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Abstract
An integrated guidance and control problem under state constraints is considered for terminal homing of missile engagement.
The problem is formulated as a moderate-size convex optimization problem, which can be efficiently solved via existing tech-
niques such as interior point methods or alternating direction method of multipliers. Two different formulations are presented,
and their computation time is investigated. We address computational issues that arise in implementing the optimization
solvers on-board, and discuss several problem-specific hands-on techniques that help reducing the computational complexity
and accelerating the convergence of the optimization algorithms.

Keywords Integrated guidance and control · Convex optimization · State constraints · Primal–dual interior point method

1 Introduction

In missile systems, a seeker subsystem plays a crucial role in
terminal homing. It tracks a target continuously after acqui-
sition and provides the measurements of the target motion
[1]. If a strapdown seeker is considered, the target must be
maintained inside the seeker’s field of view. Therefore, look
angle should be limited within feasible region. Also, if an
agile turn maneuver against high-speed targets is considered,
image distortion such as motion blur may occur in the image
plane of a seeker. Then, it is highly probable that the seeker
loses the target, resulting in the mission failure. Thus, look
angle rate limitation must be considered to prevent the image
distortion. Optimal guidance problems considering the look
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angle constraints have been proposed recently [2–7]. How-
ever, these studies deal with the lead angle constraints instead
of directly restricting the look angle, hence assuming small
angle of attack. This causes significant problems in the high
maneuver cases where the angle of attack is not ignorable.
Therefore, a need for advanced techniques that can directly
handle the look angles arises.

Integrated guidance and control design becomes more
and more popular to improve a missile system performance
such as the accuracy of the interceptor and its kill envelope
extension. Menon and Ohlmeyer [8] employed feedback lin-
earization technique to integrated guidance and control. The
proposed technique provided a stabilizing control law which
was optimal with respect to an infinite-time performance
index. Shima et al. [9] applied slidingmode control approach
for the derivation of the integrated guidance–control algo-
rithm. The sliding surface was defined using the zero-effort
miss distance, obtained from a linearized differential game
formulation. Idan et al. [10] also used sliding mode control
methodology to control missile by two aerodynamics sur-
faces. It was shown that the integrated system could account
simultaneously for the guidance and autopilot requirements
using the additional degree of freedom. Smooth second-order
sliding mode control was adopted by Shtessel and Tournes
[11] against maneuvering target. The target acceleration was
reconstructed in finite time, and smooth flight path angle,
angle of attack, and pitch rate commands were generated. On
the other hand, Xin et al. [12] presented an infinite-horizon

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s42405-020-00299-y&domain=pdf


International Journal of Aeronautical and Space Sciences (2020) 21:826–835 827

optimal control problemwhichwas solved by θ -D technique.
The method produced an approximate closed-form feedback
controller in which online computation was not required.
Vaddi et al. [13] developed a numerical approach using state-
dependent Riccati equation methodology. State-dependent
system matrices were obtained as the solution to a con-
strained least-squares optimization problem, and the target
interception was modeled as a tenth-order nonlinear regu-
lation problem. State-dependent Riccati equation approach
was also used by Zhao et al. [14] for ground-fixed target
with desired terminal impact angle. A time-varying state
weighting matrix defined by functions of altitude-to-go was
suggested to achieve a satisfactory terminal accuracy. Fur-
thermore,Kimet al. [15] formulated an optimization problem
with affine dynamic constraints. The optimal solution was
derived as a time-varying state feedback control with a feed-
forward term, and the quadratic weighting functions were
appropriately chosen.

In this study, an integrated guidance and control method
considering state constraints for terminal homing is pro-
posed. Short-period dynamics and guidance kinematics of a
missile as well as actuator dynamics are considered [16,17].
The problem is formulated as a standard equality and inequal-
ity constrained quadratic problem that can be efficiently
solved via existing techniques. The equality constraint con-
sists of the discrete-time state space model of the missile
dynamics. On the other hand, the inequality constraint
consists of three limitations: acceleration, look angle, and
look angle rate. Acceleration constraint must be considered
because of the finitemaneuver capability of themissile. Also,
look angle constraint is considered due to the limitation of
seekers image plane. Finally, look angle rate constraint is
considered to prevent image distortion or signal intensity
reduction of seeker system especially for high maneuver
interception scenarios. Two different formulations are pre-
sented, and their computation time is compared for real
implementation. Monte Carlo simulation is also carried out
to verify the performance of the proposed algorithm.

The problem without the equality and inequality con-
straints has an elegant explicit solution which can be derived
from the classical linear quadratic regulator theories or the
dynamic programing approaches [15]. However, this is not
the case for the problem we focus in this study, and the con-
trol solution should be obtained online via solving the finite
horizon optimization problem at every time step. The primal–
dual interior point method [18–21] is introduced with sparse
matrix handling [22] and matrix caching, to efficiently solve
the constrained quadratic problem on-board.

The paper is organized as follows: Sect. 2 formulates the
integrated guidance and control problem considered in this
study. In Sect. 3, primal–dual interior point method is pre-
sented, and numerical simulation results are shown in Sect. 4.
Finally, the conclusion is given in Sect. 5.

2 Integrated Guidance and Control
Formulation

2.1 Problem Description

A two-dimensional terminal homing problem in the vertical
plane is considered as shown in Fig. 1. And, Fig. 2 shows
positive definition of angles used in this study. XI − ZI is
a reference coordinate system whose origin is located at the
missile’s initial center of gravity. It is assumed that themissile
is close to a collision triangle at the beginning of the terminal
homing, and the missile and target deviations during the ter-
minal homing are sufficiently small. Therefore, linearization
can be performed around the initial Line-Of-Sight (LOS), λ0,
whose coordinate system is XL0 − ZL0 as shown in Figs. 1
and 2. Also, constant known speed is assumed for both the
missile and the target. xb is a body-fixed coordinate system
of the missile, and zm is a relative displacement between the
missile and the target normal to the initial LOS. R and λ are
range-to-go and LOS of the missile and the target, respec-
tively. Furthermore,vm ,αm , andγm are speed, angle of attack,
and flight path angle of the missile, respectively. am and at
are accelerations of the missile and the target, respectively,
normal to the LOS as shown in Fig. 1. εm and θm are look
angle and pitch angle of the missile, respectively, whereas vt
is speed of the target. Finally, g is a gravitational acceleration
which is parallel to ZI .

The main objective of the terminal homing is to have the
missile intercept the target,while limiting itsmaneuver accel-
eration by |am | ≤ amax, the look angle by |εm | ≤ εmax,
and the look angle rate by |ε̇m | ≤ ε̇max. Also, we consider
a rather challenging and restrictive but reasonable situation
where the amount of time allowed for the terminal homing
phase is insufficient because of the restrictions given by the
mission operational requirements or the limits imposed by
the other subsystems such as the seekers or the navigation
related sensors, and so on. This implies that the conventional
separate guidance and control techniques may not be able to
achieve the satisfactory homing performance.

The short period dynamics of the missile is governed by
the following equation.

[
α̇m

q̇m

]
=

[
Zα 1
Mα Mq

] [
αm

qm

]
+

[
Zδ

Mδ

]
δm, (1)

where qm is a pitch rate, δm is a control fin deflection angle,
and Zα , Zδ , Mα , Mq , and Mδ are corresponding dimensional
derivatives of the missile [16,17]. Now, am can be expressed
as follows:

am = vm(α̇m − qm) = vm Zααm + vm Zδδm . (2)
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Fig. 1 Engagement geometry

Fig. 2 Positive angle definition

And, the control fin actuator dynamics is modeled as a single
lag system as follows:

δ̇m = −ωaδm + ωaδc, (3)

where δc is a control command, and ωa is an inverse of the
actuator time constant.

On the other hand, the kinematics describing the trajectory
of the missile is given as follows:

[
γ̇m
żm

]
=

[
0 0
vm 0

] [
γm
zm

]
+

[−1/vm
0

]
am, (4)

where am can be replaced by (2). Using (1) and (3)–(4), an
augmented system of equations is built as follows:

⎡
⎢⎢⎢⎢⎣

δ̇m
α̇m

q̇m
γ̇m
żm

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
≡ ˙̄x

=

⎡
⎢⎢⎢⎢⎣

−ωa 0 0 0 0
Zδ Zα 1 0 0
Mδ Mα Mq 0 0

−Zδ − Zα 0 0 0
0 0 0 vm 0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
≡ Ā

⎡
⎢⎢⎢⎢⎣

δm
αm

qm
γm
zm

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
≡ x̄

+

⎡
⎢⎢⎢⎢⎣

ωa

0
0
0
0

⎤
⎥⎥⎥⎥⎦

︸ ︷︷ ︸
≡ B̄

δc︸︷︷︸
≡ ū

.

(5)

The above equation can be discretized with the sampling
interval of Δt .

xk+1 = Axk + Buk + b, (6)

where the subscripts represent the time index, and the
discretized matrices are obtained by A = eΔt Ã, B =(∫ Δt

0 eτ Ãdτ
)
B̃, and b =

(∫ Δt
0 eτ Ãdτ

)
b̃.

Now, we look at the inequality constraints. Acceleration
constraint is considered due to the finite maneuver capability
of the missile, and it can be expressed using (2) as follows:

−amax ≤ vm Zααm + vm Zδδm ≤ amax, (7)

where amax is an acceleration limit. Also, look angle con-
straint is considered because of the limitation of seeker’s
image plane, and it can be expressed using λ = −zm/R and
angle definition in Fig. 2 as follows:

− εmax ≤ −zm/R − αm − γm ≤ εmax, (8)

where εmax is a look angle limit. Finally, look angle rate
constraint is considered to prevent image distortion or signal
intensity reduction of the seeker, and it can be obtained by
taking the derivative of the look angle with respect to time.

−ε̇max ≤ −vmγm/R − zm(vm + vt )/R
2 − q ≤ ε̇max, (9)

where ε̇max is a look angle rate limit, and Ṙ is approximated
as follows:

Ṙ ≈ −(vm + vt ). (10)

Note that (7)–(9) consist of linear combinations of the state
variables of (6). And the following set of linear time-varying
constraints can be established.
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⎡
⎢⎢⎢⎢⎢⎢⎣

vm Zδ vm Zα 0 0 0
−vm Zδ − vm Zα 0 0 0

0 − 1 0 − 1 1/Rk

0 1 0 1 − 1/Rk

0 0 − 1 − vm/Rk − (vm + vt )/R2
k

0 0 1 vm/Rk (vm + vt )/R2
k

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
≡ Ck

×

⎡
⎢⎢⎢⎢⎣

δm
αm

qm
γm
zm

⎤
⎥⎥⎥⎥⎦ ≤

⎡
⎢⎢⎢⎢⎢⎢⎣

amax

amax

εmax

εmax

ε̇max

ε̇max

⎤
⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
≡ D

, (11)

where Rk is the range-to-go after k samples. Ck in (11) is
time-varying due to Rk . However, it can be easily predicted
in the constant speed terminal homing phase where the cur-
vature of the trajectory is sufficiently mild. Therefore, the
range to go decreases almost linearly. For example, if the
current range-to-go, R0, is obtained from the inertial naviga-
tion system or from the seeker, then the range-to-go after k
samples can be simply predicted by R0 − k(vm + vt )Δt .

Therefore, the optimal control for 0 ≤ t ≤ tf can be
obtained via solving the following problem.

minimize
u0,...,uN−1

uT0 R0u0 + ∑N−1
k=1

(
xTk Qkxk + uTk Rkuk

)
+xTN QN xN

subject to xk+1 = Axk + Buk
Ckxk ≤ D,

(12)

for all k ∈ {0, . . . , N − 1}, where the weighting matrices
satisfy Q1, . . . , QN ≥ 0 and R0, . . . , RN−1 > 0. The length
of the horizon, N , is equal to N = tf/Δt .

2.2 Sparse Formulation

Let us define y as follows:

y = [uT0 xT1 uT1 xT2 . . . uTN−1 x
T
N ]T . (13)

Now, (12) can be transformed to a standard equality and
inequality constrained quadratic problem as follows:

minimize
y

yTQy

subject to Ay = B
Cy ≤ D,

(14)

where

Q =

⎡
⎢⎢⎢⎢⎢⎣

R0

Q1
. . .

RN−1

QN

⎤
⎥⎥⎥⎥⎥⎦

, (15)

A =

⎡
⎢⎢⎢⎢⎢⎣

B −I
A B −I

. . .

A B −I
A B −I

⎤
⎥⎥⎥⎥⎥⎦

, (16)

C =

⎡
⎢⎢⎢⎢⎢⎣

0 C1

0 C2
. . .

0 CN−1

0 CN

⎤
⎥⎥⎥⎥⎥⎦

, (17)

B =

⎡
⎢⎢⎢⎣

−Ax0
0
...

0

⎤
⎥⎥⎥⎦ , D =

⎡
⎢⎢⎢⎣
D
D
...

D

⎤
⎥⎥⎥⎦ . (18)

2.3 Dense Formulation

Similar to the sparse formulation presented in the previous
section, the dense formulation also starts from (12). Let us
define X and U as follows:

X = [xT1 xT2 . . . xTN ]T , (19)

U = [uT0 uT1 . . . uTN−1]T . (20)

Equality constraint in (12) can be listed as follows:

x1 = Ax0 + Bu0,

x2 = A2x0 + ABu0 + Bu1,
...

xN = AN x0 + AN−1Bu0 + AN−2Bu1 + · · · + BuN−1.

(21)

The above equations are rewritten in matrix form using X
and U as follows:

X = X0 + FU , (22)
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where

F =

⎡
⎢⎢⎢⎢⎢⎣

B
AB B
A2B AB B

...
. . .

AN−1B AN−2B · · · · · · B

⎤
⎥⎥⎥⎥⎥⎦

, X0 =

⎡
⎢⎢⎢⎢⎢⎣

Ax0
A2x0
A3x0

...

AN x0

⎤
⎥⎥⎥⎥⎥⎦

.

(23)

On the other hand, performance index in (12) can be
expressed as follows:

J = UT RU + XT QX , (24)

where

R =

⎡
⎢⎢⎢⎣
R0

R1
. . .

RN−1

⎤
⎥⎥⎥⎦ , Q =

⎡
⎢⎢⎢⎣
Q1

Q2
. . .

QN

⎤
⎥⎥⎥⎦ .

(25)

This performance index can be represented as a function of
U using (22) as

J = UT (FT QF + R)U + 2XT
0 QFU + XT

0 QX0. (26)

Also, inequality constraint in (12) can be expressed using
X as follows:

C̄ X ≤ D̄, (27)

where

C̄ =

⎡
⎢⎢⎢⎣
C1

C2
. . .

CN

⎤
⎥⎥⎥⎦ , D̄ =

⎡
⎢⎢⎢⎣
D
D
...

D

⎤
⎥⎥⎥⎦ . (28)

Similarly, the inequality constraint can be represented as a
function of U using (22) as

C̄ FU ≤ D̄ − C̄ X0. (29)

Let us define the following variables:

J1 = FT QF + R, (30)

J2 = 2XT
0 QF, (31)

I1 = C̄ F, (32)

I2 = D̄ − C̄ X0. (33)

Finally, (12) can be transformed to a standard inequality con-
strained quadratic problem using (30)–(33) as follows:

minimize
U

UT J1U + J2U

subject to I1U ≤ I2.
(34)

Comparing the two different formulations, we note that
there is a trade-off between the number of variables and spar-
sity. The sparse formulation dealswith 6N variables,whereas
the dense formulation deals with only N variables. WhileQ
in (14) is block diagonal, J1 in (34) is dense, which leads
to sparsity reduction of matrix S2 explained in the following
section.

3 Primal–Dual Interior Point Method

In solving the problem in (14) of the sparse formulation, we
apply the primal–dual interior point technique [18] whose
search direction from a strictly feasible point (y, λ, ν) is
given from the modified KKT condition by

⎡
⎣ 2Q CT AT

−diag(λ)C −diag( f ) 0
A 0 0

⎤
⎦

⎡
⎣Δy

Δλ

Δν

⎤
⎦ = −

⎡
⎣ rdual
rcent
rpri

⎤
⎦ , (35)

where
⎡
⎣ rdual
rcent
rpri

⎤
⎦ =

⎡
⎣ 2Qy + CT λ + AT ν

−diag(λ) f − (1/β)1
Ay − B

⎤
⎦ , (36)

with f = Cy − D, and the barrier approximation parameter
β > 0. The one vector, 1, represents the appropriately sized
column vector whose elements are all one.

Rearranging (35) and (36) gives

⎡
⎣2Q CT AT

C diag(λ)−1diag( f ) 0
A 0 0

⎤
⎦

⎡
⎣Δy

Δλ

Δν

⎤
⎦

= −
⎡
⎣ 2Qy + CT λ + AT ν

f + (1/β)diag(λ)−11
Ay − B

⎤
⎦ , (37)

which can be further simplified by block elimination via the
Schur complement as

[
2Q − CT diag( f )−1diag(λ)C AT

A 0

]
︸ ︷︷ ︸

≡S1

[
Δy
Δν

]

= −
[
2Qy + AT ν − (1/β)CT diag( f )−11

Ay − B
]

.

︸ ︷︷ ︸
≡r1

(38)
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Note that this is possible since diag(λ)−1diag( f ) is always
invertible as long as the problem is strictly feasible. The above
equation can be efficiently solved via the LDL factorization
of S1 = PLDLT PT as

[
Δy
Δν

]
= −PL−T D−1L−1PT r1, (39)

Δλ = −diag( f )−1diag(λ)CΔy − λ − (1/β)diag( f )−11,

(40)

with the approximation parameter β increasing in every iter-
ation by

β = −6Nμ/ f T λ, (41)

with some algorithm parameter μ > 0, and 6N representing
the number of rows of C.

With similar procedure, the modified KKT condition for
the problem in (34) of the dense formulation can be summa-
rized as follows:

[
2J1C̄T diag( f̄ )−1diag(λ)C̄

]
︸ ︷︷ ︸

≡S2

[
Δy

]
,

= − [
2J1y + J T2 − (1/β)C̄T diag( f̄ )−11

]
︸ ︷︷ ︸

≡r2

, (42)

where f̄ = I1y − I2.
Note that the LDL decomposition must be carried out at

every iteration due to changes of the primal and the dual vari-
ables. However, the permutation ordering matrix P can be
cached for the entire iterations because the sparsity pattern
of S1 and S2 stays the same, which implies that additional
computation time saving can be achieved. Also note that, the
LDL decomposition can be carried out very efficiently by
exploiting the sparsity pattern of the reduced KKT matrices,
S1 and S2. For this purpose, off-the-shelf sparse matrix com-
putation libraries such as SuiteSparse [22] can be used.
Figures 3 and 4 show sparsity pattern of S1 and S2, respec-
tively, with the horizon size N = 300. Matrix S2 does not
have any zero element as shown in Fig. 4.

4 Numerical Simulation

The performance of the proposed integrated guidance and
control design is evaluated through numerical simulation.
The total engagement time is 2.0 s and λ0 = 0◦. The param-
eters of the missile [9,16] is listed in Table 1. In Table 1,
g is 9.8067 m/s2 and the operator diag is a square diago-
nal matrix with the elements inside the square bracket on
the main diagonal. The constant target speed, vt , is set to
1000 m/s. The initial state variable of the missile is set to

Fig. 3 Sparsity pattern of matrix S1

Fig. 4 Sparsity pattern of matrix S2

Table 1 System parameters and design parameters

Zα −2.9399/s vm 510 m/s

Zδ −0.6497/s amax 10 g

Mα −623.6149/s2 εmax 4◦

Mq −5/s ε̇max 25◦/s
Mδ −554.4808/s2 ωa 100/s

Qk diag([0 0 0 0 0]) for k ∈ {1, . . . , N − 1}
QN diag([0 0 0 0 1])
Rk 1 for k ∈ {0, . . . , N − 1}

[0◦ 0◦ 0◦/s 2◦ 60m]T where the order of the state is shown
in (5).

To intercept the target, the fifth diagonal element in QN is
assigned to nonzero number so that small zm is to be achieved
at the end of the terminal homing as shown in Table 1. The
other diagonal elements in Qk for k ∈ {1, . . . , N } are left
zero because they are not required to be regulated.
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Fig. 5 Control input of the missile

Fig. 6 Angle of attack of the missile

The same result is achieved using the sparse formulation
and the dense formulation. Figures 5, 6, 7, 8 and 9 show the
time responses of the state variables. In Fig. 5, solid line and
dotted line represent δm and δc, respectively. The final miss
distance of the proposed algorithm is 0.0005m as shown in
Fig. 9. On the other hand, Figs. 10, 11 and 12 show the time
responses of the acceleration, look angle, and look angle rate
of the missile, respectively. And these variables stay within
the considered limit (dotted line in Figs. 10, 11, 12) dur-
ing the entire engagement, which means that the formulated
problem gives the feasible solution satisfying the inequality
constraints.

Note that, unlike the conventional separate guidance and
control strategies, the proposed algorithm does not produce
divergent acceleration command around the vicinity of the
impact point which is the crucial part for the final miss
distance as shown in Fig. 10. This implies that the pro-
posed technique does not require any divergence-preventive
techniques such as command freezing or nullifying [15].
Therefore, it can take full advantage of applying the optimal
guidance and control until the last moment of the impact.

Computation time of two formulation methods presented
in this study is evaluated and compared. For the platform,
Intel Xeon E5-2670 CPU running at 2.60 GHz is used with
32.0 GB RAM in a 64-bit operating system. And, the algo-

Fig. 7 Pitch rate of the missile

Fig. 8 Flight path angle of the missile

Fig. 9 Relative displacement between the missile and the target

Fig. 10 Acceleration of the missile
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Fig. 11 Look angle of the missile

Fig. 12 Look angle rate of the missile

rithm is constructed on the Matlab R2016a software with
quadprog solver from Matlab optimization toolbox [21].

For each case, simulation is conducted for 20 times and
computation time is recorded only for solving the convex
optimization problem (not the entire process). Table 2 shows
the computation time of the sampling interval of 0.002 s,
0.01 s, and 0.05 s, respectively. As the sampling interval gets
bigger, computation time reduces for both methods. When
the sampling interval is very small, the computation time
of the dense formulation is very long in particular, which
makes it impractical for real-time implementation as shown
in Table 2. However, when the sampling interval is relatively
big, the dense formulation requires less calculation than the
sparse formulation. This means that the horizon size of the
considered problem has critical influence on the dense for-
mulation in terms of computational burden.

Monte Carlo simulation is also employed to evaluate the
performance of the proposed integrated guidance and control
algorithm with different initial conditions of the missile. 500
sample runs are carried out with x0 randomly chosen for
each case. Note that the parameters including amax, εmax,
and ε̇max in Table 1 are also applied inMonte Carlo runs. The
simulation results are presented in Figs. 13, 14, 15, 16 and 17
from where it is shown that the proposed algorithm provides
satisfactory performance. Acceptable finalmiss distances are

Table 2 Computation time evaluation

Formulation method Δt Average Standard deviation

Sparse formulation 0.002 4.4089 0.3166

0.01 0.4082 0.2965

0.05 0.1243 0.2728

Dense formulation 0.002 90.0802 1.7857

0.01 1.2267 0.2349

0.05 0.1022 0.2374

Fig. 13 Angle of attack of the missile (Monte Carlo simulation)

Fig. 14 Relative displacement between the missile and the target
(Monte Carlo simulation)

achieved as shown in Fig. 14. Furthermore, the acceleration,
look angle, and look angle rate of the missile are within the
predefined limit for all cases, as shown in Figs. 15, 16 and
17.

5 Conclusions

An integrated guidance and control problem which consid-
ers the constraints on the maneuver acceleration, the look
angle, and the look angle rate is presented in this study. The
problem is of significant importance in practice because such
constraints can guarantee the flight safety and the seeker per-
formance under high maneuver situations. The problem is
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Fig. 15 Acceleration of the missile (Monte Carlo simulation)

Fig. 16 Look angle of the missile (Monte Carlo simulation)

Fig. 17 Look angle rate of the missile (Monte Carlo simulation)

formulated as a standard quadratic problem in two ways, and
the optimal control is obtained by solving the series of such
problems at every time step. Moderate-sized problems can
be efficiently solved via generic convex optimization solvers
such as the family of interior point methods. The size of the
problem we consider in this study grows with the horizon
size, and the problem must to be solved on-board. To reduce
the complexity in solving the primal–dual search direction,
several numerical techniques, including the Schur comple-
ment, sparsity pattern exploitation, and permutation order
caching, are mentioned.

For future research, the proposed integrated guidance
and control algorithm will be extended to deal with three-
dimensional space. Also, recent first-order methods such
as the alternating direction method of multipliers will be
applied.
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