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Abstract
In this paper, a novel adaptive continuous nonsingular fast terminal sliding mode fault tolerant control scheme for reusable
launch vehicles (RLVs) is proposed. This schemewas designed to counteract themodeling uncertainties, external disturbances
and actuator faults during the reentry phase. First, an attitude dynamics model for the reentry of RLVs is built. Then,
with feedback linearization, a second-order attitude tracking error model is derived. Subsequently, based on the traditional
discontinuous nonsingular fast terminal slidingmanifold (NFTSM), a second-order continuousNFTSM-based control strategy
is developed to achieve a fast and accurate attitude tracking in the presence of uncertainties, disturbances and actuator faults.
Compared with the existing NFTSM-based control strategies, the proposed control law guarantees higher robustness and
chattering reduction without introducing state or disturbance observers. Thus, the proposed control law has a more concise
and simpler structure. Furthermore, it does not require prior knowledge of the upper bounds of the disturbances.While most of
the existing control strategies based on the NFTSM tend to suffer large oscillations at the initial phase of the control process,
the proposed control law eliminates these oscillations. Finally, simulations are carried out that demonstrate that the proposed
control law has better robustness to disturbances and faults while creating less chattering than the exiting control laws.

Keywords RLV · Finite-time fault tolerant control · Nonsingular fixed-time terminal sliding mode · Adaptive gain · Higher
order sliding mode control

1 Introduction

Reusable launch vehicles (RLVs) have attracted tremendous
attention by researchers due to their excellent traits, such as
low flight cost and reusability. They are expected to play
an important role in military and civil applications in the
future [1]. However, great challenge are encountered in the
reentry phase, in which the vehicles suffer significant uncer-
tainties, severe external disturbances and poor aerodynamic
maneuverability [2]. Thus, rendering the control strategy
more robust to the uncertainties, disturbances and actuator
faults and causing it to stabilize more rapidly and accurately
becomes an essential research topic.
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Fault tolerant control (FTC) strategies are designed to
maintain safe operating limits and to mitigate the effects
of system/component malfunctions [3]. FTC for the reen-
try vehicle has been extensively studied in recent years,
and many types of robust control approaches have been
used as the basis for developing FTC [4]. The approaches
include H∞ control [5, 6], back-stepping control [7, 8], slid-
ing mode control (SMC) [9, 10] and others. Among these
approaches, the SMC is an attractive choice because of its
useful properties, including superior robustness to distur-
bances, finite-time convergence and higher control precision,
etc. The rotational equation for RLVs in the reentry phase is
of second order. For stabilizing the second-order system, the
terminal sliding manifold (TSM) is a suitable choice, since it
has advantageous properties including fast and finite-time
convergence [11, 12]. However, there exists a singularity
problem for the early TSMmethods. To overcome this prob-
lem, many researches on the non-singular TSM (NTSMC)
have been carried out [13–16].In addition, the traditional
TSMdoes not demonstrate uniform convergence speedwhen
the system states are at different ranges from the equilibrium.
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Hence, the so-called fast TSM (FTSM) strategies were pro-
posed to compensate for this shortcoming [17, 18]. In the
FTSM, the convergence is rapid even when the states are far
from the equilibrium. An advanced version of the FTSM is
the fixed-time TSM, which drives the system to the origin
in fixed time. In recent years, extensive research on the non-
singular fast/fixed-time TSM control (NFTSMC) has been
conducted [19–21]. In particular, a singularity-free fixed time
TSM structure that possesses a faster convergence speed and
retains a higher control precision than its predecessors was
proposed in [19].

On the other hand, in spite of the advances in the
NFTSMC, the control laws proposed are always discontinu-
ous. This can give rise to large undesirable chattering as was
shown in the simulation tests in reference [19]. To solve this
problem, saturation functions and boundary-layer functions
were employed [22]. While the chattering is reduced by that,
the system’s trajectories are not constrained exactly on the
sliding surface but rather to its vicinity. Consequently, the
robustness of the controller is weakened. The designers still
have to make the trade-off between the control accuracy and
the chattering reduction. The approach to solve this dilemma
is the higher order SMC strategy. However, the difficulty of
designing a higher order NFTSMC lies in its special struc-
ture. Specifically, the derivative of the sliding manifold is
an implicit function for the control law u [as is shown in
Eq. (27)]. Moreover, the upper bounds of the disturbances
and uncertainties are always assumed to be known a priori.
However, they are not easily obtained in real applications.
In addition, any overestimation of the disturbances leads to
additional unwanted chattering. To resolve these two prob-
lems, twomajor types ofmethods have been studied recently.
One resorts to a slidingmanifold on the basis of the properties
of the homogeneous system [23], which we will refer to as
the homogeneity-based TSM (HBTSM) here. The derivative
of such a terminal sliding manifold is an explicit function
for the control u. Based on the HBTSM, an adaptive con-
tinuous nonsingular control law can be developed [24–27].
In [24], the equivalent control based adaptive super-twisting
algorithm was combined with the HBTSM, which results
in a continuous controller and mitigates the chattering. In
[25, 26, 28], the multivariable version of the HBTSM was
established and used to develop a continuous fault tolerant
control algorithm. However, compared with the NFTSMC,
the HBTSM has several disadvantages. For instance, for the
HBTSM, it is hard to estimate the upper bound for the conver-
gence time and the property of fast/fixed-time convergence
vanishes. Another type of method is to use a disturbance
observer, so that the effect of disturbances can be offset by
their estimation [27, 29–33]. Without the influence of the
disturbances, the discontinuous part (sign function) in the
control law can be removed. However, the introduction of an

observer increases the redundancy and complexity of the con-
troller. Considering the shortcomings of the above methods,
some researchers have made attempts to develop a continu-
ous NFTSMC without the usage of an observer. In [34], a
higher order version of the NFTSMC was proposed by com-
bining a super-twisting SMC. However, the stability of the
system has not been proved in this design and the stability of
the system may not be guaranteed under all conditions [35].

Moreover, due to the unique structure of the traditional
discontinuous NFTSMC, the magnitude of its output value
during the initial stage of the control process is sensitive to the
change of the disturbance value [19]. As a consequence, the
initial control signal magnitude increases dramatically when
the disturbance becomes slightly larger. This effect tends to
give rise to large oscillations, which can lead to instability
when there exists control saturation.

Motivated by the aforementioned problems, a novel adap-
tive second-order nonsingular fast terminal sliding mode
controller (A2-NFTSMC) is proposed and applied to fault
tolerant control of the RLV attitude in this paper. The main
contributions are summarized as follows:

a) The proposed controller is developed on the basis of the
well-researchedNFTSMC, instead of theHBTSM.Thus,
the properties of fast/fixed-time convergence and easy
estimation of convergence time are inherited from the
NFTSMC.

b) The proposed controller represents a second-order slid-
ing mode algorithm. As a result, the chattering is greatly
attenuated compared with the existing discontinuous
NFTSMC without sacrificing the algorithm’s accuracy
and robustness to disturbances and faults. In addition,
the proposed controller does not rely on observers to esti-
mate the external disturbances. Therefore, the structure
of the controller is simpler and more concise.

c) Unlike most of the existing control laws based on the
NFTSMC, the proposed controller does not require any
prior knowledge of the external disturbances, modeling
uncertainties or actuator faults. In addition, the shortcom-
ing of the traditional NFTSMC that its output magnitude
is sensitive to the change of the disturbance value is over-
come in the proposed control strategy. Consequently, the
hazard of introducing large oscillations during the initial
stage of the control process is eliminated.

This paper is organized as follows. Section 1 gives an
introduction of this research. Section 2 presents the model-
ing of the RLV dynamics during the reentry phase and the
statement of the control problem. Section 3 is dedicated to
the proposed adaptive second-order nonsingular fast terminal
sliding mode controller design. Section 4 provides simula-
tion tests to demonstrate the efficacy of the proposedmethod.
The conclusions are given in Sect. 5.
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Notation 1: In this paper, the following notations are used.
‖ · ‖ denotes the Euclidean norm of vectors or the induced
norm of matrices.

Notation 2: For any vector x � [x1, x2, · · · , xn]T and
positive constant r , denote

signr (x) �
[
|x1|r sign(x1), |x2|r sign(x2), · · · ,

|xn|r sign(xn)
]
.

2 Dynamics Modeling and Problem
Statement

During the reentry phase, the motion of RLVs can be decom-
posed into rotational motion and translational motion. The
equations of rotational motion are described as [4, 36]

ṗ � JzzMx

Jxx Jzz − J2xz
+

JxzMz

Jxx Jzz − J2xz
+
(Jxx − Jyy + Jzz)Jxz

Jxx Jzz − J2xz
pq

+
(Jyy − Jzz)Jzz − J2xz

Jxx Jzz − J2xz
qr ,

q̇ � Mx

Jyy
+

Jxz
Jyy

(r2 − p2) +
Jzz − Jxx

Jyy
pr ,

ṙ � JxzMx

Jxx Jzz − J2xz
+

Jxx Mz

Jxx Jzz − J2xz
+
(Jxx − Jyy)Jxx + J2xz

Jxx Jzz − J2xz
pq

+
(Jyy − Jxx − Jzz)Jxz

Jxx Jzz − J2xz
qr , (1)

α̇ � −p cosα tan β + q − r sin α tan β

+
sin σ

cosβ

[
ψ̇ cos γ − φ̇ sinψ sin γ

+(θ̇ + ωe)(cosφ cosψ sin γ − sin φ cos γ )
]

− cos σ

cosβ

[
γ̇ − φ̇ cosψ − (θ̇ + ωe) cosφ sinψ

]
,

β̇ � p sin α − r cosα + sin σ
[
γ̇ − φ̇ cosψ − (θ̇ + ωe) cosφ sinψ

]

cos σ
[
ψ̇ cos γ − φ̇ sinψ sin γ

+ (θ̇ + ωe)(cosφ cosψ sin γ − sin φ cos γ )
]
,

σ̇ � −p cosα cosβ − q sin β − r sin α cosβ + α̇ sin β − ψ̇ sin γ

− φ̇ sinψ cos γ + (θ̇ + ωe)(cosφ cosψ cos γ − sin φ sin γ ),
(2)

where p, q, r are the roll, pitch and yaw angular rates; α, β,
σ represent the angle of attack, the sideslip angle and bank
angle; γ is the flight path angle; ψ is the heading angle; ωe

is the Earth’s angular speed; θ and φ are the longitude and
latitude; Ji j (i � x , y, z; j � x , y, z) is the moment
of inertia; Mx , My , Mz are the roll, pitch yaw moments,
respectively.

Since the rotational motions of RLVs are much faster than
their translational motions, the time derivatives of both the
position and the velocity are considered to be negligible with
respect to the rotational motion. Equations (1) and (2) can be

simplified as [37]


̇ � Rω + � f , (3)

ω̇ � −J−1ω× Jω + J−1M + �d, (4)

where M � [Mx My Mz]T , 
 � [α β σ ]T , and ω �
[p q r ]T ; � f � [� fx � fy � fz]T is the bounded differ-
entiable unmatched disturbance vector caused by simplified
modeling; �d ∈ �3 is the bounded unknown disturbance
vector caused by model uncertainty and external distur-
bances. J , R, ω× ∈ �3×3 are the nominal inertia matrix, the
coordinate transformation matrix and the skew–symmetric
matrix operator on vector ω, respectively. They are defined
as follows:

J �
⎡
⎢⎣

Jxx 0 −Jxz
0 Jyy 0

−Jxz 0 Jzz

⎤
⎥⎦, ω× �

⎡
⎢⎣

0 −r q
r 0 −p

−q p 0

⎤
⎥⎦

R �
⎡
⎢⎣

− cosα tan β 1 − sin α tan β

sin α 0 − cosα

− cosα cosβ − sin α − sin α cosβ

⎤
⎥⎦,

(5)

where �d can be expressed as �d � J−1[−�J ω̇ −
ω×�Jω + �M], where �J ∈ �3×3 is the uncertain part
of the inertia matrix and �M ∈ �3 is a vector of unknown
external disturbances.

To further include possible actuator faults, Eq. (4) can be
expressed as

ω̇ � −J−1ω× Jω + J−1[�M + Fδ] + �d

� −J−1ω× Jω + J−1M + J−1[(� − I )M + Fδ] + �d,
(6)

where vector� � diag[�x �y �z] is the actuator effective-
ness with 0 ≤ �i ≤ 1, i � x , y, z and Fδ ∈ [Fδx Fδy Fδz ]
is the actuator bias fault.

The aim of this paper is to design a continuous sliding
mode controller such that the angle vector 
 tracks the guid-
ance command
re f � [αre f βre f σre f ]T accurately in finite
time in the presence of uncertainties � f and disturbances
�d.

For the sake of the controller design, feedback lineariza-
tion of the dynamic system is carried out first. Assume that
X1 � 
 − 
re f and X2 � 
̇ − 
̇re f , which denote the
tracking errors of the attitude angles and the angular rates,
respectively. By differentiating X1 and X2, we obtain

Ẋ1 � X2, (7)

Ẋ2 � F + GM + �D, (8)
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where X1 � [x1x x1y x1z], X2 � [x2x x2y x2z]; G � RJ−1;
F � [Fx Fy Fz] is the known normal part of the system; the
disturbance �D � [�Dx �Dy �Dz] is the unknown part
which is induced by uncertainties, disturbances and actuator
faults. Here, F and �D can be expressed as

F �
(
Ṙ − RJ−1ω× J

)
ω − 
̈re f , (9)

�D � RJ−1[(� − I )M + Fδ] + R�d + � ḟ . (10)

Since, during the reentry phase, angle β is kept near 0, we
have

det(G) � cosβ − sin β tan β

Jxx Jzz − J 2xz
≈ 1

Jxx Jzz − J 2xz
	� 0. (11)

Therefore, G−1 exists. Introducing a control vector U �
[ux , uy , uz] and defining it as U � GM , Eq. (8) can be
expressed as

Ẋ2 � F +U + �D. (12)

Assumption 1 [26]: It is assumed that uncertainty �D in
(10) is differentiable and bounded with ‖�D‖ ≤ L1; its
derivative is also bounded with

∥∥�Ḋ
∥∥ ≤ L2, where L1 and

L2 are unknown positive constants.

Assumption 2 [26]: Assume that the condition∥∥J−1(� − I )J
∥∥ < 1 holds.

Remark 1 Eq. (6) can be rewritten as

(13)

ω̇ � −J−1ω× Jω +
(
I + J−1 (� − I ) J

)
J−1M

+ J−1Fδ + �d.

In the second term in (13), i.e., the control term,
J−1(� − I )J denotes the uncertain portion of thematrix and
the identity matrix I represents the nominal portion. Accord-
ing to [38], for the nominal part of the control signal to domi-
nate the uncertain part, condition

∥∥(
J−1(� − I )J

) · I−1
∥∥ <

1 must be satisfied.

3 Controller Design

3.1 Preliminaries

Lemma 1 [19] Consider the following scalar system:

ẏ � −l1sign
m1 y − l2sign

m2 y, y(0) � y0, (14)

where l1 > 0, l2 > 0, m1 ≥ 1 and 0 < m2 < 1. The
equilibrium point of the above system is finite time stable,

and the convergence time T is bounded by

T ≤ Tmax � 1

l1(m1 − 1)
+

1

l2(1 − m2)
. (15)

Remark 2 Note that the upper bound of convergence time
does not depend on the initial value y0. Then system (14) can
be seen as being fixed-time stable [39].

Lemma 2 [40] (Jensen’s inequality) For a vector v �
[v1 v2 · · · vn] with vi ≥ 0, there holds inequality.

(
n∑

i�0

v
q
i

)1/q

≤
(

n∑
i�0

v
p
i

)1/p

, (16)

if 0 < p < q.

Lemma 3 [40] For a continuous convex function f , if
numbers v1, v2 · · · vn are in its domain, then there holds
inequality:

f

(
n∑

i�0

vi/n

)
≤

(
n∑

i�0

f (vi )

)
/n. (17)

Lemma 4 For a vector v � [v1 v2 · · · vn] with vi ≥ 0, it
can be proven from Lemma 2 and Lemma 3 that there hold
inequalities:

n∑
i�0

vi ≤
(

n∑
i�0

v
p
i

)1/p

, if p < 1, (18)

n∑
i�0

vi ≤ n p−1

(
n∑

i�0

v
p
i

)1/p

, if p > 1. (19)

3.2 Design of Adaptive Second-Order Nonsingular
Fast Terminal SlidingMode Controller

In order for the angle vector
 to track the guidance command

re f , the controller to be designed should cause state vector
X1 in (7) to converge to the origin in finite time. Thus, in this
section, a novel A2-NFTSMC that achieves this goal will be
proposed. First, assume that state vector X2 is obtainable.
The terminal sliding manifold is chosen as [19]

Si � signa1i x1i +
k2i a2i

2a2i − 1
sign2−1/a2i

(
x2i + k1i sign

a1i x1i
)
,

i � x , y, z,

(20)

where control parameters k1i > 0, k2i > 0, a2i > 1 and
1 < a1i < 2 − 1/a2i are preselected. Then, define S � [Sx ,
Sy , Sz].
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Theorem 1 When the sliding manifold satisfies S � 0, state
vectors X1 and X2 converge to the origin in fixed time, and
the upper bound for the convergence time for each pair of
their elements is
Tsi � 1

k1i (a1i − 1)
+

1

k2i (1 − a2i )
, i � x , y, z,

where k1i � k1i , k2i � ((2a2i − 1)/k2i a2i )a2i /(2a2i−1),a1i �
a1i and a2i � a1i a2i/(2a2i − 1).

Proof As Ẋ1 � X2, when S � 0, Eq. (20) can be trans-
formed into

ẋ1i � −k1i sign
a1i x1i − k2i sign

a2i x1i , i � x , y, z, (21)

By Lemma 1, we can obtain that the upper bound of the
convergence time for each x1i equals Tsi . Then, as x1i is
stable and constant, the state x2i also converges to the origin
correspondingly.

To drive the sliding manifold S to the origin in finite time
while resisting disturbance�D in the meantime, an adaptive
continuous control law is presented as

(22)

ui � −Fi − k1i a1i |x1i |a1i−1
(

φi

k1i
+ x2i

)

− k3i sign
c1 (Si ) − k4i sign

c2 (Si ) + vi ,

v̇i � −rivi − kdi sign(χi ), i � x , y, z, (23)

with

(24)

φi � 1

k2i
sign1/a2i (x2i + k1i sign

a1i x1i )

+
k1i a2i

2a2i − 1
(x2i + k1i sign

a1i x1i ),

and adaptive gain kdi chosen as

k̇di �
{
l0i

(|Si |m1i + |Si |m2i
)
, |Si | > ε0

0, |Si | ≤ ε0
(25)

whereχi � vi+�Di ; k3i , k4i , ri , l0i , γ0 and ε0 are preselected
positive parameters; parameters c1, c2, m1i , m2i are chosen
as 0 < c1 < 1, c2 > 1, 0 < m1i < 1, m2i > 1. We can note
that, according to Eq. (23), sign(χi ) is required to implement
the control law. How to obtain sign(χi ) is explained Remark
3.

Theorem2 Consider the dynamic systemof Eqs. (7) and (8),
where the disturbance vector �D satisfies Assumption 1. If
the controller is designed as in (22) to (25), then there exists
a finite time in which the state vectors X1 and X2 converge
to the origin.

Proof In the following proof, subscript i is used to represent
the three different channels x , y and z. Define a Lyapunov
function

V0 � 1

2
ST S. (26)

By differentiating function V0 and taking into account the
control U in (22), we obtain

V̇0 �
∑

i�x , y, z

Si
(
a1i |x1i |a1i−1x2i + ψi (ẋ2i + a1i k1i |x1i |a1i−1x2i )

)

�
∑

i�x , y, z

Si (a1i |x1i |a1i−1x2i

+ ψi (Fi + ui + �Di + a1i k1i |x1i |a1i−1x2i ))

�
∑

i�x , y, z

Si (a1i |x1i |a1i−1x2i + ψi (−a1i |x1i |a1i−1φi

− k3i sign
c1 (Si ) − k4i sign

c2 (Si ) + vi + �Di )), (27)

where ψi � k2i |x2i + k1i signa1i x1i |1−1/a2i . Since, with
regard to Eq. (24), there exists relation

ψiφi � x2i + k1i Si , (28)

we further obtain

V̇0 �
∑

i�x , y, z

Si
(
−k1i a1i |x1i |a1i−1Si + ψi (−k3i sign

c1i (Si )

−k4i sign
c2i (Si ) + vi + �Di )

)

≤
∑

i�x , y, z

(
−k1i a1i |x1i |a1i−1S2i + ψi (−k3i |Si |c1i

−k4i |Si |c2i ) + Siψiχi
)
. (29)

We can notice that, as ψi ≥ 0, the terms in (29) are all
negative except for Siψiχi . Now, prove that there exists a
value of kdi for which χi converges to the origin in finite
time. In view of Eq. (23), the derivative of χi is

dχi

dt
� −kdi sign(χi ) − rivi + �Ḋi . (30)

Consider a Lyapunov function candidate Vχi � χ2
i

/
2.

Combining with (30), we obtain the derivative of Vχi :

V̇χi � −kdi |χi | − riviχi + �Ḋiχi

≤ −kdi |χi | − riχ
2
i +

∣∣ri�Di + �Ḋi
∣∣|χi |

≤ −kdi |χi | − riχ
2
i + (ri L1 + L2)|χi |.

(31)

If kdi satisfies the condition

kdi > ri L1 + L2 + εi , (32)
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where εi is a predefined positive constant, Eq. (31) can be
rewritten as

V̇χi ≤ −εi
√
Vχi − ri Vχi , (33)

Thus, according to Lemma 1, Vχi converges to the ori-
gin in finite time, which further establishes the finite-time
convergence of χi .

In addition, since a2i > 1, ψi is nonsingular. If both X1

and X2 are bounded, then Si andψi are also bounded. There-
fore, the convergence of Siψiχi to 0 in finite time can be
concluded. Then, since (c1 + 1)/2 < 1 and (c2 + 1)/2 > 1,
in view of Lemma 4, we obtain

V̇0 ≤
∑

i�x , y, z

(
−k2i a1i |x1i |a1i−1S2i + ψi (−k3i |Si |c1+1 − k4i |Si |c2+1)

)

≤
∑

i�x , y, z

ψi

(
−k3i

(
|Si |2

)(c1+1)/2 − k4i
(
|Si |2

)(c2+1)/2)

≤ −2(c1+1)/2 min
i�x , y, z

(ψi k3i )V
(c1+1)/2
0 − 3(1−c22)/4 2(c2+1)/2

min
i�x , y, z

(ψi k4i )V
(c2+1)/2
0 . (34)

For the convenience of discussing the state of ψi , define
two groups of areas �1i and �2i

�1i � {ψi ≥ 1}, i � x , y, z,

�2i � {ψi < 1}, i � x , y, z,
(35)

and κi � x2i + k1i signa1i x1i .
Case 1: When the states are all in the first group of areas

�1i (i � x , y, z), it can be shown that

(36)

V̇0 ≤ − 2(c1+1)/2 min
i�x , y, z

(k3i )
︸ ︷︷ ︸

Ka

V (c1+1)/2
0

− 3(1−c22)/4 2(c2+1)/2 min
i�x , y, z

(k4i )
︸ ︷︷ ︸

Kb

V (c2+1)/2
0 .

As Ka > 0 and Kb > 0, according to Lemma 1 and
Theorem 1, states X1 and X2 can be driven to the origin in
finite time.

Case2: If the states are not all in thegroupof areas�1i (i �
x , y, z), i.e., at least some states are in the second group of
areas �2i , there is a possibility that κi � 0. Here, it will be
proved that the curve κi � 0 is not attractive unless Si � 0.
Supposing that κi � 0, then the derivative of κi is

κ̇i � −k3i sign
c1 (Si ) − k4i sign

c2 (Si ) + χi . (37)

As it has been shown that χi converges to 0 in finite time,
κ̇i > 0 when Si < 0 and κ̇i < 0 when Si > 0. Hence,

the states pass through �2i and reach �1i in finite time. As
a result, the states converge to the origin in finite time no
matter which areas the states are in.

The above proof was achieved under the premises that
inequality (32) is satisfied and states X1 and X2 are bounded.
Note that kdi is supposed to increase in accordance with
Eq. (25) if (32) is not satisfied and, consequently, the sliding
manifold does not converge to the origin. Therefore, condi-
tion (32) must be met in finite time. Thus, the divergence
time for the states is also finite and the states X1 and X2 are
bounded. In addition, since the slidingmode converges to the
origin in finite time, adaptive gain kdi is also bounded.

The proof of theorem 2 further leads to the conclusion that
with the controller designed as in (22)–(25), the angle vector

 tracks the guidance command 
re f in finite time in the
presence of disturbances, uncertainties and actuator faults as
described in (3) and (6).

Remark 3 In view of the control law in (23), χi is not
obtainable due to the unknown disturbance�Di . Taking into
account the control ui in (22), Ṡi is obtained as

(38)

Ṡi � −k2i a1i |x1i |a1i−1 Si

+ ψi (−k3i sign
c1i (Si ) − k4i sign

c2i (Si ) + χi ).

Since the curve κi � 0 is not an attractor except when
Si � 0, there is ψi > 0 almost all the time before the slid-
ing manifold converges. Hence, resorting to the time delay
method, sign(χi ) can be achieved as follows [27]. Integrate
both sides of (38) and define

g(t) �
∫ t

0
(ψiχi )dτ

� Si +
∫ t

0

(
k2i a1i |x1i |a1i−1Si + ψi

×(
k3i sign

c1i (Si ) + k4i sign
c2i (Si )

))
dτ . (39)

There is ψiχi � lim
τ→0

(g(t) − g(t − τ ))/τ , which further

leads to

sign(χi ) � sign(g(t) − g(t − τ )), (40)

where τ is a short time delay.

Remark 4 According to the definition of kdi in (25),
when |Si | > ε0, kdi increases until condition (32) is sat-
isfied before the system states start to converge to the
origin. With Eqs. (25) and (32), it can be deduced that
the time interval of this process is finite and bounded by
(ri L1 + L2 + εi )

/(
l0i |ε0|m1i + l0i |ε0|m2i

)
.

Remark 5 Note that in Eq. (27), V̇0 is an implicit function for
control law ui . Therefore, many higher order sliding mode
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Fig. 1 Comparison of angle of attack, sideslip angle and bank angle
between NFTSMC and proposed controller

control strategies, such as the super-twisting algorithm, can-
not be directly applied here. Although an attempt was made
to combine a super-twisting control law with the NFTSMC
in reference [34], there was no strict stability proof given and
the system may not be stable under certain conditions [35].
The adaptive A2-NFTSMC strategy proposed in this paper
represents a second-order sliding mode control law. It is an
augmentation of the discontinuous version of the NFTSMC
in [19]. Compared with the discontinuous one, the chattering
is reduced, while the controller precision and robustness is
guaranteed at the same time. As the gain kdi is adaptive, there
is no need to know the upper bound of the disturbance. In
addition, an accelerating term −rivi is injected in (23) and
the convergence speed is increased.

Remark 6 Another benefit of the proposed adaptive second-
order structure of ui in (22) is its insensitivity to the change of
the magnitude of the disturbance as long as the initial values
of vi are set to 0. The reason for this is that vi tracks −�Di

rather fast without causing a large overshoot. However, for
the traditional NFTSMC, a slight increase of the magnitude
of the discontinuous term is amplified by the unique structure

Fig. 2 Comparison of convergence of X2 between NFTSMC and pro-
posed controller

of NFTSMC, which further gives rise to a large overshoot (to
be shown in the simulations below).

Remark 7 The design of this control strategy is partly moti-
vated by reference [27]. Compared with the sliding manifold
applied in [27], the sliding manifold selected in this paper
(NFTSM) has advantageous features. The design of the
control law in [27] is based on a sliding manifold with homo-
geneous property [23]. Although it was proven to be finite
time convergent, the convergence time is hard to calculate.
Meanwhile, comparedwith theNFTSM, not only has it faster
converging speed than the other one and its convergence time
is fixed instead of being only finite, but also its convergence
time is easy to obtain according to Lemma 1.

4 Simulation

In this section, the results of two simulation tests are pre-
sented to demonstrate the performance of the proposed
controller. In the first test, the traditional NFTSMC method
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Fig. 3 Comparison of control torque between NFTSMC and proposed
controller

in [19] is compared with the proposed one. The simulation
test is similar to the ones described in [4, 36].

The parameters of the RLV in the test are as follows.
The moments of inertia are Jxx � 588791kg · m2, Jxz �
24242kg ·m2, Jyy � 1303212kg ·m2 and Jzz � 1534164kg ·
m2. The system is subjected to the initial conditions α(0) �
32◦, β(0) � 2◦, σ (0) � 58◦, and p(0) � q(0) � r (0) �
0◦/s. The guidance commands are set as αre f � 30◦,
βre f � 0◦ and σre f � 60◦.

The external disturbance �M is set as

�M �
⎡
⎢⎣
1 + sin(t)

1 + sin(t)

1 + sin(t)

⎤
⎥⎦ × 105N .m, (41)

and the actuator faults are given as

Fδ � 1

2
×

⎡
⎢⎣
1 + sin(0.4t)

1 + sin(0.4t)

1 + sin(0.4t)

⎤
⎥⎦ × 105N .m, (42)

�x �
{
1,

0.75 + 0.1sin(0.5t + π/3)
, (43)

Fig. 4 Comparison of angle of attack, sideslip angle and bank angle
between FESOB–NSFTSMC and proposed controller

�y �
{
1,

0.5 + 0.1sin(0.5t + 2π/3)
, (44)

�z �
{
1,

0.6 + 0.1sin(0.5t + π )
. (45)

In the simulation, fault � is exerted at 6 s and bias fault
Fδ is introduced at 9 s. The unmatched disturbance� f in (3)
is assumed to be 0 in the first test, so that no estimation of
state X2 is needed. The parameters for the sliding manifold
are set as k1 � [1.1, 1.1, 1.1], k2 � [4, 4, 4], a1 � [1.1,
1.1, 1.1], a2 � [3, 3, 3]. For the A2-NFTSMC scheme in
(22)–(25), the parameters are set as k3 � [1.2, 1.2, 1.2],
k4 � [1.2, 1.2, 1.2], c1 � 0.5, c2 � 1.2, r � [1, 1, 1],
l0 � [30, 30, 30], m1 � [0.6, 0.6, 0.6], m1 � [1.2, 1.2,
1.2], and τ in (40) is chosen as the simulation sample step.

For the NFTSMC, the controller is expressed as

(46)

ui � −Fi − k1i a1i |x1i |a1i−1
(

φi

k1i
+ x2i

)

− k3i sign
c1 (Si ) − k4i sign

c2 (Si ) + k5i sign(Si ),
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Fig. 5 Comparison of angle of attack, sideslip angle and bank angle
between FESOB–NSFTSMC and proposed controller (zoomed)

with k5 � [1, 1, 1] and the other parameters are the same
as for the A2-NFTSMC. We notice that the NFTSMC is dis-
continuous and, to set the values of parameters k5, the upper
bounds of �Di must be known in advance. Since using the
sign function in (46) can give rise to unacceptably large chat-
tering, the sign function sign(Si ) is often substituted by the
function:

�i � eρSi − 1

eρSi + 1
, ρ > 0, i � x , y, z. (47)

In this test, ρ is chosen as 1000. The results of simulation
test1 are demonstrated in Figs. 1, 2 and 3. As shown in Fig. 1,
both controllers enforce the attitude angles to track the com-
mand in finite time. However, the tracking precision of the
proposed controller is much superior to that of the NFTSMC,
which indicates that the proposed controller exhibits better
robustness. In addition, the proposed controller is much less
influenced by the actuator faults introduced at 6 s and 9 s,
respectively. This also can be observed in Fig. 2, where the
controllers drive the state vector X2 to the origin. The reason
for the difference between the performances of the proposed
controller and the NFTSMC is that there has to be a tradeoff

Fig. 6 Comparison of convergence of X2 between FESOB–NSFTSMC
and proposed controller

between the control accuracy and the chattering reduction
for the parameter selection of the NFTSMC. In contrast, for
the proposed controller, as it represents a higher order con-
trol strategy and it is inherently continuous, both chattering
reduction and control precision can be guaranteed simulta-
neously. It can also be observed in Fig. 3 that the proposed
control strategy does not produce a very large control torque
magnitude at the initial phase as the NFTSMC does. The
initial output value of the traditional NFTSMC is sensitive
to changes of k5i , i.e., a small rise of the value of k5i can
lead to a large increase of the control torque value. The pro-
posed controller eliminates this sensitivity. This feature is
very beneficial in real applications when the magnitude of
the controller output signal should not surpass the controller’s
saturation value.

Up to now, the discussion was based on the situation when
the state vector X2 is obtainable. This is not practical in real
applications as 
̇ contains anunknownpart� f . In the second
simulation test, � f is taken into account:
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Fig. 7 Comparison of convergence of X2 between FESOB–NSFTSMC
and proposed controller (zoomed)

� f �
⎡
⎢⎣

− sin(t + 0.57)

− sin(t + 0.57)

− sin(t + 0.57)

⎤
⎥⎦N · m. (48)

Thefixed-time extended state observer based non-singular
fast terminal sliding mode controller (FESOB–NSFTSMC)
in reference [31] is implemented for comparison purposes.
The observer and controller of the FESOB–NSFTSMC can
be expressed as

Ż1 � Z2 + eη+bυ signα1 (X1 − Z1)

+ eη+b(1 − υ )signβ1 (X1 − Z1),

Ż2 � Z3 + e2η+bυ signα2 (X1 − Z1)

+ e2η+b(1 − υ )signβ2 (X1 − Z1) +U ,

Ż3 � e3η+bυ signα3 (X1 − Z1) + e3η+b(1 − υ )

signβ3 (X1 − Z1) + ϒsign(X1 − Z1), (49)

υ �
{
0, if t < Tu

1, if t > Tu
, (50)

and

(51)

ui � −Fi − k1i a1i |x1i |a1i−1
(

φi

k1i
+ z2i

)
− k3i sign

c1 (Si )

− k4i sign
c2 (Si ) − z3i , i � x , y, z,

where Z1 � [z1x , z1y , z1z], Z2 � [z2x , z2y , z2z], Z3 � [z3x ,
z3y , z3z], Tu � 0.1, α1 � 0.8, β1 � 1.8, η � 1.5,
b � 1.4 and ϒ � 1. φi and Si have the same form and
parameters as in (20) and (24), only with the element x2i sub-
stituted by z2i . It is worth noting that, although knowledge
of the disturbance bounds is not required for the controller
as stated in reference [31], the upper bounds must indeed
be known in advance for the design of parameter ϒ in
the observer. Therefore, the FESOB–NSFTSMC strategy
still does not avoid the necessity to learn the disturbance
bounds.

For the proposed controller, the parameters are selected
as the same as in test 1. Instead of using state or disturbance
observers, a time-delay estimation (TDE) scheme is applied
to estimate X2. The benefit of the TDE is its simplicity and
straight-forwardness in applications [41, 42]. Here, the TDE
scheme is designed as follows.

Integrating both sides of equation 
̇ � Rω + � f yields

h(t) �
∫ t

0
� f dτ � 
 − 
(0) −

∫ t

0
Rωdτ . (52)

The estimation of � f , � f̂ , then can be calculated as

� f̂ � (h(t) − h(t − τ0))/τ0, (53)

where τ0 is a short time delay that is chosen as the simulation
sample step. The estimation of X2 is further deduced as

X̂2 � Rω − 
̇re f + � f̂ . (54)

The results of simulation test 2 can be found in Figs. 4,
5, 6, 7 and 8. From Fig. 4, we can see that both controllers
have similar fault tolerances and the convergence times of
the angles are the same. However, Fig. 5 (the zoomed ver-
sion of Fig. 4) further illustrates that the proposed controller
causes better tracking precision. From Figs. 6 and 7, it is
obvious that the proposed controller does not cause large
oscillations in the initial stage as the FESOB–NSFTSMC
does. Furthermore, it does not cause as much chattering as
the latter during the stable phase. The superiority of the
proposed controller over the FESOB–NSFTSMC can also
be observed from Fig. 8. The control torque of the FES-
OB–NSFTSMC suffers large oscillations during the initial
stage compared with the proposed controller. Although the
FESOB–NSFTSMC is also a continuous controller, there has
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Fig. 8 Comparison of control torque between FESOB–NSFTSMC and
proposed controller

to be an observer to estimate the disturbance �D. In con-
trast, the adaptive strategy of the proposed method enables
the controller to dominate the disturbances without requiring
additional control effort.

5 Conclusions

In this paper, anA2-NFTSMCis proposed as the fault tolerant
attitude control scheme for RLVs during their reentry phase.
The proposed controller is established based on theNFTSMC
which exhibits a fast/fixed-time convergence. By resorting to
an adaptive second-order sliding mode control strategy, the
traditional discontinuous term of the NFTSMC is avoided
and the chattering is reduced, while the robustness of the
controller is increased. The upper bounds of the disturbances
are no longer needed to be known in advance. Moreover,
the newly proposed NFTSMC output value is no longer
sensitive to changes of the magnitude of the disturbance
as the traditional NFTSMC. Simulation results demonstrate
that, compared with the existing NFTSMCbased controllers,
the proposed one has better robustness and causes less
chattering, while its control structure is kept simple and
concise.
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