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Abstract
This paper aims to propose a new guidance algorithm for intercepting a high-speed maneuvering target, such as a tactical 
ballistic missile that flies in a quasi-ballistic trajectory. The motivation of this study lies in the fact that the classical pro-
portional navigation guidance (PNG) undergoes the performance degradation under the above engagement scenario due to 
its intrinsic property. To deal with the issue, an accurate collision course that reflects the motion characteristics of the bal-
listic target and missile is first analyzed. The desired look angle that leads to achieving the accurate collision course is then 
determined with the help of a novel time-to-go calculation method. Finally, the proposed guidance law providing the desired 
look angle is obtained by leveraging the concept of the biased PNG. Since the proposed method is designed to achieve an 
accurate collision course, it does not lead to unnecessary maneuvering near the target under the engagement scenario. This 
property is desirable for reserving the operational margin of maneuverability for reacting to unexpected situations during 
the engagement. It could improve the capturability of the target. Finally, the performance of the proposed method is verified 
through numerical simulations in a way to compare with the existing methods such as PNG and the augmented PNG (APNG).

Keywords  Homing guidance · A high-speed maneuvering target · Ballistic threat · Biased PNG

1  Introduction

The classical proportional navigation guidance (PNG) [1] 
has been widely adopted as the terminal homing guidance 
for various guided weapon systems because of its favora-
ble characteristics. First, the guidance command of PNG is 
given in a simple form multiplied by the line-of-sight (LOS) 
rate and the closing velocity between a missile and a target. 
Additionally, it has been proven that PNG can guarantee the 

optimality from the control energy minimization standpoint 
through the optimal control theory [2–6].

The underlying principle of PNG is to nullify the LOS 
rate in a finite time to accomplish a specific collision course, 
which is derived under the assumption that a missile and a 
target are moving at constant speeds [1]. Because of this 
inherent property of PNG, severe performance degradation 
would be expected under a specific engagement scenario 
where the underlying assumption of PNG does not hold. One 
example would be an engagement scenario for a tactical bal-
listic missile flying in a quasi-ballistic trajectory. In this sce-
nario, a tactical ballistic target generally descends downward 
with a high speed of a few km/s, and it undergoes a nonlinear 
deceleration around 10–30 g caused by aerodynamic drag 
during its terminal homing phase. Additionally, a ballistic 
target could be performing lateral maneuvering up to 20 g 
intended to avoid an attack of an interceptor missile [7]. 
According to references [8, 9], under this extreme engage-
ment case, PNG leads to large unnecessary maneuvering in 
the terminal homing phase. This large maneuvering may 
result in command saturations near the target so that severe 
miss distance may occur [10]. Thus, it can be predicted that 
the capture region of the ballistic target under PNG may be 
considerably reduced.
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Over the past several decades, various guidance laws have 
been proposed in consideration of target and missile motions 
to overcome the above issue. In the augmented proportional 
navigation guidance (APNG), which is one of the variations 
of PNG, the target lateral acceleration is added to the PNG 
command for reducing the required terminal acceleration. 
In reference [11, 12], a homing guidance law was proposed 
based on the optimal control, to compensate for speed vari-
ation due to a constant longitudinal acceleration of a mis-
sile. The authors in [13, 14] proposed a new homing guid-
ance law that compensates for the speed variation of a target 
caused by its constant longitudinal acceleration in nonlinear 
engagement kinematics. In the previous study [15], a new 
homing guidance law was developed, which considered a 
nonlinear longitudinal acceleration of a missile caused by 
aerodynamic drag and thrust. A homing guidance law for an 
accelerating missile by a thrust operated in the exo-atmos-
pheric region was suggested using the nonlinear control 
theory and the optimal control theory [16, 17]. The authors 
in [18] proposed an optimal guidance law that compensates 
for the speed variation of a missile by estimating a velocity 
profile in a real-time manner. In reference [22], a guidance 
algorithm that switches between PNG and APNG, depend-
ing on target maneuvers, was proposed. In reference [23], a 
novel head-pursuit guidance was developed for intercepting 
a high-speed target. This guidance law could significantly 
reduce the closing velocity, and this property helps relax the 
control energy requirement. For improving the kill probabil-
ity against a high-speed target such as a ballistic missile, a 
simultaneous salvo attack algorithm based on retro-PN was 
studied in reference [24].

It is worth noting that although the above methods could 
provide better performance than the classical PNG by con-
sidering additional missile or target motions, each specific 
engagement scenario was assumed to design each guidance 
law. It implies that the above methods may not guarantee 
excellent performance in the engagement for the tactical bal-
listic missile that flies in a quasi-ballistic trajectory. This is 
because they were not inherently designed to focus on this 
specific engagement scenario mentioned above.

Based on this observation, this paper aims to propose 
a new homing guidance law that can drive the interceptor 
missile toward a more accurate collision course by fully uti-
lizing the motion characteristics and the flight parameters 
of the quasi-ballistic target and the interceptor missile. To 
this end, the closed-form trajectory solutions of a conven-
tional biased PNG (BPNG) law are first determined. From 
the results obtained, it turns out that the bias term of BPNG 
corresponds to the collision triangle. Based on these rela-
tions, the desired look angle providing an accurate collision 
course for a ballistic target is then derived using the lin-
earized engagement kinematics under reasonable assump-
tions. Also, since the time-to-go information is required to 

determine the desired look angle, an accurate time-to-go 
calculation method is newly proposed in this paper. Finally, 
the state-feedback form of the guidance law achieving the 
desired look angle in a finite time is developed by utilizing 
the concept of the biased PNG.

Since the proposed guidance law places the missile on the 
accurate collision triangle, the acceleration demand in the 
terminal homing phase can be considerably reduced. This 
property of the proposed method could be desirable in terms 
of reserving some operational margin of maneuverability for 
coping with unexpected situations [19]. This characteristic 
is also desirable to avoid command saturations near a target 
[10]. Therefore, the proposed method could be advantageous 
in terms of providing a possibility to improve the captur-
ability of the ballistic target, compared to PNG. To verify 
this fact, numerical simulations are performed. The results 
obtained show that the proposed method is superior to PNG 
and APNG.

This paper is organized as follows. In Sect. 2, the closed-
form solutions and physical constraints for the biased PNG 
law are derived. In Sect. 3, the guidance problem to be 
solved in this study is introduced, and the proposed guid-
ance algorithm with the time-to-go calculation method 
is discussed. In Sect. 4, numerical simulation results are 
presented. Finally, the concluding remark of this study is 
offered in Sect. 5.

2 � Analysis of Biased PNG for Constant 
Maneuvering Targets

Before proposing a new guidance law against a high-speed 
maneuvering target, we first derive a closed-form trajectory 
solution for a conventional BPNG law against a constant 
maneuvering target. Based on the closed-form solution, we 
then find a significant physical constraint to achieve zero 
miss distance and zero terminal acceleration.

2.1 � Linearized Engagement with Biased PNG

Let us consider the linearized kinematics depicted in Fig. 1 
and the BPNG command given by Eq. (1).

where N′ , vc , and 𝜎̇ are the effective navigation ratio, the 
closing velocity, and the line-of-sight (LOS) rate, respec-
tively. The notation, 𝜎̇∗ , denotes the desired LOS rate to be 
determined for satisfying the terminal constraints. In Fig. 1, 
other variables are self-explanatory.

As shown in Fig. 1, by assuming a near head-on engage-
ment with constant speeds (i.e., v̇m = 0 and v̇t = 0 ) and 

(1)am = N�vc(𝜎̇ − 𝜎̇∗),
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constant lateral acceleration of the target (i.e., ȧt = 0 ), the 
linearized engagement kinematics with respect to the initial 
LOS can be obtained as follows:

Here, the variables yẏ , and ÿ represent the relative lateral 
position, velocity, and acceleration with respect to the initial 
LOS, and the initial conditions are given as

And then, integrating Eq. (2)  using the above initial con-
ditions and the geometric relation � = y∕vctgo gives

where K = at + N�vc𝜎̇
∗ , and this is assumed to be constant 

for analysis purposes. Note that the above equation is the 
first-order ordinary differential equation (ODE).

2.2 � Closed‑form Trajectory Solutions to Biased PNG

By applying a general solution presented in [3] to the first-
order ODE, as shown in Eq. (4), we can obtain the closed-
form solution of the relative lateral position as follows:

By differentiating Eq. (5) twice, we have

From the closed-form solution of the relative lateral posi-
tion, as shown in Eq. (5), it can be observed that if there 
is no limitation on the missile acceleration, then the rela-
tive lateral position for N′ > 2 always converges to zero 
(i.e., y

(
tf
)
= 0 ) regardless of at and 𝜎̇∗ . Additionally, from 

Eq. (6), we can observe that the relative lateral acceleration 

(2)
ÿ = ÿt − ÿm = at − am

= at − N�vc(𝜎̇ − 𝜎̇∗) = −N�vc𝜎̇ + (at + N�vc𝜎̇
∗).

(3)y0 = 0, ẏ0 = ẏt0 .

(4)ẏ +
N�

tgo
y = Kt + ẏ0,

(5)y(t) =
Ktf t

N� − 1

(
tf − t

tf

)

−
Kt2

f

(N� − 1)(N� − 2)

[(
tf − t

tf

)2

−

(
tf − t

tf

)N�
]

+
ẏ0tf

N� − 1

[(
tf − t

tf

)

−

(
tf − t

tf

)N�
]

.

(6)ÿ(t) = −
2K

N� − 1
−

K

(N� − 1)(N� − 2)

[

2 − N�
(
N� − 1

)
(
tf − t

tf

)N�−2
]

−
N�ẏ0

tf

(
tf − t

tf

)N�−2

.

converges to a specific value depending on at and 𝜎̇∗ . In 
other words, the zero terminal acceleration may not always 
be achieved for given at and 𝜎̇∗ . Therefore, it implies that 
an appropriate desired LOS rate should be determined to 
achieve the zero terminal acceleration.

From Eq. (6), we can obtain the relative lateral accelera-
tion at the terminal time as

By rearranging Eq. (7), the condition satisfying the zero 
terminal acceleration can be determined as

By substituting the desired LOS rate definition, 
𝜎̇∗ =

(
ẏt0 − ẏ∗

m

)
tf∕vct

2
f
 which is expressed by the desired lat-

eral velocity of the missile ẏ∗
m
  and the initial conditions, into 

Eq. (8), the above condition can be rewritten as

It is noted that the above equation represents an essential 
condition for determining a unique desired LOS rate provid-
ing the zero terminal acceleration. To be more specific, once 
ẏ∗
m
 is determined from Eq. (9), 𝜎̇∗ ensuring the zero terminal 

acceleration can be obtained by the LOS rate definition (i.e., 
𝜎̇∗ =

(
ẏt0 − ẏ∗

m

)
tf∕vct

2
f
 ). Finally, in a way to apply the 

(7)

ÿ
(
tf
)
= at − am

(
tf
)
= −

2K

N� − 1
−

2K

(N� − 1)(N� − 2)
= −

2K

N� − 2
.

(8)

am
(
tf
)
= 0 = at +

2K

N� − 2
=

(
N�

N� − 2

)

at + 2

(
N�

N� − 2

)

vc𝜎̇
∗.

(9)

0 = at + 2vc𝜎̇
∗ = at + 2vc

[(
ẏt0 − ẏ∗

m

)
tf

vct
2
f

]

⇒ ẏ∗
m
tf = ẏt0 tf +

1

2
att

2
f
.

Fig. 1   Linearized engagement 
geometry for BPNG
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obtained 𝜎̇∗ to the BPNG command, as shown in Eq. (1), we 
can develop a guidance law providing the zero terminal 
acceleration against a maneuvering target. For instance, we 
can obtain ẏ∗

m
= ẏt0 for a non-maneuvering target (i.e., 

at = 0 ) from Eq. (9). In that case, based on the LOS rate 
definition, we can obtain the desired LOS rate providing the 
zero terminal acceleration as 𝜎̇∗ = 0 . Therefore, from Eq. (1) 
with 𝜎̇∗ = 0 , we can readily observe that the BPNG com-
mand for a non-maneuvering target can be converted into the 
conventional PNG law as am = N�vc𝜎̇ . For a constant maneu-
vering target (i.e.,at ≠ 0 and ȧt = 0 ), the desired lateral 
velocity and the desired LOS rate are determined as 
ẏ∗
m
= ẏt0 + 0.5attf  and �∗ = −at∕2vc , from Eq. (9) and the 

LOS rate definition. Finally, the BPNG command with these 
solutions become am = N�vc

(
𝜎̇ +

at

2vc

)
= N�vc𝜎̇ +

N�

2
at , 

which is identical to APNG law.
The above result provides significant physical meaning 

and insight into the engagement condition for maneuvering 
targets. From Eq. (9) and Fig. 1, it can be observed that the 
desired lateral velocity ẏ∗

m
 and the corresponding desired 

LOS rate 𝜎̇∗ should be determined to make the zero-effort-
miss (ZEM) becomes zero. In other words, the physical 
meaning of ẏ∗

m
 (or 𝜆∗

m
≈ ẏ∗

m
∕vm ) is the desired look angle 

corresponding to a collision course that makes a missile 
intercept a target without further corrective maneuvers. 
Therefore, based on this fact, we can design a BPNG-type 
guidance law minimizing the miss distance and the terminal 
acceleration demand. To be more specific, when an accurate 
collision triangle is predicted by utilizing a precise time-to-
go calculation method and considering the motion charac-
teristics of the missile and the target, the desired look angle 
providing the predicted collision course can then be deter-
mined. Finally, in a way to apply the desired LOS rate cor-
responding to the desired look angle into Eq. (1), a guidance 
law can be determined. In the next section, the proposed 
guidance law will be derived based on this design procedure.

3 � Proposed Guidance Algorithm

In this section, the engagement kinematics used in this study 
is derived under some reasonable assumptions. By  the 
engagement kinematics, the proposed guidance algorithm 
is then developed. First, a way to determine the desired look 
angle, achieving an accurate collision course that reflects the 
motion characteristics of the missile and target, is described. 
A new time-to-go calculation method for this engagement 
scenario is also explained. Finally, the proposed guidance 
law will be developed in the form of BPNG, based on the 
above information.

3.1 � Engagement Kinematics

As shown in Fig. 2, we consider an engagement scenario for 
a surface-to-air missile against a high-speed maneuvering 
target, such as a tactical ballistic missile flying in a quasi-
ballistic trajectory. Before developing the proposed guid-
ance algorithm, the following assumptions are made for the 
engagement kinematics:

Assumption 1  The missile and the target are treated as 
point-mass models.

Assumption 2  The gravity acting on the missile and the 
target is omitted in the relative engagement kinematics. 
Additionally, the target parameters, such as the ballistic 
coefficient and the gravitational acceleration, are treated as 
constant values during the engagement.

Assumption 3  The lateral acceleration of the target is treated 
as a constant value during the engagement.

Assumption 4  The longitudinal acceleration of the missile is 
treated as a constant value during the engagement.

Fig. 2   Engagement geometry 
considering interceptor and 
target acceleration
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Assumption 5  The change in the flight path angle of the 
target is small during the engagement.

It is worth noting that these assumptions have been widely 
accepted in the field of guidance law design. Since the guid-
ance design is a problem of controlling the target–missile 
relative kinematics by assuming that the missile and the tar-
get have fast internal dynamics, Assumption 1 is reasonable 
to handle the guidance problem [1–4, 20]. In Assumption 2, 
the gravity-free assumption is commonly valid in the guid-
ance design because the gravity is a known value, and it can 
be compensated in a guidance loop in an open-loop manner 
[1–4, 20]. Additionally, a ballistic target typically travels with 
an extremely high speed around 1–2 km/s during the terminal 
homing phase, and the detection range of the target by a seeker 
is very short due to its low radar cross-section (RCS) character-
istic. It brings the fact that the homing time is extremely short 
under this engagement scenario. Therefore, when engaging a 
high-speed target such as a ballistic threat, the altitude change 
during the engagement is usually small. In that sense, it is 
reasonable to assume that the ballistic coefficient and the grav-
ity almost remain constant during the engagement. Regarding 
Assumption 3, if a ballistic target is controlled by aerodynamic 
fins, acceleration response (i.e., the turn rate) becomes slow 
at a high altitude of over 10 km since the air density is very 
low. In that case, from the fact that the terminal homing time 
is extremely short and the turn rate of the target is slow dur-
ing the engagement, it is reasonable to assume that the cur-
rent target maneuver will be maintained until the interception. 
For Assumption 4, in practice, the actual longitudinal accel-
eration of the missile is nonlinearly varying according to the 
changes in the velocity and angle-of-attack. The thrust and 
aerodynamic drag mainly cause the variation of the longitu-
dinal acceleration. However, during the gliding phase of the 
missile (after the propellant is burnt out), the velocity change 
is not significant, and it can be predicted by acceleration pro-
files [18]. Besides, if the missile is flying at a high altitude, 
this variation can be further reduced due to the absence of 
aerodynamic drag. Therefore, it is commonly acceptable to 
assume that the axial acceleration is maintained at an appropri-
ate constant value during the engagement. Finally, Assumption 
5 lies in the fact that the turn rate of the target is usually small 
due to its high speed, even though a large target acceleration 
is generated intended for trajectory shaping.

Figure 2 shows the relative engagement geometry between 
the interceptor missile and the target in the terminal homing 
phase. The notations Pm and Pt represent the positions of the 
missile and the target at an arbitrary time t , respectively. The 
parameters vm and vt denote the speeds of the missile and the 
target. Besides, atx represents the longitudinal acceleration of 
the target, which acts parallel to vt . The notation aty denotes 
the lateral acceleration of the target, and this acceleration acts 
perpendicular to vt . Similarly, amx represents the longitudinal 

acceleration of the missile, which acts along the velocity 
vector of the missile. Additionally, ac represents the lateral 
acceleration of the missile, which can be considered as the 
control input of the missile system. The variable � denotes 
the LOS angle between the missile and the target. The rela-
tive range between the missile and the target is denoted by r . 
The variables rmgo and rtgo are defined as the predicted flight 
distances to be traveled by the missile and the target along 
with the collision triangle Pm − IP − Pt until the interception.

The notation Δ�t is the predicted change in the look angle 
of the target caused by its lateral acceleration during the 
engagement. The variables �m and �t are the look angle of 
the missile and the target, respectively. From Fig. 2 with the 
definitions mentioned above, the closing velocity and the 
LOS rate at the current flight time are defined as follows:

3.2 � Determination of Desired Look Angle

In the engagement scenario considered in this paper, the 
collision triangle for accomplishing the interception of the 
high-speed maneuvering target is created, as Pm − IP − Pt 
in Fig. 2. Accordingly, if the missile approaches the tar-
get along the collision course �m = �∗

m
 , then the missile can 

intercept the target without any corrective maneuver (i.e., 
ac = 0 ). On the collision triangle Pm − IP − Pt , the following 
condition holds by the law of sine.

For convenience, let us define the reference frame where 
the current velocity direction of the target is defined as the 
x-axis (refer to Fig. 2). Under Assumption 5, the change in 
the flight path angle of the target is small during a short 
homing time. Therefore, in that case, the predicted flight 
distance to be traveled by the target in the x-axis of the refer-
ence frame is much longer than one in the y-axis of the refer-
ence frame, as rtgox ≫ rtgoy . This fact implies the condition 
of Δ𝜆t ≪ 1.

Under the condition of Δ𝜆t ≪ 1 , the linearized kinemat-
ics of the target with respect to the reference frame can be 
determined as follows

(10)ṙ = vt cos 𝜆t − vm cos 𝜆m,

(11)r𝜎̇ = vt sin 𝜆t − vm sin 𝜆m.

(12)
rtgo

sin �∗
m

=
rmgo

sin
(
�t + Δ�t

) =
r

sin
(
�t + Δ�t − �∗

m

) .

(13)

d2rtgox

dt2
= atx = −

�Sref CD

2mt

(
drtgox

dt

)2

= −
�g

2�

(
drtgox

dt

)2

,
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Note that in this derivation, the longitudinal acceleration 
caused by aerodynamic drag along the x-axis is only consid-
ered. In Eq. (13), the parameters � , Sref  , CD , mt , and g denote 
the air density, the target reference area, the drag coefficient, 
the target mass, and the gravitational acceleration, respec-
tively. Besides, the parameter � in Eq. (13) represents the 
ballistic coefficient, which is defined as

Note that the linearized kinematics of the target, as given 
in Eq. (13), becomes an ODE with constant coefficients.

Hereafter, finding the solution of the above ODE will be 
explained. We first define a new variable as

Substituting the definition of the new variable into 
Eq. (13) yields the following equation.

By integrating Eq. (17) and setting the current target 
velocity as the initial value, the closed-form solution of the 
target velocity in the x-axis direction can be determined as

where the variable � denotes an independent variable that 
lies in the range of values as t ≤ � ≤ tf  . Additionally, by 
further integrating Eq. (18), the closed-form solution of rtgox 
can be obtained as follows:

Similarly, we can determine the closed-form solution of 
rtgoy . Since the lateral acceleration of the target is assumed 
to be a constant value by Assumption 3, and the initial veloc-
ity in the y-axis direction is zero (i.e., vty = 0 ), the closed-
form solution of rtgoy can be obtained from the well-known 
solution of the rectilinear motion of the constant accelera-
tion, as follows:

If the missile approaches the target along the collision 
course �m = �∗

m
 , then the missile can intercept the target 

(14)
d2rtgoy

dt2
= aty.

(15)� =
mtg

Sref CD

.

(16)drtgox∕dt = vtx.

(17)∫
1

v2tx
dvtx = ∫ −

�g

2�
dt.

(18)vtx(�) =
vt

1 +
�g

2�
vt(� − t)

,

(19)

rtgox = ∫
tf

t

vt

1 +
�g

2�
vt(� − t)

d� =
2�

�g
ln

(

1 +
�g

2�
vttgo

)

.

(20)rtgoy =
1

2
atyt

2
go
.

without any corrective maneuver (i.e., ac = 0 ). Therefore, on 
the collision course, it can be assumed that the missile has 
the longitudinal acceleration only. The closed-form solution 
of rmgo can be obtained using the solution of the rectilinear 
motion of the constant acceleration, as below.

Then, by substituting Eqs. (19), (20), and (21) into 
Eq. (12), we can determine the desired look angle allowing 
us to achieve the collision course, as follows:

where

As can be seen in Eq. (22), the information on the mis-
sile and target state variables such as vm , amx , vt , � , aty , and 
�t is required to determine the desired look angle of the 
missile for achieving the collision course. Additionally, the 
environmental parameters such as the air density � and the 
gravitational acceleration g , and the time-to-go tgo informa-
tion are needed. Among the required parameters to calcu-
late the desired look angle, the missile state variables can 
be measured by a built-in navigation system, and the target 
state variables can be adequately estimated from a dedicated 
guidance filter [25] using the information on seeker meas-
urements. Then, the remaining term is the time-to-go, and 
it is usually calculated by utilizing the distance formula: the 
relative range over the closing velocity as

where vc = −ṙ . Here, it is worth noting that this calculation 
method has been developed based on the assumption that a 
missile and a target are moving with constant speeds. There-
fore, if this method is applied for calculating the time-to-go 
under the engagement scenario considered in this study, a 
severe time-to-go estimation error is unavoidable. Such time-
to-go estimation error could not only affect the accuracy of 
the calculation of the desired look angle but could also affect 
the performance of the proposed method eventually. Because 
of this reason, an accurate time-to-go calculation method 
that fits well the ballistic missile defense scenario is required 
in order to determine the desired look angle as precisely as 

(21)rmgo = vmtgo +
1

2
amxt

2
go
.

(22)�∗
m
= sin−1

(
rtgo

rmgo
sin

(
�t + Δ�t

)
)

,

(23)

rtgo =
√

r2tgox
+ r2tgoy

=

√[
2�

�g
ln

(

1 +
�g

2�
vttgo

)]2
+

1

4
a2tyt

4
go
,

(24)Δ�t = tan−1

(
rtgoy

rtgox

)

= tan−1
aty�gt

2
go

4� ln
(
1 +

�g

2�
vttgo

) .

(25)tgo =
r

vc
,
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possible. In the following subsection, the proposed time-to-
go calculation method will be discussed.

3.3 � Proposed Time‑to‑Go Calculation Method

As can be seen from the collision triangle Pm − IP − Pt in 
Fig. 2, there is a geometric relationship between the relative 
range and the predicted flight distances to be traveled by the 
missile and the target, as follows:

By substituting the expressions of rmgo , rtgox , and rtgoy , 
which are derived in the previous subsection, into Eq. (26), 
a nonlinear equation with respect to the time-to-go can be 
obtained. The time-to-go can then be determined by solving 
this nonlinear equation. However, this nonlinear equation is 
too complicated to obtain a time-to-go solution, and it is 
difficult to understand a solution space of the nonlinear equa-
tion. In other words, it is hard to check whether or not the 
solution of this nonlinear equation exists. Hence, instead of 
directly using Eq. (26), an approximate nonlinear equation 
based on a reasonable assumption is utilized to determine 
the time-to-go in this study.

In particular, for a surface-to-air missile intended to 
intercept a high-speed maneuvering target, terminal homing 
guidance generally follows an accurate guidance handover 
from appropriate mid-course guidance to form a collision 
course to the target as close as possible. That is to over-
come the limited maneuvering capability and short homing 
time against a ballistic threat at a high altitude. Accordingly, 
the angle between �m and �∗

m
 (defined as the heading error) 

is usually small at the beginning of the terminal homing 
phase. Besides, as the interceptor missile approaches the 
target, the current look angle gradually converges to the 
desired look angle required to shape the collision triangle 
(i.e., �m → �∗

m
 ). These facts allow using the approximation 

of �m ≈ �∗
m
 . Based on this approximation, we have the fol-

lowing equation from Eq. (26).

By substituting Eqs. (19) through (21) into Eq. (27), the 
approximate nonlinear equation with respect to the time-to-
go can be obtained as follows:

By solving Eq. (28), the time-to-go can be determined. To 
this end, the existence of feasible solutions of the time-to-go 

(26)
rmgo cos �

∗
m
+ rtgox cos

(
� − �t

)
+ rtgoy cos

(
�t −

�

2

)
= r.

(27)rmgo cos �m − rtgox cos �t + rtgoy sin �t = r.

(28)

f
(
tgo

)
=

1

2

(
aty sin �t + amx cos �m

)
t2
go
+ vm cos �mtgo

−
2� cos �t

�g
ln

(

1 +
�gvt

2�
tgo

)

− r = 0.

(i.e., tgo ≥ 0 ) should be checked. And then, one of the fea-
sible solutions would be the estimated remaining time of 
interception at the current time. To examine the existence of 
the feasible solutions, the approximate nonlinear equation as 
given in Eq. (28) is rearranged as

From Eq. (29), when the terminal homing guidance phase 
is initiated with an accurate guidance handover from proper 
mid-course guidance, the initial engagement condition at 
the beginning of the terminal homing phase nearly lies on 
the collision course as shown in Fig. 2. Therefore, it can be 
generally assumed as 0.5𝜋 < 𝜆t < 1.5𝜋 , −0.5𝜋 < 𝜆m < 0.5𝜋 
and ṙ < 0 (thus, cos 𝜆m > 0 , cos 𝜆t < 0).

Under the engagement conditions as mentioned above, 
the general patterns of g

(
tgo

)
 and h

(
tgo

)
 can be shown in 

Fig. 3. We can readily observe that the pattern of g
(
tgo

)
 can 

be altered according to the sign of aty sin �t + amx cos �m , and 
when the relative range r goes zero, the time-to-go also con-
verges to zero. Additionally, it can be found that the exist-
ence of feasible solutions can be determined by shifting 
h
(
tgo

)
 along the y-axis depending on the magnitude of the 

relative range r and examining intersection points with g
(
tgo

)
  

for fixed �t , �m , and atx . As shown in Fig. 3a, there exists one 
possible solution t∗

go
 that satisfies the condition tgo ≥ 0 if 

aty sin �t + amx cos �m ≥ 0 . Conversely, in the case of 
aty sin 𝜆t + amx cos 𝜆m < 0 , as shown in Fig. 3b, h

(
tgo

)
 and 

g
(
tgo

)
 might not intersect for tgo ≥ 0 , depending on the mag-

nitudes of �t , �m , atx , and r . This is because the engagement 
situation is changed to the tail-chasing ( ̇r > 0 ) over time, so 
the relative range cannot be achieved. In other words, there 
is a maximum relative distance value rmax or maximum time-
to-go tgomax

 for the existence of the solutions, depending on 
the magnitude of �t , �m , atx , and r . The value of tgomax

 is the 
root of f �(tgo) = 0 , and the value of rmax is easily obtained 
by substituting tgomax

 into h
(
tgo

)
 . In the case of r > rmax , the 

ballistic target cannot be intercepted by the intercept missile. 
However, since the value of r is usually less than rmax , there 
might exist two possible solutions, as shown in Fig. 3b. In 
that case, the minimum value of the two possible solutions 
should be selected as the solution (i.e., t∗

go
 ). This is because 

the time-to-go should converge to zero when the relative 
range r goes to zero.

Since the function f (tgo) is given by a nonlinear equation, 
it is challenging to obtain a solution analytically. Thus, we 
utilize a numerical approach, such as the Newton–Raphson 

(29)

[
1

2
(aty sin �t + amx cos �m)tgo + vm cos �m

]
tgo

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
g(tgo)

=
2� cos �t

�g
ln

(

1 +
�gvt

2�
tgo

)

+ r

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
h(tgo)

.
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method, to find the solutions in this paper. This method finds 
the solutions using Eq. (30). Therefore, the function f (tgo) 
should be differentiable. If the value of f (tgo) becomes zero 
or a very small value near solutions, this method fails to find 
solutions because they are diverging. Additionally, if there 
are multiple solutions, there is a possibility to find a wrong 
solution depending on initial values.

If aty sin �t + amx cos �m ≥ 0 , it can be seen that the func-
tion f (tgo) is differentiable, and there is no point where 
f �(tgo) = 0 because the function f (tgo) is monotonically 
increasing for tgo ≥ 0 . Since there exists one solution, we 

(30)xn+1 = xn −
f (x)

f �(x)
.

can find one exact solution t∗
go

 .  In the case of 
aty sin 𝜆t + amx cos 𝜆m < 0 , we can limit the time range as [
0, tgomax

]
 to find the solution, then the function f (tgo) is 

monotonically increasing in this interval. It implies that 
there is no point where f �(tgo) = 0 . In that case, there exist 
two possible solutions, but the one exact solution t∗

go
 can 

be determined in the time interval 
[
0, tgomax

]
 . By setting the 

initial value x0 of the solution as r∕vc , the number of itera-
tions could be reduced while finding solutions using the 
Newton–Raphson method.

3.4 � Proposed Guidance Command

Once the estimated time-to-go and the desired look angle 
are calculated, the proposed guidance command can then 
be determined. Hereafter, we will introduce the proposed 
guidance command that utilizes the information on the 
desired look angle and the time-to-go, as determined in the 
previous subsections. At first, by applying the estimated 
time-to-go t∗

go
 and the state variables of the interceptor 

missile and the target into Eq. (22), the desired look angle 
�∗
m

 achieving the collision course can be determined. As 
mentioned in Sect. 2, the desired LOS rate corresponding 
to �∗

m
 can be determined using the LOS rate definition, as 

given in Eq. (11). The resultant desired LOS rate is given 
as

By substituting the expression of 𝜎̇∗ , as given by 
Eq.  (31), into the BPNG command form, as given in 
Eq. (1), we have the final form of the proposed guidance 
command as

As can be seen in Eq. (32), the proposed guidance law 
could be understood as a kind BPNG law. Compared to other 
BPNG laws, the proposed guidance law has a unique form of 
the bias term. The role of this term is to compensate for the 
collision course deviation due to the target and interceptor 
missile motions. Therefore, under the proposed guidance 
law, the missile can approach the target along the accurate 
collision course as close as possible, even in the presence 
of the target and interceptor missile motions. This favorable 
characteristic of the proposed method could minimize the 
control energy compared to PNG. This fact will be verified 
through numerical simulations in the next section.

(31)

𝜎̇∗ =
vt sin 𝜆t − vm sin 𝜆∗

m

r
=

1

r

[

vt sin 𝜆t − vm

(
rtgo

rmgo
sin

(
𝜆t + Δ𝜆t

)
)]

.

(32)

ac = N�vc(𝜎̇ − 𝜎̇∗)

= N�vc

{

𝜎̇ −
1

r

[

vt sin 𝜆t − vm

(
rtgo

rmgo
sin

(
𝜆t + Δ𝜆t

)
)]}

.

Fig. 3   The solutions of the time-to-go equation
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4 � Simulation Results

In this section, numerical simulations are performed to 
investigate the characteristics and the performance of the 
proposed guidance law as well as to verify the performance 
improvement of the proposed method over the existing meth-
ods such as PNG and APNG.

4.1 � Performance Verification of the Proposed 
Guidance Law

In this simulation study, we consider an extreme engage-
ment scenario where the ballistic target maneuvers in the 
lateral direction for trajectory shaping, and the ballistic 
target undergoes a large deceleration due to aerodynamic 
drag. The simulation parameters are provided in Table 1. 
Additionally, the effective navigation ratio is set to N� = 3 
as the default value.

Figure 4a shows the engagement trajectory under the pro-
posed guidance law. In the simulation, the terminal homing 
guidance begins at the relative range of about 7 km, and the 
homing time takes about 3 s. The interception is made at an 
altitude of about 8 km, as shown in Fig. 4a.

Figure 4b presents the longitudinal and lateral accelera-
tions imposed on the ballistic target in the numerical simu-
lation. The lateral acceleration is recorded as 10 g , which 
causes the change in the flight path angle of the target, as 
shown in Fig. 4a. We can observe that the longitudinal 
deceleration is nonlinearly varying in the range of values 
from − 30 to − 15 g, due to aerodynamic drag. Because of 
this deceleration, the closing velocity is also significantly 
varying from 2500 to 1800 m/s, as shown in Fig. 4c. This 
observation confirms the premises of our study, as discussed 
in Sect. 3: the speeds of the target and the missile will be 
considerably varying, in the engagement scenario where a 
surface-to-air missile intended to intercept a ballistic target.

Figure 4b depicts the variation of the look angle of the 
missile during the engagement. As shown in Fig. 4d, the 
heading error (i.e., �m − �∗

m
 ) at the beginning of the terminal 

homing phase is recorded as 15 °. From the result obtained, 

it can also be observed that the heading error gradually 
decreases as time goes, and the heading error converges to 
zero at around 2.5 s. It implies that the missile lies on the 
collision course after 2.5 s. Next, Fig. 4e shows the converg-
ing patterns of the heading error �m − �∗

m
 for various effec-

tive navigation ratio. As sown in Fig. 4e, it can be observed 
that the convergence rate increases as N′ increases.

Figure 4f provides the difference between the LOS rate 
and the desired LOS rate. To achieve the collision course, 
the LOS rate error should be nullified. As shown in Fig. 4f, 
it can be observed that the LOS rate eventually converges 
to the desired LOS rate within 2.5 s. It indicates that the 
proposed guidance law is appropriately working to accom-
plish the interception condition. Figure 4g compares the 
guidance commands under the proposed method and the 
classical PNG. From the result, we can readily observe that 
the proposed guidance command converges to zero as the 
missile approaches the target. This is because the proposed 
guidance law can drive the missile to follow the accurate 
collision course. Therefore, once the missile lies on the col-
lision course, no maneuvering is required in the proposed 
method. This characteristic could be a benefit in terms of 
ensuring an operational margin of maneuverability to cope 
with uncertainties during the engagement. On the other 
hand, 35 g maneuvering is observed in the PNG case, as 
shown in Fig. 4g. Since PNG assumes constant speeds of 
the target and the missile, PNG guides the missile to follow 
an inaccurate collision course. That is why a huge maneu-
ver is required in PNG. This property is adverse in terms of 
enlarging the capturability of the ballistic target since the 
guidance command under PNG can be easily saturated by 
the command limitation.

Figure 4h presents a comparison of the time-to-go cal-
culation methods. As shown in Fig. 4h, the conventional 
method undergoes a severe estimation error. On the other 
hand, the proposed method can accurately calculate the 
time-to-go as close as the actual value, as shown in Fig. 4h. 
It implies that we can compute the predicted intercept point 
precisely by utilizing the proposed time-to-go calculation 
method.

4.2 � Performance Comparison with PNG and APNG

Figure 5a and b presents the command variations under 
PNG and the proposed guidance, according to changes in 
the effective navigation ratio. This is to show the advantage 
of acceleration profiles for the proposed method over PNG. 
At the initial, the maximum required acceleration under 
the proposed guidance is huge, except for the case N� = 3 . 
However, regardless of the effective navigation ratio, the 
total control energy usage ( Δv = ∫ tt

0
||ac|| dt ) is significantly 

reduced under the proposed method. Additionally, it can be 
observed that as the intercept missile flies at a high altitude, 

Table 1   Test scenario Parameter Value

Pt0 (10 km, 10 km)

vt0 2000 m/s

�t0 200 deg

� 2392 kgf/m2

aty 10 g

Pm0 (5 km, 5 km)

vm0 1000 m/s

amx −2 g
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(a) (b)

(c) (d)

(e) (f)

Fig. 4   Simulation results of the engagement scenario
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the acceleration demand decreases and converges to almost 
zero. This characteristic of the proposed guidance will be 
beneficial to overcome the limited maneuvering capability 
and short homing time, especially when engagement occurs 
at a high altitude such as ballistic target interception case.

Figure 5c and d shows the capture regions for PNG and 
the proposed guidance, according to the changes in the head-
ing error and the target lateral acceleration, with the maneu-
verability limit of the interceptor missile. The input range 
of the heading error and the target lateral acceleration are 
chosen as 

[
−30 − 30 deg

]
 and 

[
0 − 20 g

]
 , respectively. If 

the miss distance is smaller than 1 m , we assume that the 
target is intercepted by the missile in the capturability analy-
sis. As shown in Fig. 5c and d, we can readily observe that 
the capture region of the proposed guidance is considerably 
broader than that of PNG. In this analysis, the capturability 
is evaluated by the kinematic interception. Therefore, if we 
further consider the unknown disturbances, such as the wind 
and target maneuvers, this gap will be larger.

Figure 6 shows a comparison of the guidance commands 
under the proposed method and APNG for the different 
initial �m − �∗

m
 cases. In the case of �m − �∗

m
= 0 deg , we 

can readily observe that the proposed guidance command 
becomes nearly zero at the moment of intercept. Unlike the 
proposed guidance, APNG requires about 4 g at the begin-
ning of the homing guidance, and the guidance command 
does not converge to zero at the terminal time. In the simula-
tion, the terminal acceleration under APNG is recorded as 
3 g, as shown in Fig. 6a. This is because a certain accelera-
tion command is always required to compensate for a non-
linear deceleration and lateral acceleration of the ballistic 
missile in the case of APNG. Moreover, the gimbal angle 
of the intercept missile is about 30 deg in this simulation 

so that the effect of not compensating for the component 
perpendicular to the LOS of the missile longitudinal decel-
eration (which is about 1 g ) is also included.

Similarly, in the case of �m − �∗
m
= 15 deg , the proposed 

guidance command converges to zero as the relative range 
decreases to zero. On the other hand, APNG does not allow 
this property. As shown in Fig. 6b, APNG demands more 
acceleration at the terminal time than the proposed method. 
The simulation results confirm that the proposed guidance 
outperforms than APNG in the engagement situations con-
sidered in this paper. APNG is an optimal guidance law 
derived from the linearized engagement kinematics under 
the assumption that the target lateral acceleration is constant. 
In the augmented term (i.e., 0.5N′aT  ), aT  represents the 
components of the longitudinal deceleration and the lateral 
acceleration perpendicular to the LOS vector. It means that 
this method relies on the information of the target accelera-
tions only. However, since the proposed guidance considers 
all the acceleration components of the ballistic missile and 
the interceptor missile when generating the guidance com-
mand and it can accurately estimate the time-to-go using a 
newly proposed method, the exact collision triangle can be 
achieved by the proposed method. In this way, the accel-
eration demand could be reduced in the proposed method 
compared to APNG.

5 � Conclusion

In the ballistic missile defense scenario, a tactical ballistic 
missile flies in a quasi-ballistic trajectory with a high speed, 
and it usually undergoes a considerable deceleration due to 
aerodynamic drag. Additionally, it may perform an evasive 

(g) (h)

Fig. 4   (continued)
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maneuver to avoid an attack of an interceptor missile. In 
this extreme engagement scenario, the classical proportional 
navigation guidance (PNG) results in performance degrada-
tion: a large guidance command generated in the vicinity of 
the target leads to the command saturation, thereby resulting 
in severe miss distance.

In this paper, new homing guidance was developed to 
resolve the issue. Through the closed-form trajectory solu-
tions of the bias PNG (BPNG) command, we first deduced 
the relationship between the desired LOS rate in the BPNG 
command and the desired look angle corresponding to the 
collision triangle. Next, we developed the methods that 
estimate the accurate time-to-go and the desired look angle 
leading to the accurate collision course for a ballistic tar-
get. By utilizing the desired look angle and the desired LOS 
rate definition, we finally derived a state-feedback form of 
a guidance law that can make the interceptor missile follow 

the predicted collision course without any corrective maneu-
vers near the end of the flight.

The simulation results showed that the look angle of 
the missile converged to the desired value under the pro-
posed method, as intended. Accordingly, it was confirmed 
that the accurate collision course was accomplished by the 
proposed method. Additionally, from the results obtained, 
it was also observed that the estimated time-to-go by the 
proposed method was almost identical to the actual value. 
Besides, it was confirmed that the proposed method was 
able to considerably reduce unnecessary maneuvering in the 
terminal homing phase, compared to PNG. The performance 
improvement of the proposed method over the APNG was 
also verified through numerical simulations. For implement-
ing the proposed method, the information on target state var-
iables is required. However, it could be precisely estimated 
using a dedicated guidance filter with sensor measurements 

(a) (b)

(c) (d)

Fig. 5   Performance comparison with PNG
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provided by a high-range resolution onboard seeker and a 
ground radar.

References

	 1.	 Murtaugh SA, Criel HE (1966) Fundamentals of proportional 
navigation. IEEE Spectr 3(12):75–85

	 2.	 Bryson A, Ho YC (1975) Applied optimal control. Wiley, New 
York

	 3.	 Zarchan P (2012) Tactical and strategic missile guidance, 6th edn. 
American Institute of Aeronautics and Astronautics, Washington

	 4.	 Lin CF (1991) Modern navigation, guidance, and control process-
ing. Prentice Hall, New Jersey

	 5.	 Kreindler E (1973) Optimality of proportional navigation. AIAA 
J 11(6):878–880

	 6.	 Jeon IS, Lee JI (2010) Optimality of proportional navigation 
based on nonlinear formulation. IEEE Trans Aerosp Electron Syst 
46(4):2051–2055

	 7.	 “SS-26 Iskander.” Missile threat, https​://missi​lethr​eat.csis.org/
missi​le/ss-26-2/.

	 8.	 Chadwick WR (1985) Miss distance of proportional navigation 
missile with varying velocity. J Guid Control Dyn 8(5):662–666

	 9.	 Arbenz K (1970) Proportional navigation on nonstationary targets. 
IEEE Trans Aerosp Electron Syst 4:455–457

	10.	 Ryu MY, Lee CH, Tahk MJ (2015) Command shaping optimal 
guidance laws against high-speed incoming targets. J Guid Control 
Dyn 38(10):2025–2033

	11.	 Gazit R, Gutman S (1991) Development of guidance laws for a 
variable-speed missile. Dyn Control 1(2):177–198

	12.	 Gazit R (1993) Guidance to collision of a variable-speed missile. 
The first IEEE regional conference on aerospace control systems. 
Westlake Village, CA, USA

	13.	 Baba Y, Yamaguchi M, Howe RM (1993) Generalized guidance 
law for collision courses. J Guid Control Dyn 16(3):511–516

	14.	 Gutman S (2005) Applied min-max approach to missile guidance 
and control. American Institute of Aeronautics and Astronautics, 
Washington

	15.	 Baba Y, Takehira T, Takano H (1994) New guidance law for a 
missile with varying velocity, AIAA Guidance, Navigation, and 
Control Conference. Scottsdale, AZ, USA, AIAA-94-3565-CP

	16.	 Reisner D, Shima T (2013) Optimal guidance to collision law 
for an accelerating exoatmospheric interceptor missile. J Guid 
Control Dyn 36(6):1695–1708

	17.	 Shima T, Golan OM (2012) Exo-atmospheric guidance of an 
accelerating interceptor missile. J Franklin Inst 349(2):622–637

	18.	 Cho HJ, Ryoo CK, Tahk MJ (1999) Implementation of optimal 
guidance laws using predicted missile predicted missile velocity 
profiles. J Guid Control Dyn 22(4):579–588

	19.	 Lee CH, Kim TH, Tahk MJ (2013) Interception angle control 
guidance using proportional navigation with error feedback. J 
Guid Control Dyn 36(5):1556–1561

	20.	 Jung YS, Lee JI, Lee CH, Tahk MJ (2019) A new collision control 
guidance law based on speed control for kill vehicle. Int J Aero-
naut Space Sci Guid 20:792–805

	21.	 Shukla US, Mahapatra PR (1989) Optimization of biased 
proportional navigation. IEEE Trans Aerospace Elect Syst 
AES-25(1):73–80

	22.	 Imado F, Kuroda T, Tahk MJ (1998) A new missile guidance 
algorithm against a maneuvering target, AIAA guidance, navi-
gation, and control conference and Exhibit. Boston, MA, USA, 
AIAA-09-4114

	23.	 Shima T, Golan OM (2007) Head pursuit guidance. J Guid Control 
Dyn 30(5):1437–1444

	24.	 Ghosh S, Ghose D, Raha S (2014) Retro-PN based simultaneous 
salvo attack against higher speed nonmaneuvering targets. IFAC 
Proc Vol 47(1):34–40

	25.	 Ghosh S, Mukhopadhyay S, Routray A (2012) New state and 
measurement models for endo-atmospheric tracking of ballistic 
target using seeker measurement. IEEE Trans Aerosp Electron 
Syst 48(2):1192–1209

(a) (b)

Fig. 6   Performance comparison with APNG

https://missilethreat.csis.org/missile/ss-26-2/
https://missilethreat.csis.org/missile/ss-26-2/

	A New Guidance Algorithm Against High-Speed Maneuvering Target
	Abstract
	1 Introduction
	2 Analysis of Biased PNG for Constant Maneuvering Targets
	2.1 Linearized Engagement with Biased PNG
	2.2 Closed-form Trajectory Solutions to Biased PNG

	3 Proposed Guidance Algorithm
	3.1 Engagement Kinematics
	3.2 Determination of Desired Look Angle
	3.3 Proposed Time-to-Go Calculation Method
	3.4 Proposed Guidance Command

	4 Simulation Results
	4.1 Performance Verification of the Proposed Guidance Law
	4.2 Performance Comparison with PNG and APNG

	5 Conclusion
	References




