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Abstract
In this paper, a novel adaptive fast nonsingular terminal sliding mode (FNTSM) control approach is proposed for the robust 
adaptive finite-time prescribed performance attitude tracking control of spacecraft subject to inertia uncertainties, external 
disturbances, and input saturation. First, a simple error transformation is introduced to guarantee the attitude tracking errors 
always stay within the predefined performance bounds. Then, a FNTSM surface is presented based on the transformed atti-
tude tracking errors. Finally, an adaptive FNTSM controller is designed by using the adaptive updating law to estimate the 
square of the norm of the lumped uncertain term. Rigorous theoretical analysis for the practical finite-time stability of the 
resulting closed-loop system is provided. The proposed adaptive FNTSM controller can guarantee the attitude tracking errors 
converge to the arbitrarily small region about zero in finite time within the predefined performance bounds. Benefiting from 
the adaptive estimation technique, the proposed adaptive FNTSM controller is continuous and the unexpected chattering 
phenomenon is significantly reduced. Moreover, the prior knowledge on the upper bound of the lumped uncertain term is 
no longer needed in the control design. Simulation experiments illustrate the effectiveness and superiority of the proposed 
control approach.

Keywords Attitude tracking control · Finite-time control · Prescribed performance control · Robust adaptive control · Fast 
nonsingular terminal sliding mode control · Practical finite-time stability

1 Introduction

Attitude control of spacecraft is a fundamental problem in 
aerospace engineering owing to its broad applications in a 
large range of space missions, such as rendezvous and dock-
ing, formation flying, satellite surveillance, and deep space 
exploration. Nowadays, modern spacecrafts are expected 
to have the rapid, accurate, and global response capability 
to various maneuvering command signals. Nonetheless, 
the attitude kinematics and dynamics of the spacecraft are 
strongly coupled, highly nonlinear, and inevitably affected 
by inertia uncertainties, external disturbances, and input sat-
uration. The existence of these issues makes the spacecraft 
attitude control system design quite complicated and chal-
lenging. Consequently, many advanced control techniques 
have been developed for the spacecraft attitude control, such 

as proportional-derivative (PD) control [1–5], adaptive con-
trol [6–8], sliding mode control [9–13], backstepping control 
[14–16], and iterative learning control [17, 18].

For some specific space missions, it is more desirable 
for the spacecraft to accomplish the attitude tracking task in 
a given time. For instance, the agile attitude adjustment is 
highly required for a microsatellite to track a moving space 
target. With this regard, finite-time control has been widely 
utilized for spacecraft attitude control during the last dec-
ade. Compared with the asymptotic control, the finite-time 
control can guarantee the attitude and angular velocity track-
ing errors converge to zero or small region about zero in 
finite time. More attractively, the finite-time control also has 
some nice features, such as faster convergence rate, higher 
control accuracy, and better disturbance rejection property 
[19, 20]. The finite-time attitude control methods can be 
roughly classified into three types, i.e., the homogeneous 
method [21–23], the adding a power integrator technique 
[24–27], and the terminal sliding mode (TSM) control 
[28–37]. Owing to its strong robustness against inertia 
uncertainties and external disturbances, the TSM control is 
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the most commonly used among these three types of finite-
time attitude control methods. In [28], a conventional TSM 
(CTSM) control technique was designed for spacecraft atti-
tude tracking with finite-time convergence. Nonetheless, 
the CTSM control has two major disadvantages. The first 
weakness is the singularity problem that the infinite control 
effects are required if the system states are expected to be 
exactly stabilized to the equilibrium points. Fortunately, sev-
eral improved TSM control methods have been developed to 
overcome this drawback, such as nonsingular TSM (NTSM) 
control [29, 30] and fast NTSM (FNTSM) control [31–37]. 
The second weakness is the chattering phenomenon due to 
its discontinuous design. By using the adaptive estimation 
term to replace the robust switching term in the TSM con-
trol, the adaptive control approach can significantly reduce 
the unexpected chattering phenomenon without increasing 
the structural complexity of the controller.

To meet the development demands of autonomy and intel-
ligence for future space activities, prescribed performance 
control has received considerable attention in the field of 
spacecraft attitude control over recent years. The prescribed 
performance control was first proposed in [38]. It can guar-
antee both the transient and steady-state performances of 
the attitude tracking errors that converge within the prede-
fined performance bounds. The main idea of the prescribed 
performance control is imposing the performance functions 
predefined by the users on the attitude tracking errors and 
then transforming the constrained control system into a 
constraint-free one through a simple error transformation. 
Up till now, some relevant results have been reported for 
the prescribed performance attitude control of spacecraft. In 
[39, 40], non-adaptive and adaptive observer-based attitude 
tracking controllers were proposed for fully actuated space-
craft with guaranteed performance bounds on attitude and 
angular velocity tracking errors. The measurement errors 
were also considered therein. In [41], an adaptive fault-toler-
ant attitude controller was designed for spacecraft with tran-
sient response performance based on the variable structure 
control. In [42], an adaptive fault-tolerant attitude tracking 
controller was developed for spacecraft with prescribed per-
formance guarantees by incorporating the barrier Lyapunov 
function and Nussbaum gains with backstepping control. In 
[43], the prescribed performance attitude tracking control 
and active vibration suppression of flexible spacecraft were 
addressed through an adaptive sliding mode controller, a 
modal observer, and an active controller. In [44], a robust 
fault-tolerant controller was presented for the attitude track-
ing of spacecraft with a guaranteed prescribed performance 
by using a low-pass filter and an auxiliary system in conjunc-
tion with adaptive backstepping design. In [45], an event-
triggered adaptive fault-tolerant attitude control scheme was 
proposed for spacecraft with prescribed performance within 
the framework of the backstepping method.

Motivated by the aforementioned discussions, finite-time 
control, and prescribed performance control are two impor-
tant research topics in the field of spacecraft attitude control. 
In this paper, a novel adaptive FNTSM control approach is 
proposed for the robust adaptive finite-time prescribed per-
formance attitude tracking control of spacecraft subject to 
inertia uncertainties, external disturbances, and input satura-
tion. To the best of the authors’ knowledge, until recently, 
there have been really limited existing studies focused on the 
attitude tracking control of spacecraft with the considera-
tion of finite-time convergence and prescribed performance 
simultaneously. The contributions of this work are briefly 
outlined as follows.

• The first novelty lies in the explicit design of the pro-
posed adaptive FNTSM control approach. First, a simple 
error transformation is introduced to guarantee the atti-
tude tracking errors always stay within the predefined 
performance bounds. Then, a FNTSM surface is pre-
sented based on the transformed attitude tracking errors. 
Finally, an adaptive FNTSM controller is designed by 
using the adaptive updating law to estimate the square of 
the norm of the lumped uncertain term. Rigorous theo-
retical analysis for the practical finite-time stability of the 
resulting closed-loop system is provided.

• The second novelty lies in the superior control per-
formance of the proposed adaptive FNTSM control 
approach. The proposed adaptive FNTSM control-
ler can guarantee the attitude tracking errors converge 
to the arbitrarily small region about zero in finite time 
within the predefined performance bounds. Benefiting 
from the adaptive estimation technique, the proposed 
adaptive FNTSM controller is continuous and the unex-
pected chattering phenomenon is significantly reduced. 
Moreover, the prior knowledge on the upper bound of the 
lumped uncertain term is no longer needed in the control 
design.

The organization of this article is as follows. In Sect. 2, 
problem formulation and some preliminaries are presented. 
In Sect. 3, the adaptive FNTSM controller is designed and 
a rigorous theoretical analysis is provided. In Sect. 4, simu-
lation experiments are performed to validate the proposed 
controller. Lastly, the main conclusions and future work are 
addressed in Sect. 5.

Notations. Throughout this paper, In denotes the 
n × n identity matrix. 0n denotes the n × 1 column vec-
tor with all elements being 0. ln (⋅) denotes the natural 
logarithm of a real number. sgn(⋅) denotes the signum 
function of a real number. |⋅| denotes the absolute value 
of a real number. ‖⋅‖ denotes the Euclidean norm of a 
vector or the induced norm of a matrix. (⋅)× denotes 
the 3 × 3 skew-symmetric matrix of a vector. For given 
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column vectors � ∈ ℝ
3 and � ∈ ℝ

3 , �×� = � × � . For 
given a vector � =

[
x1, x2,… , xn

]T and a scalar p , 
sigp(�) =

[||x1||psgn
(
x1
)
, ||x2||psgn

(
x2
)
,… , ||xn||psgn

(
xn
)]T.

2  Problem Formulation and Preliminaries

2.1  Spacecraft Attitude Kinematics and Dynamics

The spacecraft is modeled as a fully actuated rigid body 
with inertia uncertainties and external disturbances. Three 
coordinate frames are adopted to represent the attitude ori-
entation of the spacecraft, i.e., the inertial frame, the body 
frame, and the desired frame. Then, the attitude kinematics 
and dynamics of the spacecraft can be expressed as

where � =
[
�T
v
, q4

]T denotes the orientation of the body 
frame with respect to the inertial frame, in which �v ∈ ℝ

3 
and q4 are the vector and scalar components of the unit qua-
ternion with �T

v
�v + q2

4
= 1 . � ∈ ℝ

3 denotes the angular 
velocity of the spacecraft with respect to the inertial frame 
and expressed in the body frame. �(�) = 1

2

(
q4�3 + �×

v

)
 is 

the Jacobian matrix. � = �0 + Δ� denotes the actual inertia 
matrix of the spacecraft, in which �0 ∈ ℝ

3×3 denotes the 
nominal inertia matrix of the spacecraft and Δ� ∈ ℝ

3×3 is 
the deviation between the actual and nominal inertia matri-
ces. Note that only �0 is available for the control design. 
� ∈ ℝ

3 denotes the control torques produced by the actua-
tors. � ∈ ℝ

3 denotes the external disturbances acted on the 
spacecraft.

Let �d and �d be the desired attitude and angular veloc-
ity of the spacecraft, Then, the attitude and angular velocity 
tracking errors can be defined as

w h e r e  �T
dv
�dv + q2

d4
= 1  a n d  �T

ev
�ev + q2

e4
= 1  . 

� =
(
q2
e4
− �T

ev
�ev

)
�3 + 2�ev�

T
ev
− 2qe4�

×
ev

 is the rotation 
matrix from the desired frame to the body frame with the 
properties ‖�‖ = 1 and �̇ = −�×

e
� . Then, the attitude error 

(1)

⎧⎪⎨⎪⎩

�̇v = �(�)�,

q̇4 = −
1

2
�T
v
�,

(2)𝐉�̇� = −𝛚×𝐉𝛚 + 𝛕 + 𝐝,

(3)

{
�ev = qd4�v − �×

dv
− q4�dv,

qe4 = �T
dv
�v + qd4q4,

(4)�e = � − ��d,

kinematics and dynamics of the spacecraft can be expressed 
as

When considering the input saturation, the control tor-
ques acted on the spacecraft can be expressed as

where �c ∈ ℝ
3 denotes the command control inputs 

of the spacecraft. The saturation function is defined 
as  sat

(
�c
)
=
[
sat

(
�c1

)
, sat

(
�c2

)
, sat

(
�c3

)]T  ,  in  which 
sat

(
�ci
)
= sgn

(
�ci
)
⋅min

{||�ci||, �m
}
 and �m denotes the maxi-

mum allowable value of the control inputs. Then, the satura-
tion function can be rewritten as

where �
(
�c
)
= diag

[
Θ
(
�c1

)
,Θ

(
�c2

)
,Θ

(
�c3

)]
∈ ℝ

3×3 with 
its element Θ

(
�ci
)
 defined as

Substituting Eqs. (7) and (8) into Eq. (6) yields

2.2  Control Objective

The control objective of this paper is to design a robust adap-
tive finite-time prescribed performance control law such that 
the attitude tracking errors can converge to the small region 
about zero in finite time within the following predefined per-
formance bounds:

where �i(t) =
(
qevi,0 − qevi,∞

)
exp

(
−�it

)
+ qevi,∞ is the 

performance function predefined by the users, qevi,∞ is the 
maximum allowable steady-state tracking error of qevi with 
qevi,∞ > qevi,0 > 0 , and �i is the convergence rate of �i(t) . 
The initial attitude tracking errors satisfy the condition 
−�i(0) ≤ qevi(0) ≤ �i(0) , i = 1, 2, 3.

(5)

⎧
⎪⎨⎪⎩

�̇ev = �
�
�e
�
�e,

q̇e4 = −
1

2
�T
ev
�e,

(6)𝐉�̇�e = −𝛚×𝐉𝛚 + 𝐉
(
𝛚×

e
𝐂𝛚d − 𝐂�̇�d

)
+ 𝛕 + 𝐝.

(7)� = sat
(
�c
)
,

(8)sat
(
�c
)
= �

(
�c
)
�c,

(9)Θ
(
�ci
)
=

{
1, ||�ci|| ≤ �m,

sgn
(
�ci
)
�m
/
�ci, otherwise.

(10)𝐉�̇�e = −𝛚×𝐉𝛚 + 𝐉
(
𝛚×

e
𝐂𝛚d − 𝐂�̇�d

)
+𝚯

(
𝛕c
)
𝛕c + 𝐝.

(11)−�i(t) ≤ qevi(t) ≤ �i(t), i = 1, 2, 3,
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2.3  Useful Lemma

Furthermore, a technical lemma is presented below in the 
sequel will be used in the following stability analysis of the 
proposed control design.

Lemma 1 [46] Consider the nonlinear system:

where � =
[
x1, x2,… , xn

]T
∈ ℝ

n is the state vector, and 
�(�) =

[
f1(�), f2(�),… , fn(�)

]T
∶ ℝ

n
→ ℝ

n is a continuous 
vector field. Suppose there exists a positive definite function 
V(�) satisfying V̇(�) + 𝜅1V(�) + 𝜅2V

𝛾 (�) ≤ 𝛿 , where 𝜅1 > 0 , 
𝜅2 > 0 , 0 < 𝛾 < 1 , and 𝛿 > 0 is bounded, then the system 
(12) is practically finite-time stable. The system states can 
converge to the small region about zero � ∈

(
V(�) ≤

�

(1−�)�1

)
 

wi th in  the  f in i te  set t l ing  t ime T  sa t i s fy ing 
T ≤

1

��1(1−�)
ln

��1V
1−� (�(0))+�2

�2
 , where 0 < 𝜀 < 1.

3  Main Results

The main results of this paper are presented in this sec-
tion. First, a simple error transformation is introduced to 
guarantee the attitude tracking errors always stay within the 
predefined performance bounds. Then, a FNTSM surface is 
presented based on the transformed attitude tracking errors. 
Finally, an adaptive FNTSM controller is designed by using 
the adaptive updating law to estimate the square of the norm 
of the lumped uncertain term. The practical finite-time sta-
bility of the resulting closed-loop system is theoretically 
proved.

3.1  Simple Error Transformation

Introduce the transformed attitude tracking errors 
� =

[
e1, e2, e3

]T with its element defined as

Taking the first-order and second-order time derivatives 
of ei yields

(12)�̇ = � (�), �(0) = 0, � (0) = 0, � ∈ ℝ
n,

(13)ei = ln
�i + qevi

�i − qevi
, i = 1, 2, 3.

(14)ėi =
1

2

(
�̇�i + q̇evi

𝜇i + qevi
−

�̇�i − q̇evi

𝜇i − qevi

)
,

Define �1 =
[
B11,B12,B13

]T , �2 =
[
B21,B22,B23

]T , and 
�3 = diag

[
B31,B32,B33

]
 w i t h  B1i =

�̈�i(𝜇i+qevi)−(�̇�i+q̇evi)
2

2(𝜇i+qevi)
2  , 

B2i = −
�̈�i(𝜇i−qevi)−(�̇�i−q̇evi)

2

2(𝜇i−qevi)
2  , and B3i =

1

2(�i+qevi)
+

1

2(�i−qevi)
 . 

Then, Eq. (15) can be rewritten into the following vector 
form:

According to Eq. (10), �̈�ev in Eq. (16) can be expressed as

Proposition 1 The transformed attitude tracking errors (13) 
can be used to guarantee the attitude tracking errors �ev 
converge within the predefined performance bounds (11).

Proof Consider the following state variable transformation 
[38]:

where the state transformation function T
(
ei
)
 is defined as

It can be verified that the state transformation (19) satis-
fies the following properties. T

(
ei
)
 is both lower and upper 

bounded with −𝜇i < T
(
ei
)
< 𝜇i . T

(
ei
)
 is monotone increas-

ing with limei→−∞ T
(
ei
)
= −�i , limei→+∞ T

(
ei
)
= �i , and 

limei→0 T
(
ei
)
= 0 . T

(
ei
)
 is differentiable and its time deriva-

tive is bounded. From these properties, it follows that T
(
ei
)
 

is invertible and its inverse ei = T−1
(
qevi

)
 is given by Eq. 

(13) Thus, Eq. (11) always holds. The proof is completed.  
 ◻

(15)

ëi =
�̈�i

(
𝜇i + q

evi

)
−
(
�̇�i + q̇

evi

)2

2
(
𝜇i + q

evi

)2

−
�̈�i

(
𝜇i − q

evi

)
−
(
�̇�i − q̇

evi

)2

2
(
𝜇i − q

evi

)2

+

(
1

2
(
𝜇i + q

evi

) +
1

2
(
𝜇i − q

evi

)
)
q̈
evi
.

(16)�̈� = 𝐁1 + 𝐁2 + 𝐁3�̈�ev.

(17)

�̈�ev = �̇�
(
𝐪e

)
𝛚e + 𝐄

(
𝐪e

)
�̇�e

= �̇�
(
𝐪e

)
𝛚e + 𝐄

(
𝐪e

)
𝐉−1

(
−𝛚×𝐉𝛚 + 𝐉

(
𝛚×

e
𝐂𝛚d − 𝐂�̇�d

)

+𝚯
(
𝛕c
)
𝛕c + 𝐝

)
.

(18)qevi = T
(
ei
)
,

(19)T
(
ei
)
= �i

exp
(
ei
)
− exp

(
−ei

)

exp
(
ei
)
+ exp

(
−ei

) .
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3.2  FNTSM Surface Design

Based on the transformed attitude tracking errors, the 
FNTSM surface is presented as

where h1 > 0 , h2 > 0 , and �(�) =
[
�
(
e1
)
, �
(
e2
)
, �
(
e3
)]T with 

its element designed as

where � = �̇ + h1� + h2sig
𝛼(�) , 0 < 𝛼 < 1 , r1 = (2 − �)��−1 , 

r2 = (� − 1)��−2 , and � is a small positive constant. Taking 
the time derivative of � yields

where �̇(�) =
[
�̇�
(
e1
)
, �̇�
(
e2
)
, �̇�
(
e3
)]T is the time derivative of 

�(�) with its element expressed as

Substituting Eqs. (16) and (17) into Eq. (22) yields

where � denotes the nominal nonlinear term, which can be 
expressed as

� denotes the lumped uncertain term, which can be 
expressed as

Before moving forward, the following assumption is 
made.

Assumption 1 It is assumed that Δ� , � , � , and �̇ are all 
bounded during the practical applications. Accordingly, 
the lumped uncertain term � is bounded. There exists an 
unknown positive constant b such that ‖�‖2 ≤ b.

(20)� = �̇ + h1� + h2�(�),

(21)𝜁
(
ei
)
=

{
sig𝛼

(
ei
)
, if si = 0 or si ≠ 0, ||ei|| > 𝜙,

r1ei + r2sig
2
(
ei
)
, if si ≠ 0, ||ei|| ≤ 𝜙,

(22)�̇� = �̈� + h1�̇� + h2�̇�(𝐞),

(23)�̇�
(
ei
)
=

{
𝛼||ei||𝛼−1ėi, if si = 0 or si ≠ 0, ||ei|| > 𝜙,

r1ėi + 2r2
||ei||ėi, if si ≠ 0, ||ei|| ≤ 𝜙.

(24)
�̇� = 𝐁1 + 𝐁2 + 𝐁3�̈�ev + h1�̇� + h2�̇�(𝐞)

= 𝐁1 + 𝐁2 + 𝐁3

(
�̇�
(
𝐪e
)
𝛚e + 𝐄

(
𝐪e
)
𝐉−1

(
−𝛚×𝐉𝛚 + 𝐉

(
𝛚×

e
𝐂𝛚d − 𝐂�̇�d

)
+𝚯

(
𝛕c
)
𝛕c + 𝐝

))
+ h1�̇� + h2�̇�(𝐞)

= 𝐁3𝐄
(
𝐪e
)
𝐉−1
0
𝛕c + 𝐍 + 𝐋,

(25)

𝐍 = 𝐁
1
+ 𝐁

2
+ 𝐁

3

(
�̇�
(
𝐪e
)
𝛚e

+𝐄
(
𝐪e
)
𝐉−1
0

(
−𝛚×𝐉

0
𝛚 + 𝐉

0

(
𝛚×

e
𝐂𝛚d − 𝐂�̇�d

)))
+ h

1
�̇� + h

2
�̇�(𝐞).

(26)

𝐋 = 𝐁
3
𝐄
(
𝐪e
)
𝐉−1
0

(
−𝛚×Δ𝐉𝛚 + Δ𝐉

(
𝛚×

e
𝐂𝛚d − 𝐂�̇�d

)
+
(
𝚯
(
𝛕c
)
− 𝐈

3

)
𝛕c + 𝐝 − Δ𝐉�̇�e

)
.

Proposition 2 Once the FNTSM surface (20) is reached, the 
transformed attitude tracking errors � and �̇ can converge to 
zero in finite time.

Proof The detailed proof of Proposition 2 can be found in 
[31, Lemma 1] and [33, Lemma 3.3] and thus is omitted 
here.   ◻

3.3  Adaptive FNTSM Control Design

Based on the FNTSM surface, the adaptive FNTSM con-
trol law is designed as

where k1 > 0 , k2 > 0 , 0 < 𝛾 < 1 , � is a small positive con-
stant, and b̂ denotes the estimation of b , which can be deter-
mined by the following adaptive updating law:

where l1 > 0 and l2 > 0.

Theorem 1 Consider the spacecraft system (1) and (2). If 
the adaptive FNTSM control law is designed as Eq. (27) and 
the adaptive updating law is designed as Eq. (28), then the 
resulting closed-loop system is practically finite-time sta-
ble, and the attitude tracking errors �ev can converge to the 
arbitrarily small region about zero in finite time within the 
predefined performance bounds.

Proof The proof of Theorem 1 can be divided into two 
steps. In step 1, we will prove that all closed-loop error sig-
nals are bounded. In step 2, we will prove that the resulting 
closed-loop system is practically finite-time stable.

Step 1 Boundedness of all closed-loop error signals.
In step 1, we will prove that all closed-loop error signals are 

bounded. Consider the following Lyapunov function:

(27)�c = �0�
−1
(
�e
)
�−1
3

(
−k1� − k2sig

𝛾 (�) − � −
b̂�

2𝜆2

)
,

(28)̇̂
b = −l1b̂ + l2

‖�‖2
2𝜆2

,

(29)V1 =
1

2
�T� +

1

2l2
b̃2,
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where b̃ = b − b̂ denotes the estimation error of b̂ . Taking 
the time derivative of V1 and substituting Eq. (24) into it, 
we have

Substituting the adaptive FNTSM control law (27) and the 
adaptive updating law (28) into Eq. (30) yields

Note that the following inequalities always hold:

Substituting Eqs. (32) and (33) into Eq. (31) gives

where � = min
{
2k1, l1

}
 and � =

�2

2
+

l1

2l2
b2 . Multiplying 

both sides of Eq. (34) by e�t and integrating it over the time 
interval [0, t] , we have

Together with the definition of V1 , it follows that the 
closed-loop error signals � and b̃ are uniformly ultimately 
bounded. There exists an unknown positive constant b such 
that ||b̃|| ≤ b.

Step 2 Practical finite-time stability of the resulting 
closed-loop system.

In step 2, we will prove that the resulting closed-loop 
system is practically finite-time stable. Consider another 
Lyapunov function:

Taking the time derivative of V2 , we have

(30)
V̇1 = �T�̇ −

1

l2
b̃
̇̂
b

= �T
(
�3�

(
�e
)
�−1
0
�c + � + �

)
−

1

l2
b̃
̇̂
b.

(31)

V̇1 = �T
�
−k1� − k2sig

𝛾 (�) −
b̂�

2𝜆2
+ �

�
− b̃

�
−
l1

l2
b̂ +

‖�‖2
2𝜆2

�

≤ −k1‖�‖2 − k2‖�‖𝛾+1 + ‖�‖‖�‖ − b‖�‖2
2𝜆2

+
l1

l2
b̃b̂.

(32)‖�‖‖�‖ ≤
b‖�‖2
2�2

+
�2

2
,

(33)
l1

l2
b̃b̂ =

l1

l2
b̃b −

l1

l2
b̃2 ≤

l1

2l2
b2 −

l1

2l2
b̃2.

(34)
V̇1 ≤ −k1‖�‖2 − k2‖�‖𝛾+1 + 𝜆2

2
+

l1

2l2
b2 −

l1

2l2
b̃2

≤ −𝜌V1 + 𝛽,

(35)
V1(t) ≤

(
V1(0) −

�

�

)
e−�t +

�

�

≤ V1(0) +
�

�
.

(36)V2 =
1

2
�T�.

where �1 = 2k1 −
b

�2
 , �2 = 2

�+1

2 k2 , and � =
�2

2
 . To ensure 

𝜅1 > 0 , the design parameter k1 should be selected satisfy-
ing the following condition:

Thus, by Lemma 1, the resulting closed-loop system is 
practically finite-time stable and ‖�‖ will converge to the 
small region about zero which is given as

If the design parameters k1 and k1 are selected large 
enough, the small region (39) can be adjusted arbitrarily 
small. Then, by Proposition 2, the transformed attitude 
tracking errors � and �̇ can converge to the small region 
about zero in finite time. Subsequently, by Proposition 1, 
the attitude tracking errors �ev can converge to the small 
region about zero in finite time within the predefined per-
formance bounds (11). The proof is completed.   ◻

Remark 1 In the proposed adaptive FNTSM controller, 
the adaptive updating law is utilized to estimate the square 
of the norm of the lumped uncertain term. Benefiting from 
the adaptive estimation technique, the proposed adaptive 
FNTSM controller is continuous and the unexpected chat-
tering phenomenon is significantly reduced. In addition, the 
prior knowledge on the upper bound of the lumped uncertain 
term is not required in the control design.

Remark 2 To provide a guideline for the users, a universal 
control parameter selection strategy is introduced as follows. 
Step 1: determine the performance function �i(t) according 
to the requirement of the specific space missions. Step 2: 
choose appropriate h1 , h2 , � , and � in the FNTSM manifold 
(20) and k1 , k2 , � , and � in the adaptive FNTSM control law 
(27). Large k1 and k2 can lead to the fast convergence rate, 
but they can in turn result in relatively large control inputs. 
Step 3: choose l1 and l2 in the adaptive updating law (28). 
Large l1 can lead to the fast estimation of b , but it can also 

(37)

V̇2 = �T
�
−k1� − k2sig

𝛾 (�) −
b̂�

‖�‖ + �

�

≤ −k1‖�‖2 − k2‖�‖𝛾+1 + ‖�‖‖�‖ − b̂‖�‖2
2𝜆2

≤ −k1‖�‖2 − k2‖�‖𝛾+1 + b̃‖�‖2
2𝜆2

+
𝜆2

2

≤ −k1‖�‖2 − k2‖�‖𝛾+1 + b‖�‖2
2𝜆2

+
𝜆2

2

= −𝜅1V2 − 𝜅2V
𝛾+1

2

2
+ 𝛿,

(38)k1 >
b

2𝜆2
.

(39)‖�‖ ≤

�
�2

2k2

� 1

�+1

.
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result in the relatively poor updating transient response per-
formance. Therefore, the control parameters of the proposed 
controller should be carefully selected to achieve satisfactory 
tracking performance.

Remark 3 To make the readers have a clear understanding 
of the whole control design procedure, the block diagram 
of the proposed adaptive FNTSM control approach is intro-
duced in Fig. 1.

4  Simulation Experiments

In this section, simulation experiments are performed in 
MATLAB/Simulink environment to validate the proposed 
adaptive FNTSM control approach. The sampling time is 
set as Ts = 50 ms . The nominal inertia matrix of the space-
craft is chosen as

The actual inertia matrix of the spacecraft is chosen 
as � = 1.1�0 with Δ� = 0.1�0 . The initial states of the 
spacecraft are chosen as �0 = [0.3,−0.2,−0.3, 0.8832]T 
a n d  �0 = [0.06,−0.04, 0.05]T rad/s  .  T h e 
desired attitude of the spacecraft is chosen as 
�d = [0, 0, 0, 1]T  and �0 = [0, 0, 0]T rad/s .  The exter-
nal disturbances acted on the spacecraft are chosen as 
� = 0.01[sin (0.6t), 2 cos (0.4t), 3 sin (0.2t)]T Nm  .  T h e 
maximum allowable value of the control inputs is set 
as �m = 3 Nm . The performance function is chosen as 
�i(t) = (0.5 − 0.005) exp (−0.2t) + 0.001 with qevi,0 = 0.5 , 
qevi,∞ = 0.001 , and �i = 0.2 , i = 1, 2, 3.

In addition to the proposed adaptive FNTSM control-
ler, the adaptive FNTSM controller [32, Eq. (35)] are also 
carried out for competitive studies. The design param-
eters of the proposed adaptive FNTSM controller (27) 

�0 =

⎡⎢⎢⎣

10 1 1.2

1 8 0.8

1.2 0.8 12

⎤⎥⎥⎦
kg m2.

are selected as h1 = 0.05 , h2 = 0.05 , � = 3∕5 , � = 0.001 , 
k1 = 10 , k2 = 10 , � = 3∕5 , � = 0.1 , l1 = 1 , and l2 = 1 . Note 
that the design parameters are selected according to the 
control parameter selection strategy introduced in Remark 
2. Moreover, the design parameters of the compared adap-
tive FNTSM controller are selected as k1 = 0.2 , k2 = 0.2 , 
r = 3∕5 , � = 20 , �0 = 0.1 , �1 = 0.1 , p0 = 10 , and p1 = 10 . 
Note that the design parameters are defined the same 
meaning as those in [32]. For fair comparisons, the design 
parameters of both the proposed and compared controllers 
are carefully determined through trial and error such that 
the controllers can achieve a similar convergence rate.

The simulation results for the proposed adaptive FNTSM 
controller are given in Figs. 2, 3, 4 and 5. Figure 2 shows the 
time response of the attitude tracking errors. Figure 3 shows 
the time response of the angular velocity tracking errors. 
Figure 4 shows the time response of the control torques. 
Figure 5 shows the time response of the adaptive parameter. 
The simulation results for the compared adaptive FNTSM 

Fig. 1  Overall structure of the 
resulting closed-loop system s

-

b̂

Simple error

transformation (13)

,e eq ω,d dq ω

,q ω

,e e⋅

τ cτ
Input saturation

FNTSM

surface (20)

Adaptive FNTSM

control law (27)

Adaptive updating

law (28)

+

Prescribed

performance (11)

Spacecraft system

Uncertainties &

Disturbances

Fig. 2  Time response of the attitude tracking errors under the pro-
posed controller
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controller are given in Figs. 6, 7, 8 and 9. Figure 6 shows the 
time response of the attitude tracking errors. Figure 7 shows 
the time response of the angular velocity tracking errors. 
Figure 8 shows the time response of the control torques. 
Figure 9 shows the time response of the adaptive parameter.

From Figs. 2, 3, 6, and 7, it is clearly seen that the atti-
tude and angular velocity tracking errors of the spacecraft 
can converge to the small region about zero rapidly and 
accurately under both the proposed and compared control-
lers. From Fig. 2, the proposed controller can guarantee the 
attitude tracking errors always stay within the predefined 
performance bounds. By contrast, from Fig. 6, the attitude 
tracking errors under the compared controller exceed the 
predefined performance bounds during the attitude tracking 

process. Hence, the required performance constraints can-
not be always satisfied under the compared controller. From 
Figs. 2 and 3, the attitude and angular velocity tracking 
errors under the proposed controller can converge to the 
ultimate bounds ||qevi|| ≤ 8 × 10−5 and ||�ei

|| ≤ 1 × 10−4 rad/s . 
However, from Figs.  6 and 7, the attitude and angular 
velocity tracking errors under the compared controller 
can converge to the ultimate bounds ||qevi|| ≤ 2 × 10−3 and 
||�ei

|| ≤ 1.5 × 10−3 rad/s . It is obvious that the steady-state 
attitude and angular velocity tracking errors under the pro-
posed controller are far less than those under the compared 
controller. This indicates that the proposed controller can 
achieve superior control performance than the compared 

Fig. 3  Time response of the angular velocity tracking errors under the 
proposed controller

Fig. 4  Time response of the control torques under the proposed con-
troller

Fig. 5  Time response of the adaptive parameter under the proposed 
controller

Fig. 6  Time response of the attitude tracking errors under the com-
pared controller
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controller in terms of higher tracking accuracy. From Figs. 4 
and 8, the control torques under both the proposed and com-
pared controllers are always within the maximum allowable 
value. Note that the control torques can never be to zero so 
as to compensate for the inertia uncertainties and external 
disturbances. From Figs. 5 and 9, the adaptive parameters 
of both the proposed and compared controllers are varying 
smoothly with respect to time. In summary, the simulation 
experiments illustrate the effectiveness and superiority of the 
proposed controller. It can be concluded from the simulation 
results that the proposed adaptive FNTSM control approach 
can realize the fast and exact attitude tracking of spacecraft 
with finite-time convergence and prescribed performance 

even in the presence of inertia uncertainties, external dis-
turbances, and input saturation.

5  Conclusions and Future Work

In this paper, the robust adaptive finite-time prescribed 
performance attitude tracking control of spacecraft is 
addressed in the presence of inertia uncertainties, exter-
nal disturbances, and input saturation. A novel adaptive 
FNTSM control approach is proposed by combining the 
finite-time control technique, prescribed performance 
control technique, and adaptive estimation technique. The 
practical finite-time stability of the resulting closed-loop 
system is theoretically proved. Simulation experiments 
and comprehensive comparisons verify and highlight the 
performance of the proposed control approach.

Future work of this paper includes the following two 
aspects. On the one hand, the angular velocity and its 
derivative are assumed to be bounded in the proposed 
control design. The first future research topic of this work 
is improving the adaptive control approach to remove this 
assumption. The adaptive updating law in [37] can provide 
an effective solution to this problem. On the other hand, 
the finite settling time of the proposed control design is 
heavily dependant on the initial states of the spacecraft. 
Recently, the concept of fixed-time control was proposed 
with extensive applications to the consensus of multiagent 
systems [47–52]. The second future research topic of this 
work is extending the proposed controller with the fixed-
time convergence capability.

Fig. 7  Time response of the angular velocity tracking errors under the 
compared controller

Fig. 8  Time response of the control torques under the compared con-
troller

Fig. 9  Time response of the adaptive parameter under the compared 
controller
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