tethered quadrotor’s stability when
hovering. Three different propellers are selected:

Scenario 1: R = 0.226m, �1 = �2 = �3 = �4 =
10800 rpm.

Scenario 2: R = 0.200m, �1 = �2 = �3 = �4 =
10800 rpm.

Fig. 13 The Lyapunov exponents during yawing phase

Fig. 14 The Lyapunov exponents for different propeller radius

Scenario 3: R = 0.165m, �1 = �2 = �3 = �4 =
10800 rpm, while the rest of the intrinsic parameters remain
unchanged.

The Lyapunov exponents’ spectrum is depicted in Fig. 14.
The results demonstrate that the Lyapunov exponents of Sce-
nario 1 are smaller than those in Scenario 2 and Scenario 3
when the algorithm reaches the maximum iteration. There-
fore, the stability performance of the tethered quadrotor can
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be improved when the propeller radius increases within the
motor load capacity. Of considered, 0.226 m radius propeller
is the most appropriate choice for the tethered quadrotor.

Case 4. The tethered quadrotor’s stability decreases in
real-world flights due to environmental uncertainties (e.g.,
wind gusts). Thus, this case investigates the effect of wind
gusts on the tethered quadrotor’s stability performance when
hovering. The wind components along the x and y axes
(
[
Wx , Wy

]T ) are modeled as [34, 35]

[
Wx

Wy

]
=
[
kx 0
0 ky

][
Vx

Vy

]
, (31)

where kx and ky are correlation coefficients of the wind, and
Vx and Vy are wind speeds.

Again, three scenarios are considered.
Scenario 1: Vx = Vy = 0.2m/s, hovering state with the

propeller speed of 10,800 rpm;
Scenario 2: Vx = Vy = 6m/s, hovering state with the

propeller speed of 10,800 rpm;
Scenario 3: Vx = Vy = 6m/s, hovering state with the

optimized propeller speed.
The simulation results are shown in Fig. 15. One can

observe that the stability performance displayed in Scenario
2 is significantly poorer than in other cases. Nevertheless, the
system stability can be recovered by adjusting the propeller
speeds according to the results of Scenario 3. Additionally,
the system subjected to thewind gusts in the horizontal direc-
tion has a superior stability performance than that in the
vertical direction, which stems mainly from the tether cable
tension acting along the y axis.

5.3 Experimental Results

The purpose of the real-world flight experiments is to test
whether the structural parameters of the designed prototype
are well chosen. Furthermore, the dynamic stability of the
tethered quadrotorwill be evaluated through the experiments.
It should be noted that since the outdoor experimental envi-
ronment cannot be controlled, only part of the simulation
cases can be verified. In addition, a conventional cascade PID
controller is designed for the tethered quadrotor, as shown in
Fig. 16.

Several results are shown to demonstrate the theoretical
analysis validity. The flight experiments were conducted on
an empty area with an average wind speed of 1.6 m/s and
a maximum wind speed equal to 5.1 m/s (as measured by
an anemometer). The snapshots in Fig. 17 present the flight
fragments of the tethered quadrotor. The experimental data
were collected via the ground control station throughwireless
communication.

 

(a) Wind gusts in the horizontal direction 

 

(b) Wind gusts in the vertical direction 

Fig. 15 The Lyapunov exponents under wind gusts

Fig. 16 Control structure of the tethered quadrotor
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Fig. 17 Snapshots of the flight experiments

Test 1. The tethered quadrotor was controlled from the
ground to a hovering altitude of 100 m. During takeoff, the
experimental data were collected in the 20 s time intervals
(0–20 s). Then, the quadrotor returned to the ground, and the
experimental data with the same time intervals (93–113 s)
were collected during the landing phase.

The collected experimental data are depicted in Figs. 18
and 19. It can be observed that the stability performance
during landing is better than that during takeoff. Therefore,
these results correspond to the theoretical results in Case
1. Such correspondence in the results and derived conclu-
sions demonstrates the validity of the mathematical model
of the quadrotor. Furthermore, the stability performance dur-
ing takeoff deteriorates notably when the tethered quadrotor
rises in a windy environment. Wind speed increases with the
rise in flight altitude, and the tethered quadrotor’s stability is
sensitive to the wind speed. In addition, the increasing cable
tension might be another factor decreasing the stability per-
formance during landing.

Test 2.While the tethered quadrotor was hovering in Test
1, the yaw angle was varied. The experimental results are
shown in Figs. 20, 21, 22. As seen in the time intervals
46–55 s, with the increase in the yaw angle, the stability of
both position and attitude channels (except for the yaw angle)
also increases. This result is consistent with that obtained in
the second simulated case (Case 2) and demonstrates the
effectiveness of the proposed Lyapunov exponent method.

Test 3. Finally, the tethered quadrotor was controlled to
hover with propellers of three different sizes (R = 0.226m,
R = 0.200m, and R = 0.165m). The position response
was recorded with 10 s sampling intervals. Based on the

Fig. 18 Position response during takeoff and landing

experimental results, the standard deviation (std) can be cal-
culated. The results in Fig. 23 show that as the propeller
radius increases, the stability of position channels also rises,
thus complying with the results of Case 3.

Furthermore, of the three channels, the variation is most
significant for x . This discrepancy might be due to the pro-
peller radius affecting the tethered quadrotor’s power system,
thus affecting the force of the cable on the x axis. Therefore,
the appropriate propeller should be selected to ensure the
tethered quadrotor’s stable flight.

6 Conclusion

This work studies the dynamic stability of the tethered
quadrotor during takeoff, landing, and yawing phases. Fur-
thermore, its structural parameters and the conditions in the
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Fig. 19 Attitude response during takeoff and landing

Fig. 20 Motor speeds during yawing phase

Fig. 21 Position response during yawing phase

Fig. 22 Attitude response during yawing phase

Fig. 23 Standard deviation of the position for different propeller radius

presence of wind gusts are considered to improve the teth-
ered quadrotor’s dynamic stability. The overarching goal
is to develop a Lyapunov exponent approach that enables
quantitative stability analysis for a tethered quadrotor. There-
fore, extensive simulations are conducted to evaluate the
efficacy of this quantitative stability analysis method. Addi-
tionally, the real-world flight experiments further validate
the reliability of the simulation results. Both simulation and
experimental results have highlighted that:

(1) Dynamic stability of the tethered quadrotor during land-
ing is better than that during takeoff. Such discrepancies
mainly stem from cable length and wind gusts.

(2) The dynamic stability at yawing phase is sensitive to the
yaw angle. Namely, the larger the yaw angle, the more
stable the system.

(3) High stability depends on a large propeller radius.
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(4) Compared to the vertical direction, the horizontal
dynamic stability is more influenced by wind gusts.

(5) The plausibility of the designed prototype’s structural
parameters has been verified.

Nevertheless, several aspects of the presented work
require further investigation to improve the confidence in
the derived results. Thus, future studies will consider more
complex nonlinear systems, extending the quantitative sta-
bility analysis method based on the Lyapunov exponents. In
addition, an advanced intelligent control technique will be
further explored to improve the dynamic stability of the teth-
ered quadrotor.
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