ORIGINAL PAPER

Dynamics and Control of a Flexible‑Link Flexible‑Joint Space Robot with Joint Friction

Qi Zhang1 · Xiaofeng Liu1 · Guoping Cai[1](http://orcid.org/0000-0003-1248-3700)

Received: 18 December 2019 / Revised: 26 May 2020 / Accepted: 29 May 2020 / Published online: 2 July 2020 © The Korean Society for Aeronautical & Space Sciences 2020

Abstract

Multi-DOF fexible space robots play a signifcant role in the on-orbit service. The fexibility of the robots is mainly caused by the fexible links and some fexible drive elements in joints. The vibration generated by the component fexibility can afect the accuracy of control. In this paper, the dynamics and control issues of fexible-link fexible-joint (FLFJ) space robots considering joint friction are studied. Firstly, the Spong's model is employed to depict fexible joints, and the Coulomb friction model is adopted to describe joint friction. Then based on the single direction recursive construction method and velocity variation principle, dynamic equations of the system are derived. Secondly, a trajectory of joint motion is given and a trajectory tracking controller with friction compensation is designed with the computed torque method. Finally, several numerical simulations are carried out to verify the accuracy of the dynamic model and illustrate the efect of joint friction and joint fexibility on the dynamic characteristics of space robots. Besides, simulation results suggest that the controller designed in this paper could efectively achieve the trajectory tracking control for the 6-DOF FLFJ space robot with joint friction.

Keywords FLFJ space robot · Dynamic model · Trajectory tracking control · Joint friction · Joint fexibility

1 Introduction

Nowadays, with the increasing demand for the on-orbit service, such as spacecraft docking, removal of space debris, fexible space robots with light material have received more attention. Lighter and larger robots have the merits of wider operation range and fast operation speed. However, utilizing long lightweight links and transmission belts or reduction elements with a high reduction ratio, such as the Harmonic Drive™, could bring a side effect of component flexibility [\[1](#page-17-0)]. The coupling of the link fexibility and joint fexibility may lead to the elastic deformation and vibration of systems, which not only affects the accuracy of trajectory tracking but also accelerates fatigue damage of fexible components. Besides, while space robots are moving at low speed, the

 \boxtimes Xiaofeng Liu peterliuxiaofeng@163.com

 \boxtimes Guoping Cai caigp@sjtu.edu.cn

State Key Laboratory of Ocean Engineering, Department of Engineering Mechanics, Shanghai Jiaotong University, 800 Dongchuan Road, Minhang District, Shanghai 200240, China

strongly coupled characteristics between joint friction and component fexibility will be amplifed, so the nonlinear characteristics of joint friction are more obvious. Furthermore, this will also cause that space robots can't be efectively controlled. Therefore, the dynamics modeling and control for fexible-link fexible-joint (FLFJ) space robots with joint friction should get a further investigation.

Heretofore, among the existing investigations about space robots with fexible joints mostly focus on dynamics modeling and control issues. On the one hand, for dynamics modeling, Spong [\[2](#page-17-1)] frstly proposed that a fexible joint could be simplifed as a linearly elastic spring. On the basis, Bridges and Dawson [[3\]](#page-17-2) developed a fexible joint model with nonlinear elasticity and friction. Based on the Euler–Lagrange equation and Lagrange 2nd kind equation, Zavrazhina and Zavrazhina [[4\]](#page-17-3) established the dynamic equations of a rigid space manipulator considering the fexibility and friction of joints, and analyzed the infuence of elastic and friction of joints on the robot motion. Xu and Sun [\[5](#page-17-4)] modeled a 3-DOF rigid robot with fexible joints by the Lagrange method, and analyze the efect of nonlinear stifness fexible joints on the robot control. The two-mass model [\[6](#page-17-5)] was adopted to establish a dynamic model of rigid space robots connected with fexible joints by Zhang and Liu [[7\]](#page-17-6). Xia et al. [\[8](#page-17-7)] utilized

the virtual decomposition-based (VD-based) method to established a dynamic model of a rigid space robot with fexible joints. The experiment results suggest this model can well describe the dynamic characteristics of robots in practice. Additionally, all of the simulation results in the above researches suggest that the dynamic characteristics of robots can be more precisely described by the dynamic model considering joint fexibility. Hence, joint fexibility is an important factor to establish an accurate robot dynamic model. However, the number of state variables will increase for introducing the fexible joint model, which decrease the computation efficiency. Thereby, Buondonno and De Luca [\[10\]](#page-17-8) developed a computation method to solve the inverse dynamics of robots with fexible joints. This can signifcantly avert the complicated symbolic Lagrange modeling and customization. Xia et al. [\[8](#page-17-7)] proposed a virtual decomposition-based method, which can decouple fexible joint dynamics and improve computation efficiency compared to conventional approaches. However, among the existing researches on the dynamics model of space robots, such as Refs. [[9–](#page-17-9)[11](#page-17-10)], researchers usually consider the fexibility of robot links but neglect joint fexibility, or consider joint fexibility but neglect link fexibility. The researches on modeling and control of multi-DOF robots considering both joint fexibility and link fexibility are not integrated enough, because the coupling characteristics of both rigidfexible and fexible–fexible is complicated. Besides, the contribution of joint friction to the dynamic properties of the robots with both fexible links and fexible joints is not grossly clear.

On the other hand, for the control problem of FLFJ robots, since fexible joints or fexible links may generate vibration, it is necessary to suppress the vibration to ensure the operation accuracy and the attitude stability of robots. Recently, the vibration can be suppressed from two aspects. One is to design a proper trajectory of point–point motion. The existing trajectory planning schemes can be classified into two categories $[12]$ $[12]$. The first one is direct method, in which trajectory planning problems can be transferred to parameter optimal problems after defning trajectories as specifc functions. For example, Cui et al. [[13\]](#page-17-12) developed a trajectory planning method to suppress the vibration of spatial fexible manipulators. The second trajectory planning method is named as indirect method. For indirect method, trajectory planning problems is converted to optimal control problems. In [\[14\]](#page-17-13), after establishing the dynamic model of a planar fexible robot, an optimal trajectory is generated by the indirect method. Another aspect to achieve vibration suppression is to devise an efective controller which can eliminate the intense vibration of fexible mechanisms. Hitherto, many methods were proposed, such as PD control [[15](#page-17-14), [16\]](#page-17-15), robust control [\[17,](#page-17-16) [18\]](#page-17-17), fuzzy control [[19,](#page-17-18) [20\]](#page-17-19), self-adaptive control [[21\]](#page-17-20),

singular perturbation [\[22](#page-17-21)]. Moreover, some researchers improve the above methods to achieve more precise tracking control. For instance, a fuzzy controller for a single-link robot is designed by combining the adaptive backstepping design with dynamic surface control in the Ref. [[23](#page-17-22)]. By this approach, the servo control of robots can be realized needless to the velocity variable feedback. Li et al. [[24\]](#page-17-23) combines the input shaping with the ADRC to realize the vibration control and trajectory tracking control. Jia [\[25\]](#page-17-24) designed a dynamic surface controller based on a state observer. The simulation shows that the residual vibration of fexible joints gets efectively suppressed with this method. Since considering fexible joints increases the control complexity of robot systems, the control efficiency may decrease. For this matter, Giusti et al. [\[26\]](#page-17-25) proposed a composite controller based on inverse-dynamics and passivity-based control of fexible-joint robots, which can improve the tracking efficiency and possesses strong robustness against disturbance and parameter uncertainty. Although trajectory tracking and vibration suppression of the low-DOF space robots with only fexible links or only fexible joints can be well achieved through the above control laws, the control approaches for the multi-DOF FLFJ space robots with joint friction are still few. Considering that fexible joints and fexible links can generate two different types of vibration, and joint friction may afect the efficiency of tracking, which make it difficult to realize the trajectory tracking control and vibration suppression quickly and precisely.

In this paper, the Jourdain's velocity variation principle and the single direction recursive construction method are adopted to establish the dynamic model of a space robot with a 6-DOF FLFJ manipulator with joint friction. This can simplify the dynamic equations and improve the computation efficiency compared to the Lagrange method and the New-Euler method. In the dynamic model, the fexible joint is simplifed as a spring-damping system and the friction can be described by the Coulomb friction model. Besides, to achieve trajectory tracking and vibration suppression for robots, a trajectory of joint motion is given and a controller with friction compensation is designed based on the computed torque method.

The paper is organized as follows: Sect. [2](#page-2-0) concisely describes the process of modeling, including that the kinematic and dynamic model of single fexible bodies, establishing a fexible-joint model, the kinematical recursive relations of the system, the calculation of joint friction, and assembling the dynamic equations of the system. Section [3](#page-10-0) gives a trajectory planning method and illustrates the controller design for trajectory tracking. Simulations and comparable analysis for a space robot are given in Sect. [4.](#page-11-0) In the end, Sect. [5](#page-15-0) presents conclusions.

2 Dynamics Modeling of the System

In this paper, a 6-DOF fexible space robot shown in Fig. [1](#page-2-1) is studied. The robot is composed of a rigid spacecraft Base, two rigid links Links 1 and 2, and two fexible links Links 3 and 4. Lv 1 and Lv 2 are two massless bodies. Link 1 is connected to Base by a Cardan joint, and the θ_1 and θ_2 are the joint angles along Axes 1 and 2 respectively. Two revolute joints respectively connected Links 1 and 2, and Links 2 and 3, with θ_3 and θ_4 to be the joint angle along Axes 3 and 4. Besides, Link 4 is attached to Link 3 by a Cardan joint whose joint angle along the Axes 5 and 6 are θ_5 and θ_6 . In this section, the dynamic equations are established with the single direction construction method and Jourdain's velocity variation principle. The absolute reference frame O-*XYZ* is fxed on the origin O. The body-fxed frame O-*XYZ*, which parallels to the absolute reference frame, is fxed on body base, where the origin O is the mass center of base. The floating frame O_1 - $X_1Y_1Z_1$, O_2 - $X_2Y_2Z_2$, O_3 - $X_3Y_3Z_4$, O_4 - $X_4Y_4Z_4$ are fixed on Links 1–4, respectively, and the origins O_1 , O_2 , O_3 , and O_4 are on the mass centers of the four links.

In this section, a dynamic model of a 6-DOF FLFJ space robot with joint friction is established. Section [2.1](#page-2-2) depicts the model of a single fexible body with the assumption modal method. Then in Sect. [2.2,](#page-4-0) the Spong model [[2\]](#page-17-1) is adopted to simplify fexible joints. The kinematical recursive relation of the system is demonstrated with the single direction recursive construction method in Sect. [2.3](#page-5-0). Sections [2.4](#page-7-0) and [2.5](#page-8-0) illustrate the calculation procedure of joint friction. In Sect. [2.6,](#page-10-1) the dynamic equations of the system are obtained by the Jourdain's velocity variation principle.

2.1 Kinematic and Dynamic Equations of a Single Flexible Body

For the system composed of *N* bodies, the fexible body *Bi* $(i=1, 2, ..., N)$ can be divided into l_i elements, as shown in Fig. [2](#page-2-3). The mass matrix of the *k*th node can be expressed as

Fig. 2 Single fexible body

 $M_i^k =$ $\int m_i^k$ **0** $\mathbf{0}^{\mathbf{i}}$ \mathbf{J}^k_i $\mathbf{R}^{6\times6}, k = 1, \ldots, l_n$, where $\mathbf{m}_i^k \in \mathbb{R}^{3\times3}$ is the translational mass matrix and $J_i^k \in \mathbb{R}^{3 \times 3}$ is the matrix of inertia moment of the k th node, l_n is the number of nodes of body *Bi* .

As shown in Fig. [2,](#page-2-3) the floating frame \vec{e}^i is established at the point C_i , which is the mass center of the flexible body B_i . In addition, the vector $\vec{\rho}_i^{k_0}$ and $\vec{\rho}_i^k$ respectively represent the relative position of the node *k* before the deformation and after the deformation. The absolute position vector of the mass center C_i and the node *k* are \vec{r}_i and \vec{r}_i^k , respectively. The vectors \vec{u}^k and $\vec{\varphi}^k$ are the translational and rotational deformation vectors of node *k*, respectively. By the modal coordinates, they can be depicted as

$$
\vec{u}_i^k = \vec{\boldsymbol{\Phi}}_i^k \boldsymbol{a}_i, \quad \vec{\boldsymbol{\varphi}}_i^k = \vec{\boldsymbol{\Psi}}_i^k \boldsymbol{a}_i,
$$
\n(1)

where $\vec{\Phi}_i^k$ and $\vec{\Psi}_i^k$ are the translational and rotational modal vector matrix of the node k , respectively; a_i is the modal coordinate vector of body B_i . Here assuming that *s* modes of body B_i are adopted, there is $\vec{\Phi}_i^k = [\vec{\phi}_1^k, \dots, \vec{\phi}_s^k]$, $\overrightarrow{\boldsymbol{\Psi}}_i^k = [\overrightarrow{\boldsymbol{\psi}}_1^k, ..., \overrightarrow{\boldsymbol{\psi}}_s^k]$, and $\boldsymbol{a}_i = [a_1, ..., a_s]^T$. The coordinate matrices of $\vec{\Phi}_i$ and $\vec{\Psi}_i^k$ in the absolute reference frame can be expressed as

$$
\boldsymbol{\Phi}_i^k = \mathbf{A}_i \boldsymbol{\Phi}_i^{\prime k}, \quad \boldsymbol{\Psi}_i^k = \mathbf{A}_i \boldsymbol{\Psi}_i^{\prime k}, \tag{2}
$$

Fig. 1 6-DOF fexible space robot model

where A_i is the direction cosine matrix relating the floating frame \vec{e}^i and the absolute reference frame; $\vec{\Phi}^i_i$ and $\vec{\Psi}^r_1$ are the coordinate matrices of $\vec{\Phi}_i^k$ and $\vec{\Psi}_i^k$ in the floating frame \vec{e}^i , which are both constant matrices.

As depicted in Fig. [2](#page-2-3), the relation of relative vector and deformation of the *k*th node can be expressed as

$$
\vec{\rho}_i^k = \vec{\rho}_i^{k_0} + \vec{u}_i^k. \tag{3}
$$

The Eq. ([3](#page-3-0)) can be expressed by the coordinate matrices in the foating frame as

$$
\rho_i^{\prime k} = \rho_i^{\prime k_0} + \Phi_i^{\prime k} a_i,\tag{4}
$$

and in the absolute frame as

$$
\rho_i^k = \rho_i^{k_0} + \Phi_i^k a_i. \tag{5}
$$

The velocity and acceleration of the *k*th node in the foating frame are expressed as

$$
\boldsymbol{v}_{ir}^{\prime k} = \boldsymbol{\varPhi}_i^{\prime k} \boldsymbol{\dot{a}}_i, \quad \boldsymbol{v}_{ir}^{\prime k} = \boldsymbol{\varPhi}_i^{\prime k} \ddot{\boldsymbol{a}}_i.
$$

Also, the absolute position vector of the *k*th node can be depicted as

$$
\vec{r}_i^k = \vec{r}_i + \vec{\rho}_i^k. \tag{7}
$$

The absolute velocity and acceleration of the *k*th node can be expressed as

$$
\dot{\vec{r}}_i^k = \dot{\vec{r}}_i + \dot{\vec{\rho}}_i^k = \dot{\vec{r}}_i + \vec{\omega}_i \times \vec{\rho}_i^k + \vec{v}_i^k,
$$
\n(8)

$$
\ddot{\vec{r}}_i^k = \ddot{\vec{r}}_i + \ddot{\vec{\rho}}_i^k = \ddot{\vec{r}}_i + \dot{\vec{\omega}}_i \times \vec{\rho}_i^k + \dot{\vec{v}}_{ir}^k + 2 \times \vec{\omega}_i \times \vec{v}_{ir}^k + \vec{\omega}_i \times (\vec{\omega}_i \times \vec{\rho}_i^k),
$$
\n(9)

where $\vec{\omega}$ and $\dot{\vec{\omega}}$ are the angular velocity and acceleration vectors of the floating frame \vec{e}^i concerning the absolute reference frame, respectively; \vec{v}_r^k and $\dot{\vec{v}}_r^k$ are the translational velocity and acceleration vectors of the node *k* in the foating frame \vec{e}^i . Considering Eq. ([5\)](#page-3-1), the coordinate vectors of Eqs. ([7\)](#page-3-2)–[\(9](#page-3-3)) in the absolute reference frame can be expressed as

$$
\boldsymbol{r}_i^k = \boldsymbol{r}_i + \boldsymbol{\rho}_i^k = \boldsymbol{r}_i + \boldsymbol{\rho}_i^{k_0} + \boldsymbol{\Phi}_i^k \boldsymbol{a}_i, \tag{10}
$$

$$
\dot{\boldsymbol{r}}_i^k = \dot{\boldsymbol{r}}_i + \dot{\boldsymbol{\rho}}_i^k = \dot{\boldsymbol{r}}_i - \tilde{\boldsymbol{\rho}}_i^k \boldsymbol{\omega}_i + \boldsymbol{\Phi}_i^k \dot{\boldsymbol{a}}_i, \tag{11}
$$

$$
\ddot{\boldsymbol{r}}_i^k = \ddot{\boldsymbol{r}}_i + \ddot{\boldsymbol{\rho}}_i^k = \ddot{\boldsymbol{r}}_i - \tilde{\boldsymbol{\rho}}_i^k \dot{\boldsymbol{\omega}}_i + \boldsymbol{\Phi}_i^k \ddot{\boldsymbol{a}}_i + 2 \tilde{\boldsymbol{\omega}}_i \boldsymbol{\Phi}_i^k \dot{\boldsymbol{a}}_i + \tilde{\boldsymbol{\omega}}_i \tilde{\boldsymbol{\omega}}_i \boldsymbol{\rho}_i^k, \quad (12)
$$

where $\tilde{\boldsymbol{\omega}}_i$ can be defined as

$$
\tilde{\boldsymbol{\omega}}_i = -\tilde{\boldsymbol{\omega}}_i^{\mathrm{T}} = \begin{bmatrix} 0 & -\omega_{i3} & \omega_{i2} \\ \omega_{i3} & 0 & -\omega_{i1} \\ -\omega_{i2} & \omega_{i1} & 0 \end{bmatrix} \in \mathfrak{R}^{3 \times 3}, \quad \boldsymbol{\omega}_i = \begin{bmatrix} \omega_{i1} \\ \omega_{i2} \\ \omega_{i3} \end{bmatrix} . \tag{13}
$$

The Eqs. (11) (11) and (12) (12) can be written in a matrix form as

$$
\dot{\boldsymbol{r}}_i^k = \boldsymbol{B}_i^k \boldsymbol{v}_{iB}, \quad \ddot{\boldsymbol{r}}_i^k = \boldsymbol{B}_i^k \dot{\boldsymbol{v}}_{iB} + \boldsymbol{\omega}_i^k, \tag{14}
$$

where

$$
\boldsymbol{B}_{i}^{k} = [\boldsymbol{I}_{3} - \tilde{\boldsymbol{\rho}}_{i}^{k} \boldsymbol{\Phi}_{i}^{k}] \in \mathfrak{R}^{3 \times (6+s)},
$$
\n(15)

$$
\boldsymbol{\omega}_i^k = 2\tilde{\boldsymbol{\omega}}_i \boldsymbol{\Phi}_i^k \dot{\boldsymbol{\alpha}}_i + \tilde{\boldsymbol{\omega}}_i \tilde{\boldsymbol{\omega}}_i \boldsymbol{\rho}_i^k \in \mathfrak{R}^{3 \times 1},\tag{16}
$$

$$
\boldsymbol{v}_{iB} = [\dot{\boldsymbol{r}}_i^{\mathrm{T}} \ \boldsymbol{\omega}_i^{\mathrm{T}} \ \dot{\boldsymbol{a}}_i^{\mathrm{T}}]^{\mathrm{T}} \in \mathfrak{R}^{(6+s)\times 1}.
$$

The v_{iB} defined in Eq. [\(14](#page-3-6)) comprises the absolute velocity, the absolute acceleration and the modal velocity of body B_i in the floating coordinate. If the v_{iB} is ascertained, the velocity of nodes on body B_i can be obtained. And the acceleration of nodes can be solved when v_{iB} and \dot{v}_{iB} are known. Then the rotational coordinate vectors relation between the *k*th and body B_i is derived.

The absolute angular velocity and acceleration of the *k*th node are

$$
\vec{\omega}_i^k = \vec{\omega}_i + \vec{\omega}_{ir}^k,\tag{18}
$$

$$
\dot{\vec{\omega}}_i^k = \dot{\vec{\omega}}_i + \dot{\vec{\omega}}_i^k + \dot{\vec{\omega}}_i \times \vec{\omega}_{i}^k,
$$
\n(19)

where $\vec{\omega}_{ir}^k$ and $\dot{\vec{\omega}}_{ir}^k$ are the angular velocity and acceleration vectors of the *k*th node concerning the floating frame \vec{e}^i , and their coordinate matrices in the absolute frame can be expressed as

$$
\boldsymbol{\omega}_{ir}^k = \boldsymbol{\varPsi}_i^k \boldsymbol{\dot{a}}_i, \quad \boldsymbol{\dot{\omega}}_{ir}^k = \boldsymbol{\varPsi}_i^k \boldsymbol{\ddot{a}}_i.
$$
 (20)

Substituting Eqs. (20) (20) into (18) (18) and (19) (19) the coordinate vectors in the absolute reference frame can be given by

$$
\boldsymbol{\omega}_i^k = \boldsymbol{\omega}_i + \boldsymbol{\varPsi}_i^k \boldsymbol{\dot{a}}_i,\tag{21}
$$

$$
\dot{\boldsymbol{\omega}}_i^k = \dot{\boldsymbol{\omega}}_i + \boldsymbol{\varPsi}_i^k \ddot{\boldsymbol{a}}_i + \tilde{\boldsymbol{\omega}} \boldsymbol{\varPsi}^k \ddot{\boldsymbol{a}}_i.
$$
 (22)

The above two equations can be rewritten in a matrix form as

$$
\boldsymbol{\omega}_i^k = \boldsymbol{R}_i^k \boldsymbol{v}_{iB}, \quad \boldsymbol{\omega}_i^k = \boldsymbol{R}_i^k \boldsymbol{\dot{v}}_{iB} + \boldsymbol{\tau}_i^k,
$$
\n(23)

where $\mathbf{R}_i^k = [\mathbf{0} \mathbf{I}_3 \mathbf{\Psi}_i^k] \in \mathbb{R}^{3 \times (6+s)}$, $\mathbf{\tau}_i^k = \tilde{\boldsymbol{\omega}}_i \mathbf{\Psi}_i^k \dot{\boldsymbol{a}}_i \in \mathbb{R}^{3 \times 1}$. Equations [\(23](#page-3-10)) are the rotational coordinate velocity and acceleration relation between the k th node and body B_i . From Eqs. (14) (14) and (23) (23) , we can obtain the relation between

the generalized velocity of the nodes and the generalized velocity of body B_i , which can be expressed as

$$
\boldsymbol{v}_i^k = \boldsymbol{\Pi}_i^k \boldsymbol{v}_{iB},\tag{24}
$$

$$
\dot{\boldsymbol{v}}_i^k = \boldsymbol{\Pi}_i^k \dot{\boldsymbol{v}}_{iB} + \begin{bmatrix} \boldsymbol{\omega}_i^k \\ \boldsymbol{\tau}_i^k \end{bmatrix},
$$
\n(25)

where $\mathbf{v}_i^k = [\dot{\mathbf{r}}_i^{k\mathrm{T}} \ \boldsymbol{\omega}_i^{k\mathrm{T}}]^{\mathrm{T}} \in \mathfrak{R}^{6 \times 1}, \ \boldsymbol{\Pi}_i^k =$ $\begin{bmatrix} \boldsymbol{B}^k_i \\ \boldsymbol{R}^k_i \end{bmatrix}$ $\Big] \in \Re^{6 \times (6+s)}$. Thus, the kinematic relation of a single fexible body has

been demonstrated. Here according to the Jourdain's velocity variation principle, the dynamic equation of body B_i can be written as

$$
\sum_{k=1}^{l_n} \delta \mathbf{v}_i^{k\mathrm{T}} \big(\boldsymbol{M}_i^k \dot{\mathbf{v}}_i^k + \boldsymbol{F}_i^k \big) - \delta \dot{\boldsymbol{\varepsilon}}_i^{k\mathrm{T}} \boldsymbol{\sigma}_i^k = 0, \tag{26}
$$

where \boldsymbol{F}_i^k are the resultant external force and resultant exterwhere \mathbf{r}_i are the resultant external force and resultant external torque on the *k*th node; ϵ_i^k and σ_j^k are the strain and stress of the node *k*, respectively. $\delta \dot{\epsilon}_i^{kT} \sigma_i^k$ is the virtual power of node stress of the *k*th node. The sum of virtual power of node stress of body B_i can be calculated by

$$
\sum_{k=1}^{l_n} \delta \dot{\epsilon}_i^{kT} \sigma_i^k = \delta \dot{a}_i^T (C_a \dot{a}_i + K_a a_i), \qquad (27)
$$

where $C_a \in \mathbb{R}^{s \times s}$ is the modal damping, and $K_a \in \mathbb{R}^{s \times s}$ is the stiffness matrix of body B_i .

Substituting Eqs. (24) (24) (25) (25) and (27) (27) into (26) , we can obtain

$$
\delta v_{iB}^{T}(-M\dot{v}_{iB} - f_{i}^{\omega} + f_{i}^{\omega} - f_{i}^{\omega}) = 0, \qquad (28)
$$

where

Fig. 3 Joint model: **a** rigid joint model; **b** fexible joint model

$$
M_{i} = \sum_{k=1}^{l_{n}} \Pi_{i}^{k} M_{i}^{k} \Pi_{i}^{k} \in \mathfrak{R}^{(6+s)\times(6+s)},
$$
 (29)

$$
f_i^{\omega} = \sum_{k=1}^{l_n} \boldsymbol{\Pi}_i^{k \mathrm{T}} \boldsymbol{M}_i^k \begin{bmatrix} \boldsymbol{\omega}_i^k \\ \boldsymbol{\tau}_i^k \end{bmatrix} \in \mathfrak{R}^{(6+s)\times 1},\tag{30}
$$

$$
f_i^o = \sum_{k=1}^{l_n} \Pi_i^{k \mathrm{T}} F_i^k \in \mathfrak{R}^{(6+s) \times 1},\tag{31}
$$

$$
f_i^u = \left[\begin{array}{cc} \mathbf{0}^{\mathrm{T}} & \mathbf{0}^{\mathrm{T}} & (C_a \dot{a} + K_a a)^{\mathrm{T}} \end{array}\right]^{\mathrm{T}} \in \mathfrak{R}^{(6+s)\times 1},\tag{32}
$$

where M_i , f_i^{ω} , f_i^{ω} and f_i^{ω} are the generalized mass, the generalized inertia force, the generalized external force and the generalized elastic force of body *Bi* .

2.2 Flexible Revolute Joint Model

Previously, joints are regarded as rigid bodies to simplify the dynamic model. However, when the robot has multidegrees of freedom, neglecting joint fexibility could afect the accuracy of simulation results inevitably. Therefore, to get a precise fexible space robot dynamic model, joint fexibility is considered in this paper.

Spong [[2\]](#page-17-1) frstly proposed a fexible joint model, which efficiently described joint flexibility. According to Spong's model, the elasticity of the *i*th joint is described by a linear torsional spring with the stiffness k_i and the damping c_i . And, the additional degrees of freedom are introduced by the elastic coupling of the motor shaft to the links. A simplifed model of a fexible joint is shown in Fig. [3](#page-4-5)a, b. The rotor of each actuator is a fictitious body, which is regarded as an additional rigid body with the equivalent moment of inertia after deceleration in the system. Thereby, the degrees of freedom of the robot increases. The angle of the joint connected Rotor *i* and body B_{i-1} is θ_i^- , while the angle of the joint connected Rotor *i* and body B_i is θ_i^+ , which are along the same rotational axis. So the angle of the *i*th fexible joint can be expressed as

$$
\theta_i = \theta_i^- + \theta_i^+ \quad (i = 1, 2, ..., N). \tag{33}
$$

Similarly, corresponding generalized coordinate *q* also can be divided into 2 parts as q_{2i-1} and q_{2i} (*i* = 1, 2, …, *N*), which respectively represent θ_i^- and θ_i^+ . \dot{q}_{2i-1} and \dot{q}_{2i} . respectively represents $\dot{\theta}_i^-$ and $\dot{\theta}_i^+$. Therefore, the elastic torque of the *i*th joint can be expressed by the generalized coordinates as

$$
f_i^s = k_i q_{2i} + c_i \dot{q}_{2i} \quad (i = 1, 2, ..., N),
$$
\n(34)

where k_i and c_i is the equivalent stiffness and damping of the *i*th joint, respectively. f_{2i}^s is the generalized force related to generalized coordinate q_{2i} , so the virtual power of elastic torque acting on the system can be obtained

$$
\Delta P^s = \sum_{i=1}^N \Delta \dot{q}_{2i} f_{2i}^s = \Delta \dot{q}^T f_s^{ey}.
$$
\n(35)

For the space robot shown in Fig. [1,](#page-2-1) body B_1 is the base. So $q_1 \sim q_3$ and $q_4 \sim q_6$ respectively represent the translation coordinates and the rotational coordinates of the base. Considering the joint fexibility, 6 rotors are added into the system compared to the original model, as shown in Fig. [4.](#page-5-1) The *i*th axis, the *i*th rotor and the *i*th spring converge at the *i*th point, which represents the *i*th fexible joint. Thereby, the degrees of freedom of the manipulator increase to 12. The rotational coordinates of the fexible joints in the robot are respectively $q_7 \sim q_{18}$. It can be obtained that $q = [q_1, \ldots, q_{18}]^{\mathrm{T}}$...

2.3 Kinematical Recursive Relations

It can be seen from Fig. [4](#page-5-1) that the space robot system consists of 13 bodies, where Base, Link 3, Link 4, Rotor 1–6, Lv 1 and Lv 2 are rigid, and Link 1 and Link 2 are fexible. In this section, the kinematical relation of two adjacent bodies is derived. We concisely demonstrate the relation of a fexible body and a rigid body. Once neglecting the fexible items in the relation of a rigid body and a fexible body derived before, the relation of two adjacent rigid bodies can be obtained.

The schematic diagram of a rigid body and a fexible body is shown in Fig. [5.](#page-5-2) Firstly, the coordinate frames of this paper are introduced as follows. As shown in Fig. [5](#page-5-2), body *Bj* is rigid and body B_i is flexible. The absolute reference frame O-*XYZ* is established on body B_0 and O is the origin. The floating frame \vec{e}^i is established on the mass center C_i of B_i before the deformation. The body fixed frame \vec{e}^j is established on the mass center C_j of B_j . The number of bodies and

Fig. 5 Schematic diagram of a rigid body and a fexible body

Fig. 4 6-DOF FLFJ space robot model

joints are regularly labeled [[27\]](#page-17-26), in other words, body *Bi* connects its inboard body B_j by the *i*th joint, as shown in Fig. [5](#page-5-2), where Q_i and P_i are the definition points of the *i*th joint on body B_j and body B_i . The point P_{i0} is the joint definition point before the deformation. The local coordinate frame \vec{e}^i_j P_{p_0} is built on the point P_{i0} , which parallels \vec{e}^i . The frames \vec{e}^i_j P_i^{in} and \vec{e}_j^i Q_i are the local frames of the points P_i and Q_i . The local frames of the *i*th joint are represented by \vec{e} ^{*i*}</sup> \int_h and \vec{e}^i_j h_0 ^{*h*}, which are fixed on the bodies B_i and B_j , and the origins of the two frames are P_i and Q_i , respectively.

As shown in Fig. [5,](#page-5-2) $\vec{h}_i = \overrightarrow{Q_i P_i}$ describes the relative translation of the *i*th joint, and $\vec{\omega}_{ri}$ will be used to describe the relative revolution of the *i*th joint. As shown in Fig. [5,](#page-5-2) the absolute position of the mass center of body B_i can be expressed as

$$
\boldsymbol{r}_i = \boldsymbol{r}_j + \boldsymbol{\rho}_j^{\mathcal{Q}_i} + \boldsymbol{h}_i - \boldsymbol{\rho}_i^{\mathcal{P}_i}.\tag{36}
$$

Taking the first derivative of Eq. (36) (36) (36) and considering Eq. (11) (11) , we have

$$
\dot{\boldsymbol{r}}_i = \dot{\boldsymbol{r}}_j + (-\tilde{\boldsymbol{\rho}}_j^{Q_i} - \tilde{\boldsymbol{h}}_i + \tilde{\boldsymbol{\rho}}_i^{P_i})\boldsymbol{\omega}_j + (\boldsymbol{H}_i^{hT})\boldsymbol{\omega}_i + \tilde{\boldsymbol{\rho}}_i^{P_i}\boldsymbol{H}_i^{QT})\dot{\boldsymbol{q}}_i + (-\boldsymbol{\Phi}_i^{P_i} - \tilde{\boldsymbol{\rho}}_i^{P_i}\boldsymbol{\Psi}_i^{P_i})\dot{\boldsymbol{a}}_i, \tag{37}
$$

where $\boldsymbol{\Phi}_i^{P_i}$ are the translation modal vector matrix of the point P_i in the absolute reference frame, respectively; $\Psi_i^{P_i}$ are the rotational modal vector matrices; \dot{a}_i is the first derivative of modal coordinate vectors of $B_i \, \mathbf{q}_i$ is the vector of joint coordinates; $H_i^{\Omega T}$ and H_i^{hT} denote the rotational and translational kinematics relations of the *i*th joint, and those can be expressed as [\[27](#page-17-26)]

$$
H_i^{\Omega T} = A_i^{h_0} H_i^{\prime \Omega T}, \quad H_i^{hT} = A_i^{h_0} H_i^{\prime hT}, \tag{38}
$$

where $A_i^{h_0}$ is the direction cosine matrix of \vec{e}_i^i h_0 concerning the absolute reference frame, $H_i^{\prime \Omega T}$ is the matrix whose nonzero columns are composed of the joint rotational axis vectors, $H_i^{\prime hT}$ is the matrix whose nonzero columns are composed of the joint translational axis vectors.

The relation of angular velocities of B_i and B_i is

$$
\boldsymbol{\omega}_i = \boldsymbol{\omega}_j + \boldsymbol{\omega}_{ri} - \boldsymbol{\omega}_{ri}^{P_i},\tag{39}
$$

where $\boldsymbol{\omega}_{ri} = \boldsymbol{H}_i^{\Omega T} \dot{\boldsymbol{q}}_i$ is the joint angular velocity; [\[27](#page-17-26)] $\boldsymbol{\omega}_{ri}^{P_i}$ is the angular velocities of the point P_i caused by the deformation, which can be expressed as

$$
\boldsymbol{\omega}_{ri}^{P_i} = \boldsymbol{\varPsi}_i^{P_i} \boldsymbol{\dot{a}}_i. \tag{40}
$$

Considering Eqs. ([40](#page-6-1)), ([39\)](#page-6-2) can be rewritten as

$$
\boldsymbol{\omega}_i = \boldsymbol{\omega}_j + \boldsymbol{H}_i^{\Omega \mathsf{T}} \dot{\boldsymbol{q}}_i - \boldsymbol{\Psi}_i^{P_i} \dot{\boldsymbol{a}}_i. \tag{41}
$$

In the absolute reference frame, we defne the coordinate vector of the confguration velocity of the two bodies as

$$
\boldsymbol{v}_i = [\dot{\boldsymbol{r}}_i^{\mathrm{T}} \ \boldsymbol{\omega}_i^{\mathrm{T}} \ \dot{\boldsymbol{a}}_i^{\mathrm{T}}]^{\mathrm{T}}, \quad \boldsymbol{v}_j = [\dot{\boldsymbol{r}}_j^{\mathrm{T}} \ \boldsymbol{\omega}_j^{\mathrm{T}}]^{\mathrm{T}}, \tag{42}
$$

and redefine the generalized coordinate vector of body B_i as $y_i = [q^T a^T]_i^T$, where $y_i \in \Re^{\delta_i + s_i}, \delta_i$ is the degree of freedom of the *i*th joint, $\delta_i \leq 6$, and s_i is the number of modal coordinates of body B_i . From Eqs. [\(37](#page-6-3)) and ([41\)](#page-6-4), the recursive relation of configuration velocity between body B_i and body *Bj* can be expressed as

$$
v_i = T_{ij}v_j + U_i\dot{y}_i, \quad j = L(i), \quad i = 1, ..., N,
$$
 (43)

where

$$
T_{ij} = \begin{bmatrix} I_3 & -\tilde{p}_j^{Q_i} - \tilde{h}_i + \tilde{p}_i^{P_i} \\ \mathbf{0} & I_3 \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \in \mathfrak{R}^{(6+s_i)\times 6}, \tag{44}
$$

$$
U_i = \begin{bmatrix} H_i^h \tilde{P}_i^P H_i^{QT} & -\Phi_i^{P_i} - \tilde{\rho}_i^{P_i} \Psi_i^{P_i} \\ H_i^{QT} & -\Psi_i^{P_i} \\ 0 & I_{s_i} \end{bmatrix} \in \mathfrak{R}^{(6+s_i)\times(\delta_i+s_i)}.
$$
\n(45)

Taking the derivation of Eq. ([41](#page-6-4)), we have

$$
\dot{\boldsymbol{\omega}}_i = \dot{\boldsymbol{\omega}}_j + \boldsymbol{H}^{\Omega \Gamma} \ddot{\boldsymbol{q}}_i - \boldsymbol{\varPsi}_i^{\mathcal{P}_i} \ddot{\boldsymbol{a}}_i + \boldsymbol{\beta}_{i2},\tag{46}
$$

where

$$
\beta_{i2} = \tilde{\omega}_j \omega_{ri} - \tilde{\omega}_i \omega_{ri}^{P_i} + \eta_i, \qquad (47)
$$

where $\eta_i = H_i^{\Omega T} \dot{q}_i$ [\[27](#page-17-26)].

By taking the derivative of Eq. (37) (37) (37) and considering Eq. ([12\)](#page-3-5), one can obtain

$$
\ddot{\mathbf{r}}_i = \ddot{\mathbf{r}}_j + (-\tilde{\boldsymbol{\rho}}_j^{Q_i} - \tilde{\boldsymbol{h}}_i + \tilde{\boldsymbol{\rho}}_i^{P_i})\dot{\boldsymbol{\omega}}_j + (\boldsymbol{H}_i^{hT}) + \tilde{\boldsymbol{\rho}}_i^{P_i} \boldsymbol{H}_i^{QT})\ddot{\boldsymbol{q}}_i + (-\boldsymbol{\Phi}_i^{P_i} - \tilde{\boldsymbol{\rho}}_i^{P_i} \boldsymbol{\Psi}_i^{P_i})\ddot{\boldsymbol{a}}_i + \boldsymbol{\beta}_{i1},
$$
\n(48)

where

$$
\beta_{i1} = \tilde{\omega}_j \tilde{\omega}_j \rho_j^{Q_i} + \tilde{\omega}_j \tilde{\omega}_j h_i - \tilde{\omega}_i \tilde{\omega}_i \rho_i^{P_i} + 2(\tilde{\omega}_j v_{ri} - \tilde{\omega}_i v_{ri}^{P_i}) + \tilde{\rho}_i^{P_i} \beta_{i2},
$$
\n(49)

where, \boldsymbol{v} $\frac{P_i}{r_i} = \boldsymbol{\Phi}_i^{P_i}$ $\int_i^{P_i} a_i$.

From Eqs. (43) (43) (43) (46) and (48) , the recursive relation of generalized acceleration between the two bodies can be written as

$$
\dot{v}_i = T_{ij}\dot{v}_j + U_i \ddot{y}_i + \beta_i, \quad j = L(i), \quad i = 1, ..., N,
$$
 (50)

where $\beta_i = [\beta_{i1}^T \ \beta_{i2}^T \ \mathbf{0}^T]^T \in \mathfrak{R}^{(6+s_i)\times 1}$.

As deduced above, we obtain the kinematical recursive relations of generalized velocity and generalized acceleration of a rigid body and a fexible body. Similarly, the kinematical recursive relations of two adjacent rigid bodies can be obtained. For this case, $y_k = q_k$, $k = i, j$, the matrices T_{ij} , U_i and β_i can be expressed as

$$
T_{ij} = \begin{bmatrix} I_3 & -\tilde{\rho}_j^{Q_i} - \tilde{h}_i + \tilde{\rho}_i^{P_i} \\ \mathbf{0} & I_3 \end{bmatrix} \in \mathfrak{R}^{6 \times 6}, \tag{51}
$$

$$
U_i = \begin{bmatrix} H_i^h \tilde{P}_i^P H_i^{QT} \\ H_i^{QT} \end{bmatrix} \in \mathfrak{R}^{6 \times \delta_i},\tag{52}
$$

$$
\boldsymbol{\beta}_i = [\boldsymbol{\beta}_{i1}^{\mathrm{T}} \boldsymbol{\beta}_{i2}^{\mathrm{T}}]^{\mathrm{T}} \in \mathfrak{R}^{6 \times 1},\tag{53}
$$

where

$$
\beta_{i1} = \tilde{\omega}_j \tilde{\omega}_j \rho_j^Q - \tilde{\omega}_i \tilde{\omega}_i \rho_i^P + 2 \tilde{\omega}_j v_{ri} + \tilde{\rho}_i^P \beta_{i2}, \quad \beta_{i2} = \tilde{\omega}_j \omega_{ri} + \eta_i.
$$
\n(54)

Below the kinematical recursive relation of the system is deduced. For a multibody system with *N* bodies, the relation can be expressed as

$$
\begin{cases}\n\mathbf{v}_i = \sum_{k: B_k \leq B_i} G_{ik} \dot{\mathbf{y}}_k \\
\dot{\mathbf{v}}_i = \sum_{k: B_k \leq B_i} G_{ik} \ddot{\mathbf{y}}_k + \mathbf{g}_{ik}\n\end{cases}, \quad i = 1, ..., N \text{ and } k \neq 0,
$$
\n(55)

where

$$
G_{ik} = \begin{cases} T_{ij}G_{jk} & \text{when } B_k < B_i \\ U_i & \text{when } B_k = B_i, \quad (i, k = 1, \dots, N), \\ 0 & \text{when } B_k \neq < B_i \end{cases} \tag{56}
$$

$$
\mathbf{g}_{ik} = \begin{cases} T_{ij}\mathbf{g}_{jk} & \text{when } B_k < B_i \\ \beta_i & \text{when } B_k = B_i, \quad (i, k = 1, \dots, N). \\ 0 & \text{when } B_k \neq < B_i \end{cases} \tag{57}
$$

In Eqs. [\(56\)](#page-7-1) and ([57](#page-7-2)), " $B_k < B_i$ " means that body B_k is on the path from the root body B_0 to body B_i ["] $B_k = B_i$ " represents that body B_k is body B_i and " $B_k \neq B_i$ " means that body B_k is not on the way from the root body B_0 to body B_i .

Writing Eq. (55) (55) in a matrix form, we have

$$
\begin{cases}\nv = G\dot{y} \\
\dot{v} = G\ddot{y} + g\hat{I}_N\n\end{cases}
$$
\n(58)

where $\mathbf{v} = [\mathbf{v}_1^T, \dots, \mathbf{v}_N^T]^T$ is the total vector of configuration velocity of the system and $\hat{\mathbf{I}}_N \in \mathbb{R}^{N \times 1}$ is a *N*-dimensional vector with all elements being 1. The parameters *G* and *g* in Eq. ([58\)](#page-7-4) are

$$
G = \begin{bmatrix} G_{11} & \cdots & G_{1N} \\ \vdots & \ddots & \vdots \\ G_{N1} & \cdots & G_{NN} \end{bmatrix}, \quad g = \begin{bmatrix} g_{11} & \cdots & g_{1N} \\ \vdots & \ddots & \vdots \\ g_{N1} & \cdots & g_{NN} \end{bmatrix} . \tag{59}
$$

2.4 Revolute Joint Friction

In the on-orbit service, compared to the ground, circumstances of space are extremely complicated. The temperature can quickly alternate from negative several hundred centigrade to extremely high temperature in the space. The thermal expansion and contraction phenomenon of the joint material will aggravate the joint friction, which could afect the motion of space robots. So far, some space experiments suggest that the joint friction is more obvious in space than on the ground. Hence, joint friction in space robots attracts more attention.

In this paper, Coulomb friction model is utilized to describe the friction in joints. The friction force can 0. be denoted as

$$
F^f = -\text{sign}(v)\mu F_N,\tag{60}
$$

where ν is the relative velocity, μ is the coefficient of sliding friction, F_N is the normal pressure. Then the geometric model of a revolute joint is shown in Fig. [6,](#page-7-5) where F_x , F_y , F_z , T_y and T_z are the ideal constraint forces and ideal constraint moments at the joint coordinate frame $O_r - X_r Y_r Z_r$, respectively. The coordinate vector of ideal force and joint friction force can be expressed as

$$
\boldsymbol{F}_r^c = [F_x, F_y, F_z, 0, T_y, T_z]^T, \quad \boldsymbol{F}_r^f = [0, 0, 0, T_f, 0, 0]^T.
$$
\n(61)

With two adjacent bodies moving relatively, friction phenomenon could occur in joints. Joint friction moments are positively relative to the normal pressure in joints. The normal pressure is produced by the actions of the ideal constraint forces and the ideal constraint moments in joints. Next, calculation of joint friction is given.

Fig. 6 Revolute joint model

The equivalent pressure by the axial constraint force is $N_1 = |F_x|$. The equivalent pressure by the transverse con-
stroint force is $N = \sqrt{F_1^2 + F_2^2}$. So the Coulomb frictional straint force is $N_2 = \sqrt{F_y^2 + F_z^2}$. So the Coulomb frictional moments are

$$
T_f^{N_1} = \mu N_1 R_n, \tag{62}
$$

$$
T_f^{N_2} = \mu N_2 R_p, \tag{63}
$$

where R_n is the friction arm and R_p is the pin radius.

The equivalent pressure of the rotational joint by the constraint moments is $N_3 = \sqrt{T_y^2 + T_z^2}$ $/R_b$ where R_b is the bending reaction arm. The Coulomb frictional moment equivalent from the constraint moments is

$$
T_f^{N_3} = \mu N_3 R_p. \tag{64}
$$

From Eqs. (62) (62) (62) (63) (63) and (64) (64) , the total Coulomb friction moment can be written as

$$
T_f = T_f^{N_1} + T_f^{N_2} + T_f^{N_3}.
$$
\n(65)

2.5 Virtual Power of Frictional Force in Joints

Joint friction is a function of the ideal constraint force of joints, which can be expressed by the Cartesian coordinates of systems due to the Newton–Euler theory. Depending on the relation of the generalized coordinates and Cartesian coordinates of the system, joint frictional force function can be denoted by the generalized coordinates. Below the relation between ideal constraint force and generalized coordinates is derived. Then the virtual power generated by frictional force is deduced, which will be introduced to assemble dynamic equations of the system in Sect. [2.6.](#page-10-1)

the space robot system

Figure [7](#page-8-4) is a topology graph of a space robot system, and the *n*th joint connects the inner body B_{n-1} and the outer body B_n . If body B_n is flexible, the centroid dynamic equation based on the Newton–Euler theory and Eq. ([28](#page-4-6)) can be written as

$$
F_n^c + F_n^f = F_n^a + F_n^{\omega} - F_n^o + F_n^u - F_n^{oj},
$$
\n(66)

where \mathbf{F}_n^c and \mathbf{F}_n^f are the ideal constraint force and the friction force of the *n*th joint, respectively; F_n^a and F_n^{ω} denote the acceleration-dependent and velocity-dependent inertia forces of body B_n , respectively; F_n^u is the elastic force of body B_n ; F_n^o is the resultant constraint force of outboard joints; and F_n^o \mathbf{F}_n^{ϕ} is the external force. If body B_n is rigid, the elastic force $F_{n}^{\tilde{u}}$ equals a zero vector.

The ideal constraint force at the point P_n and the ideal constraint force at the point Q_n are respectively defined as $\mathbf{F}_n^{cP_n}$ and $F_n^{cQ_n}$, which can be expressed as

$$
\boldsymbol{F}_{n}^{cP_{n}} = [\boldsymbol{F}_{nP_{n}}^{cT} \boldsymbol{M}_{nP_{n}}^{cT}]^{\mathrm{T}} \in \mathfrak{R}^{6\times1}, \quad \boldsymbol{F}_{n}^{cQ_{n}} = [\boldsymbol{F}_{nQ_{n}}^{cT} \boldsymbol{M}_{nQ_{n}}^{cT}]^{\mathrm{T}} \in \mathfrak{R}^{6\times1},
$$
\n(67)

where $\vec{F}^c_{nP_n}$ and $\vec{M}^c_{nP_n}$ are the coordinate vector form of $\vec{F}^c_{nP_n}$ and $\vec{M}^c_{nP_n}$ in the absolute reference frame as shown in Fig. [7,](#page-8-4) respectively; $F_{nQ_n}^c$ and $M_{nQ_n}^c$ are the coordinate vector form of $\vec{F}^c_{nQ_n}$ and $\vec{M}^c_{nQ_n}$, respectively. The relation between $\vec{F}^{cP_n}_{n}$ and $\bm{F}_n^{cQ_n}$ is

$$
\boldsymbol{F}_n^{cP_n} = -\boldsymbol{F}_n^{cQ_n}.\tag{68}
$$

The joint friction force at the point P_n is defined as $F_{\mathcal{A}}^{fP_n}$, and the joint friction force at the point Q_n is denoted as $F_n^{jQ_n}$. The relation of them is

$$
\boldsymbol{F}_n^{cP_n} = -\boldsymbol{F}_n^{cQ_n}.\tag{69}
$$

Based on the Jourdain's velocity variation principle, the relation of \mathbf{F}_n^c , \mathbf{F}_n^f , $\mathbf{F}_n^{cP_n}$ and $\mathbf{F}_n^{fP_n}$ can be expressed as

$$
\Delta P_n^{P_n} = \Delta \boldsymbol{v}_n^{\mathrm{T}} (\boldsymbol{F}_n^c + \boldsymbol{F}_n^f) = \Delta \boldsymbol{v}_n^{P_n \mathrm{T}} (\boldsymbol{F}_n^{cP_n} + \boldsymbol{F}_n^{fP_n}), \tag{70}
$$

where $\Delta P_n^{P_n}$ represents the sum of virtual power of the ideal constraint force and joint friction of the joint n , v_n is the velocity of the mass center C_n of body B_n in the absolute reference frame, $v_n^{P_n}$ is the velocity of the point P_n in the absolute reference frame.

From Fig. [7](#page-8-4), we have

$$
\boldsymbol{r}_n^{P_n} = \boldsymbol{r}_n + \boldsymbol{\rho}_n^{P_n},\tag{71}
$$

$$
\boldsymbol{\omega}_n^{P_n} = \boldsymbol{\omega}_n + \boldsymbol{\omega}_{ri}^{P_n} + \boldsymbol{\varPsi}_n^{P_n} \dot{\boldsymbol{a}}_n. \tag{72}
$$

Taking the derivative of $r_n^{P_n}$, one can obtain

$$
\dot{\boldsymbol{r}}_n^{P_n} = \dot{\boldsymbol{r}}_n + \dot{\boldsymbol{\rho}}_n^{P_n} = \dot{\boldsymbol{r}}_n + \tilde{\boldsymbol{\rho}}_n^{P_n} \boldsymbol{\omega}_n + \boldsymbol{\Phi}_n^{P_n} \dot{\boldsymbol{a}}_n. \tag{73}
$$

Equations (72) and (73) (73) can be denoted as

$$
\boldsymbol{v}_n^{P_n} = \boldsymbol{Y}_n^{P_n \mathrm{T}} \boldsymbol{v}_n,\tag{74}
$$

where

$$
\boldsymbol{v}_n^{p_n} = [\dot{\boldsymbol{r}}_n^{p_n} \boldsymbol{\tilde{w}}_n^{p_n}]^{\mathrm{T}} \in \mathfrak{R}^{6 \times 1}, \quad \boldsymbol{Y}_n^{p_n} = \begin{bmatrix} \boldsymbol{I}_3 & -\tilde{\boldsymbol{\rho}}_n^{p_n} \boldsymbol{\Phi}_n^{p_n} \\ \boldsymbol{0} & \boldsymbol{I}_3 \end{bmatrix}^{\mathrm{T}} \in \mathfrak{R}^{(6+s_n)\times 6}.
$$
\n(75)

Substitute Eqs. ([74\)](#page-9-2) into [\(70](#page-9-3)) to obtain

$$
F_n^c + F_n^f = Y_n^{P_n} (F_n^{cP_n} + F_n^{fP_n}) = Y_n^{P_n} A_n^{P_n} (F_n^{'cP_n} + F_n^{'fP_n}), \quad (76)
$$

where $\mathbf{F}'^{cP_n}_n$ and $\mathbf{F}'^{fP_n}_n$ are the coordinate matrices of $\mathbf{F}^{cP_n}_n$ and $\mathbf{F}_n^{fP_n}$ in frame \vec{e}_h^n , and $A_n^{P_n}$ is the direction cosine matrix of \vec{e}_h^n *h* concerning the absolute reference frame O-*XYZ*.

Substituting Eqs. (76) (76) into (66) (66) , one can be obtained

$$
F_n^{\prime cP_n} + F_n^{\prime fP_n} = (Y_n^{P_n} A_n^{P_n})^+ (F_n^a + F_n^{\omega} - F_n^o + F_n^u - F_n^{oj}), \tag{77}
$$

where $(Y_{n}^{P_n} A_{n}^{P_n})^+$ is the Moore–Penrose pseudo-inverse matrix of $\tilde{Y}_n^P \tilde{A}_n^P$. Equation ([67](#page-8-6)) is the dynamic equation of body B_n about the joint point P_n in the \vec{e}_h^n *h* frame. Considering the joint is a revolute joint in this paper and using Eq. (61) (61) , we have

$$
F_n^{\prime cP_n} = [F_{nx}^{cP_n}, F_{ny}^{cP_n}, F_{nz}^{cP_n}, 0, T_{ny}^{cP_n}, T_{nz}^{cP_n}]^{\mathrm{T}},
$$

\n
$$
F_n^{\prime fP_n} = [0, 0, 0, T_n^{\prime P_n}, 0, 0]^{\mathrm{T}},
$$
\n(78)

where $F_{nx}^{cP_n}$, $F_{ny}^{cP_n}$, $F_{nz}^{cP_n}$, $T_{ny}^{cP_n}$ and $T_{nz}^{cP_n}$ are the items of $F_n^{'cP_n}$ in three axes of the frame \vec{e}_h^n , and $T_n^{fP_n}$ is the joint friction torque.

Due to Eq. [\(77](#page-9-5)), the dynamic equation of body B_{n-1} can be given as

$$
F'^{cP_{n-1}}_{n-1} + F'^{fP_{n-1}}_{n-1} = (Y^{P_{n-1}}_{n-1} A^{P_{n-1}}_{n-1})^+(F^{a}_{n-1} + F^{a}_{n-1} - F^{a}_{n-1} + F^{a}_{n-1} - F^{a}_{n-1}).
$$
\n(79)

As shown in Fig. [7](#page-8-4), the joint *n* is the only one external joint of body B_{n-1} , so \mathbf{F}_{n-1}^{oj} can be expressed as

$$
\Delta v_{n-1}^{\mathrm{T}} F_{n-1}^{\mathrm{oj}} = \Delta v_{n-1}^{\mathrm{Q}_{n}} (F_{n}^{\mathrm{CQ}_{n}} + F_{n}^{\mathrm{fQ}_{n}}). \tag{80}
$$

Similar to Eq. (74) (74) (74) , we have

$$
\mathbf{v}_{n-1}^{Q_n} = \mathbf{Y}_{n-1}^{Q_n T} \mathbf{v}_{n-1},
$$
\nwhere
$$
\mathbf{v}_{n-1}^{Q_n} = \begin{bmatrix} \mathbf{r}_{n-1}^{Q_n} \\ \mathbf{r}_{n-1}^{Q_n} \end{bmatrix} \in \mathfrak{R}^{6 \times 1},
$$
\n(81)

where
$$
\theta_{n-1} = \begin{bmatrix} \omega_{n-1}^{Q_n} \\ \omega_{n-1}^{Q_n} \end{bmatrix} \in \mathcal{R}^{N}
$$
,
\n
$$
Y_{n-1}^{Q_n} = \begin{bmatrix} I_3 - \tilde{\rho}_{n-1}^{Q_n} & \Phi_{n-1}^{Q_n} \\ 0 & I_3 & \Psi_{n-1}^{Q_n} \end{bmatrix}^{\mathrm{T}} \in \mathfrak{R}^{(6+\delta_{n-1})\times 6}.
$$
\nSubstituting Eqs. (81) into (80) it can be

Substituting Eqs. (81) (81) (81) into (80) (80) (80) , it can be obtained

$$
F_{n-1}^{oj} = Y_{n-1}^{Q_n} (F_n^{cQ_n} + F_n^{fQ_n}).
$$
\n(82)

Substituting Eqs. [\(82\)](#page-9-8) into ([77](#page-9-5)), the dynamic equation of body B_{n-1} on the joint point P_{n-1} in the frame \vec{e}_h^{n-1} *h* can be gotten.

Similarly, the dynamic equations of $B_{n-2} - B_1$ in turns are

$$
F'^{cP_{n-2}}_{n-2} + F'^{fP_{n-2}}_{n-2} = (Y^{P_{n-2}}_{n-2}A^{P_{n-2}}_{n-2})^+(F^a_{n-2} + F^{\omega}_{n-2} - F^o_{n-2} + F^u_{n-2} - F^{oj}_{n-2}),
$$

\n
$$
\vdots
$$

\n
$$
F'^{cP_1}_{1} + F'^{fP_1}_{1} = (Y^{P_1}_{1}A^{P_1}_{1})^+(F^a_{1} + F^o_{1} - F^o_{1} + F^u_{1} - F^o_{1}),
$$

\n(83)

where

$$
F_{n-2}^{oj} = Y_{n-2}^{Q_{n-1}} (F_{n-1}^{cQ_{n-1}} + F_{n-1}^{fQ_{n-1}}),
$$

\n
$$
\vdots
$$

\n
$$
F_1^{oj} = Y_1^{Q_2} (F_2^{cQ_2} + F_2^{fQ_2}).
$$
\n(84)

By Eq. [\(65\)](#page-8-7), the joint friction of body $B_{n-2} - B_1$ and $F'^{cP_n}_n$ can be expressed as

$$
T_{n-2}^{fP_{n-2}} = T_f^{n-2}, \dots, T_1^{fP_1} = T_f^1,\tag{85}
$$

$$
\boldsymbol{F}_{n-2}^{\prime\prime P_n} = [0, 0, 0, T_f^{n-2}, 0, 0]^{\mathrm{T}}, \dots, \boldsymbol{F}_1^{\prime\prime P_1} = [0, 0, 0, T_f^1, 0, 0]^{\mathrm{T}}.
$$
\n(86)

Body B_1 is the base of the flexible space robot and it is a free-foating body, and there is no joint friction in the joint 1, so we get

$$
T_1^{fP_1} = 0, \quad F_1^{fP_1} = [0 \ 0 \ 0 \ 0 \ 0 \ 0]^T,\tag{87}
$$

If body B_i is rigid, the dynamic equation of B_i about the joint point P_i in the \vec{e}^i_h frame can be written as

$$
F_i^{cP_i} + F_i'^{fP_i} = (Y_i^{P_i} A_i^{P_i})^{-1} (F_i^a + F_i^{\omega} - F_i^{\omega} - F_i^{\omega}),
$$
 (88)
where $(Y_i^{P_i} A_i^{P_i})^{-1}$ is the inverse matrix of $Y_i^{P_i} A_i^{P_i}$, and $Y_i^{P_i}$ is

$$
Y_i^{P_i} = \begin{bmatrix} I_3 & -\tilde{\rho}_n^{P_n} \\ \mathbf{0} & I_3 \end{bmatrix}^\mathrm{T} \in \mathfrak{R}^{6 \times 6}.
$$
 (89)

Below the sum of virtual power of the joint friction is derived, which can be expressed as

$$
\Delta P^f = \sum_{k=2}^N (\Delta v_{k-1}^{Q_k T} F_k^{jQ_k} + \Delta v_k^{P_k T} F_k^{jP_k})
$$

=
$$
\sum_{k=2}^N (\Delta v_{k-1}^T Y_{k-1}^{Q_k} F_k^{jQ_k} + \Delta v_k^T Y_k^{P_k} F_k^{jP_k}).
$$
 (90)

According to Eqs. [\(58](#page-7-4)), ([90](#page-10-2)) may be expressed using the generalized variables *y* of the system as

$$
\Delta P^f = \Delta \mathbf{y}^T \sum_{k=2}^N f_{kf}^{ey} = \Delta \mathbf{y}^T f_f^{ey}, \tag{91}
$$

where $f_{kf}^{ey} = G_{k-1}^T Y_{k-1}^{Q_k} F_k^{Q_k} + G_k^T Y_k^{P_k} F_k^{P_k}$ and $G_k = [G_{k1}, ..., G_{kN}]$.

2.6 Dynamic Equations of the FLFJ Space Robot

Here, based on the Jourdain's velocity variation principle and Eq. ([28](#page-4-6)), the dynamic equations of the system can be expressed as

$$
\sum_{i=1}^{N} \Delta v_i^{\mathrm{T}}(-M_i \dot{v}_i - f_i^{\omega} + f_i^{\circ} - f_i^{\omega}) + \Delta P = 0,
$$
\n(92)

where v_i is the vector of generalized velocity of body B_i ; M_i denotes the generalized mass of body B_i ; f_i^{ω} is generalized inertia force acting on body B_i ; f_i^o is generalized external force of system acting on body B_i ; f_i^u is the generalized elastic force acting on body B_i ; ΔP is the sum of virtual power of the inner forces of system. With the generalized variables *y* of the system, the ΔP can be expressed as $\Delta P = \Delta y^{\text{T}} (f_e^{ey} + f_{ne}^{ey} + f_s^{ey})$, where f_{ne}^{ey} is the generalized force corresponding to the non-idealized constraint force, and f_e^{ey} and f_s^{ey} are the generalized force corresponding to other inner forces of the system. For the space robot system considered in this paper, the active control torque acted on the joint is the generalized force f_e^{ey} , the elastic torque caused by elastic deformation of joints is the generalized force f_s^{ey} , and the non-idealized constraint force f_e^{ey} represents the joint frictional force. For the joint friction, from Eq. ([91\)](#page-10-3) we have $f_{nc}^{ey} = f_f^{ey}$. To express Eq. [\(92](#page-10-4)) conveniently, we set

$$
f_i = -f_i^{\omega} + f_i^{\omega} - f_i^{\omega}.
$$
\n
$$
(93)
$$

So Eq. ([92](#page-10-4)) becomes

$$
\sum_{i=1}^{N} \Delta v_i^{\mathrm{T}}(-M_i \dot{v}_i + f_i) + \Delta P = 0.
$$
 (94)

In matrix form, Eq. (94) can be written as

$$
\Delta v^{\mathrm{T}}(-M\dot{v} + f) + \Delta P = 0, \tag{95}
$$

where $\mathbf{v} = [\mathbf{v}_1^T, \dots, \mathbf{v}_N^T]^T$ is the velocity vector of the system; $M = \text{diag}[M_1^{\cdot}, \dots, M_N^{\cdot}]$ and $f = [f_1^{\text{T}}, \dots, f_N^{\text{T}}]^{\text{T}}$ are the matrices of generalized mass and generalized external force of the system, respectively.

Combining Eq. ([58](#page-7-4)) with $\Delta P = \Delta y^T (f_e^{ey} + f_f^{ey} + f_s^{ey})$, Eq. ([95\)](#page-10-6) can be expressed as

$$
\Delta \dot{y}^{T}[-Z\ddot{y} + z + f_{e}^{ey} + f_{f}^{ey} + f_{s}^{ey}] = 0, \qquad (96)
$$

where $\mathbf{Z} = \mathbf{G}^{\mathrm{T}} \mathbf{M} \mathbf{G}$ and $\mathbf{z} = \mathbf{G}^{\mathrm{T}} (\mathbf{f} - \mathbf{M} \mathbf{g} \mathbf{\hat{I}}_N). \mathbf{y} = [\mathbf{y}_1^{\mathrm{T}}, \dots, \mathbf{y}_N^{\mathrm{T}}]^{\mathrm{T}}$ is the vector of generalized coordinates of the system. All the elements of y_i are independent, so the dynamic equations are acquired

$$
-Z\ddot{y} + z + f_e^{ey} + f_f^{ey} + f_s^{ey} = 0.
$$
 (97)

Solving the nonlinear equation set (97) (97) , friction force can be obtained.

For the fexible space robot described in Sect. [2](#page-2-0), the dimension of dynamic equations established with this paper approach is $12 + n_{m1} + n_{m2} + n_s$, and the number of unknown variables is also $12 + n_{m1} + n_{m2} + n_s$, where n_{m1} and n_m respectively represent the number of the extracted modes of Link 1 and Link 2, and n_s is the number of the additional generalized coordinates of fexible joints. In this paper, the elastic torque of fexible joints can be regarded as generalized force. This can decrease the number of the extra dynamic equations caused by the added fictitious links. Both the dimension of dynamic equations and the number of unknown variables with the Lagrange's equation are no less than $30 + n_{m1} + n_{m2} + 6 n_s$. Thereby, the method utilized in this paper curtails the complexity of dynamic equations.

3 Trajectory Tracking Control

3.1 Trajectory Planning

To complete tracking tasks, such as point to point or continuous path, the motion of joints needs to be planned in joint-space. In this paper, a quintic polynomial trajectory planning method is used to design the motion of joints. Set the joint trajectory as

$$
\theta_i(t) = a_{i0} + a_{i1}t + a_{i2}t^2 + a_{i3}t^3 + a_{i4}t^4 + a_{i5}t^5, \quad (i = 1, ..., j_N),
$$
\n(98)

where a_{i0} , a_{i1} , a_{i2} and a_{i3} are the multinomial coefficients, j_N is the number of joints.

The initial state variables of joints and the state variable of joints at the schedule time t_e are

$$
\theta_i(0) = \theta_{i0}, \quad \dot{\theta}_i(0) = 0, \quad \ddot{\theta}_i(0) = 0,
$$
\n(99)

$$
\theta_i(t_e) = \theta_{ie}, \quad \dot{\theta}_i(t_e) = 0, \quad \ddot{\theta}_i(t_e) = 0.
$$
\n(100)

Taking the frst and the second derivative of Eq. ([98\)](#page-10-8), it can be obtained

$$
\dot{\theta}_i(t) = a_{i1} + 2a_{i2}t + 3a_{i3}t^2 + 4a_{i4}t^3 + 5a_{i5}t^4, \tag{101}
$$

$$
\ddot{\theta}_i(t) = 2a_{i2} + 6a_{i3}t + 12a_{i4}t^2 + 20a_{i5}t^3.
$$
 (102)

Substituting Eqs. (99) (99) and (100) (100) into Eqs. (98) (98) (101) (101) (101) and ([102\)](#page-11-4), we can get $a_{i0} = \theta_{i0}$, $a_{i1} = 0$, $a_{i2} = 0$, $a_{i3} = \frac{10}{t_e^3}(\theta_{ie} - \theta_{i0}), a_{i4} = -\frac{15}{t_e^4}(\theta_{ie} - \theta_{i0}), a_{i5} = \frac{6}{t_e^5}(\theta_{ie} - \theta_{i0}).$

3.2 Controller Design

With the method given in Sect. [3.1,](#page-10-9) the joint kinematics geometric trajectory of a robot can be designed. To track the desired trajectory and suppress the vibration of fexible components as soon as possible, adopting a suitable control method is essential. Additionally, in this paper, joint friction is considered, which may lead to disturbance on the tracking control. To eliminate the infuence of joint friction on the control, the term of friction compensation will be introduced into the control law. Thereby, based on the computed torque control method, a controller with friction compensation is designed.

Equation ([97\)](#page-10-7) can be transformed as

$$
\ddot{y} = \Gamma(\dot{y}, y) + Bu + F_f^{ey}, \qquad (103)
$$

where, $\Gamma(\dot{y}, y) = Z^{-1}z$, $B = Z^{-1}$, $F_f^{ey} = Z^{-1}f_f^{ey}(\lambda)$, $u = f_e^{ey}$ is the control force. And the controller u is designed based on the computed torque method.

Assume that the desired trajectory is y_d and the error vector is $e(t) = y_d(t) - y(t)$, where *y* is the actual state variables of the system. The controller is

$$
u(t) = B^{-1} f'(t) - B^{-1} \Gamma(y, \dot{y}) - B^{-1} F_f^{ey}(t - \Delta t), \tag{104}
$$

where Δt is the simulation step size; $f'(t)$ can be expressed as

$$
f'(t) = \ddot{y}_d(t) + K_D \dot{e}(t) + K_P e(t),
$$
\n(105)

where K_D and K_P are the differential and proportional gain matrices, respectively, which are both positive-definite

matrices. $\mathbf{F}_f^{ey}(t - \Delta t)$ is the friction force of joints at the moment before. Substituting Eqs. ([104](#page-11-5)) into [\(103\)](#page-11-6)

$$
\ddot{e}(t) + K_D \dot{e}(t) + K_P e(t) + (F_f^{ey}(t) - F_f^{ey}(t - \Delta t)) = 0. \quad (106)
$$

From Eq. (106) (106) (106) , when Δt is grossly small, $F_f^{ey}(t) - F_f^{ey}(t - \Delta t) \approx 0$ can be obtained. Also, we know that $e(t)$ will be approach to zero when $K_D > 0$ and $K_P > 0$, thus *y* will tend to y_d , which suggests the controller is stable.

4 Numerical Simulations

In this section, numerical simulations are carried out to analyze the efect of joint friction and joint fexibility on the dynamic characteristics of a 6-DOF FLFJ space robot.

The physical parameters of the space robot in Fig. [2](#page-2-3) are listed in Table [1](#page-12-0), where the inertia moment of rotors is equivalent value, according to Ref. [\[2](#page-17-1)]. Also, the frst two modes of Link 1 and Link 2 are considered in this paper and the modal functions of cantilever beams are used. The parameters of the revolute joint are given in Table [2.](#page-12-1) Accuracy of the dynamic model derived in this paper is demonstrated frstly in Sect. [4.1.](#page-11-8)

4.1 Modeling Verifcation

To validate the model proposed in this paper, several numerical simulations are carried out with the ADAMS and our method respectively. Here an example is shown in Fig. [8.](#page-12-2) Initially, the fexible robot is static. The initial joint angles of the manipulator are $[\theta_1, \theta_2, \dots, \theta_6]^T = [0^\circ, 0^\circ, 0^\circ, 0^\circ, 0^\circ, 0^\circ]^T$ and the driving torque acted on each joint are $f_e^{ey} = [100 \text{ N/m}, 100 \text{ N/m}, 100 \text{ N/m}, 1 \text{ N/m}, 1 \text{ N/m}, 0.1 \text{ N/m}]^{\text{T}}$. Then, the robot starts to move under the action of the driving torque. Time histories of rotation angles of the joints calculated by both this paper method and ADAMS are respectively shown in Fig. [8](#page-12-2). The performance obtained by the two methods is in agreement, which verifes the validity of the model established.

4.2 Efect of Joint Friction and Joint Flexibility on the Dynamic Characteristics of Robots

Here two simulations are carried out to study the efect of joint fexibility and joint friction. The diference between these two simulations is whether considering both the joint fexibility and joint friction or not.

In these simulations, the fexible space robot is driven by the torque $\mathbf{f}_e^{ey} = [100 \text{ N/m}, 100 \text{ N/m}, 100 \text{ N/m}, 1 \text{ N/m},$ $1 \text{ N/m}, 0.1 \text{ N/m}$ ^T \times sin($2\pi t$), and the force acted on the base is zero. The simulation lasts $T=10$ s Besides, the initial

Fig. 8 Time histories of fexible joint angles 1–6: **a** Joint 1; **b** Joint 2; **c** Joint 3; **d** Joint 4; **e** Joint 5; **f** Joint 6

position of every joint and the base are zero. Utilizing the method given in the paper, the results can be obtained in Figs. [9](#page-13-0) and [10,](#page-13-1) where the attitude angle of each joint is shown in Fig. [9](#page-13-0), and the elastic defection of fexible joints is given in Fig. [10.](#page-13-1)

As shown in Fig. [9,](#page-13-0) the motion of the robot with fexible joints considering friction lags behind the robot with ideal joints. Also, the hysteresis phenomenon obviously appears in the Joint 4–6. Generally, the greater the driving torque is applied, the less the variation of joint angle is afected by friction. In Fig. [11,](#page-14-0) the time histories of driving torque and frictional torque of six joints are given. It can be obtained that the driving torque is much larger than the frictional torque in the Joint 1–3. By contrast, the diference between the driving torque and frictional torque

Fig. 9 Time histories of fexible joint angles 1–6: **a** Joint 1; **b** Joint 2; **c** Joint 3; **d** Joint 4; **e** Joint 5; **f** Joint 6

Fig. 10 Time histories of elastic defection of fexible joints 1–6: **a** Joint 1; **b** Joint 2; **c** Joint 3; **d** Joint 4; **e** Joint 5; **f** Joint 6

of Joint 4–6 is small, so the variation of joint angle can be signifcantly afected by friction, especially in Joint 6. Additionally, acted by the driving torque, the vibration occurs in the fexible joints and the fexible joint defections are as large as 5.581◦. As shown in Fig. [10](#page-13-1), compared to Joint 1–5, the result of Joint 6 presents a non-smooth high-frequency 'burr' response, which is caused by the reason as follows. It is shown in Fig. [4](#page-5-1) that Joint 6 is a joint at the outermost side of the space robot, which connects with the outer body Link 4. The left side of Link 4 connects with Joint 6, and the right side is free. Therefore, the extensive vibration of Joint 6 is more likely to occur. By contrast, two sides of Joint 1–5 which connect with bodies are both constrained, so the high-frequency vibration of joints is difficult to occur. Also, as depicted in Fig. [11,](#page-14-0) the high-frequency fuctuation phenomenon exists in time historied curve of frictional torque, which is the equivalent of external excitation for fexible joints. Thus, the deformation of Joint 6 could vibrate with high frequency under the frictional torque. Because joint fexibility and joint friction may afect the precise motion of robots, which makes it difficult to achieve the operation of robots, considering joint friction and joint fexibility is important to dynamics modeling of robots.

4.3 Control of the FLFJ Space Robot

The results above indicated the fexible joint with friction could have a signifcant efect on the dynamic characteristics of fexible robots. In this section, the numerical simulations are carried out to validate the efectiveness of the controller designed with the computed torque method, which is utilized to realize trajectory tracking control of FLFJ robots.

In these simulations, the initial attitude angles of the base and initial joint angles of the fexible robot are *𝜃*⁰ = [0◦, 0◦, 0◦, 0◦, 0◦, 0◦, 0◦, 0◦, 0◦, 0◦, 0◦, 0◦] ^T, the desired angles are $\theta_f = [0^\circ, 0^\circ, 0^\circ, 0^\circ, 0^\circ, 0^\circ, 5^\circ, 5^\circ, 5^\circ, 5^\circ, 10^\circ, 10^\circ]^T$, and the initial and desired angular velocity and acceleration are all zero. The desired trajectories could be designed by the method in Sect. [3.1.](#page-10-9) For these simulations, the Coulomb friction is used to describe the friction in all joints, and the parameter of the fexible joints are listed in Table [2](#page-12-1). In the controller design, K_p and K_d are chosen as $K_p = [0.1, 0.1, 0.1]$ 0.1, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 10, 10, 10, 10, 10, 10] $\times I_{19}$, and K_d = [0.01, 0.01, 0.01, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1]× I_{19} , where $I_{19} \in \mathbb{R}^{19 \times 19}$ is an identity matrix, and the control cycle is 0.05 s. According to the method in Sect. [3.1,](#page-10-9) the trajectory equation can be obtained as $\alpha = (\theta_f - \theta_0) \times (0.0003 \ t^5 - 0.0075 \ t^4 + 0.05 \ t^3)$, where α is the desired angle at time *t*. The simulation results are given in Figs. [12,](#page-15-1) [13](#page-15-2) and [14](#page-16-0), where Figs. [12](#page-15-1) and [13](#page-15-2) show the time histories of the Base attitude and the joint angles of the robot in the process of trajectory tracking.

The Base and Joints 1–5 are well controlled by our method without overshoot. Only the response of Joint 6 exists obvious deviation to the trajectory, but Joint 6 could arrive at the desire position fnally. The main reason has been explained in Sect. [4.2](#page-11-9). Here the time histories of

Fig. 11 Time histories of driving torque and frictional torque of joints: (a) Joint1; (b) Joint 2; (c) Joint 3; (d) Joint 4; (e) Joint 5; (f) Joint 6

control torque and friction torque in the simulation are given in Fig. [15](#page-16-1). It can be observed that the frictional torque is approach to the control torque, so the frictional torque caused an obvious impact on the rotation of Joint 6. Besides, the defection of fexible joints is shown in Fig. [14](#page-16-0). It can be seen that the vibration of flexible joints is effectively suppressed synchronously except Joint 6, of which the vibration is intense. This is because one side of the outer body of Joint 6 is free, the high-frequency vibration is more likely to occur under the frictional torque with high-frequency fuctuation as shown in Fig. [15.](#page-16-1) However, the suppression of vibration can be achieved in the end. Therefore, the efect of the controller gets well verifed.

5 Conclusion

In this paper, the issues about dynamics modeling and control of 6-DOF FLFJ space robots with joint friction are investigated. Firstly, Spong's model and Coulomb friction model are adopted to describe joint fexibility and joint friction, respectively. On this basis, the dynamic model for the FLFJ space robot was developed by the single direction recursive construction method and the Jourdain's velocity variation principle. Also, geometry trajectories of joints are given and a controller with friction compensation for the system trajectory tracking is designed for a 6-DOF FLFJ robot by the computed torque control method. For the simulations, the results validate the accuracy of the

Fig. 12 Time histories of angular displacements of the Base: (*a*) Axis X; (*b*) Axis Y; (*c*) Axis Z

Fig. 13 Time histories of flexible joint angles $1 \sim 6$: (*a*) Joint 1; (*b*) Joint 2; (*c*) Joint 3; (*d*) Joint 4; (*e*) Joint 5; (*f*) Joint 6

Fig. 14 Time histories of elastic deflection of flexible joints $1 \sim 6$: (*a*) Joint 1; (*b*) Joint 3; (*c*) Joint 3; (*d*) Joint 4; (*e*) Joint 5; (*f*) Joint 6

Fig. 15 Time histories of control torque and frictional torque of joints: (a) Joint1; (b) Joint 2; (c) Joint 3; (d) Joint 4; (e) Joint 5; (f) Joint 6

model established. In addition, it can be acknowledged from numerical simulations that fexible joints with friction can bring a significant effect on the dynamic characteristics of robot systems. The trajectory tracking and vibration suppression can be efectively achieved with the proper planning trajectory and the controller given in this paper. Finally, the explanations for results are given in detail.

Acknowledgements This work was supported by the Natural Science Foundation of China (Grant numbers 11772187, 11802174), the China Postdoctoral Science Foundation (Grant numbers 2018M632104).

References

- 1. Devito CL (1996) A non-linear model for time. Astrophys Sp Sci 244(1–2):357–369.<https://doi.org/10.1007/BF00642306>
- 2. Spong MW (1987) Modeling and control of elastic joint robots. J Dyn Syst Meas Control Trans ASME 109(4):310–319. [https://](https://doi.org/10.1115/1.3143860) doi.org/10.1115/1.3143860
- 3. Bridges MM, Dawson DM (1995) Redesign of robust controllers for rigid-link fexible-joint robotic manipulators actuated with harmonic drive gearing. IEE Proc Control Theory Appl 142(5):508– 514.<https://doi.org/10.1049/ip-cta:19951970>
- 4. Zavrazhina TV, Zavrazhina NM (2001) Infuence of elastic and dissipative properties of hinge joints on dynamics of space manipulator. J Autom Inf Sci 33(9–12):53–63. [https://doi.org/10.1615/](https://doi.org/10.1615/JAutomatInfScien.v33.i10.50) [JAutomatInfScien.v33.i10.50](https://doi.org/10.1615/JAutomatInfScien.v33.i10.50)
- 5. Xu GY, Sun CM (2013) Dynamic modeling and stifness coeffcient analysis of a 3-DOF fexible joint space manipulator. In: Proceeding of 2013 5th International conference intelligent human–machine system cybernetics (IHMSC) 2:171–174. https:// doi.org/10.1109/IHMSC.2013.188
- 6. Ferretti G, Magnani G, Rocco P (2004) Impedance control for elastic joints industrial manipulators. IEEE Trans Robot 20(3):488–498.<https://doi.org/10.1109/TRA.2004.825472>
- 7. Zhang Q, Liu GJ (2016) Precise control of elastic joint robot using an interconnection and damping assignment passivity-based approach. IEEE/ASME Trans Mechatron 21(6):2728–2736. [https](https://doi.org/10.1109/TMECH.2016.2578287) [://doi.org/10.1109/TMECH.2016.2578287](https://doi.org/10.1109/TMECH.2016.2578287)
- 8. Xia K, Xing HJ, Ding L, Gao HB, Liu GJ, Deng ZQ (2019) Virtual decomposition-based modeling for multi-DOF manipulator with fexible joint. IEEE Access 7:91582–91592. [https://doi.](https://doi.org/10.1109/access.2019.2919749) [org/10.1109/access.2019.2919749](https://doi.org/10.1109/access.2019.2919749)
- 9. Talebi HA, Patel RV, Asmer H (2000) Neural network based dynamic modeling of flexible-link manipulators with application to the SSRMS. J Robot Syst 17(7):385–401. [https://doi.org/10.1002/1097-4563\(20000](https://doi.org/10.1002/1097-4563(200007)17:7%3c385:AID-ROB4%3e3.0.CO;2-3)7)17:7%3c385 [:AID-ROB4%3e3.0.CO;2-3](https://doi.org/10.1002/1097-4563(200007)17:7%3c385:AID-ROB4%3e3.0.CO;2-3)
- 10. Yang T, Yan S, Han Z (2015) Nonlinear model of space manipulator joint considering time-variant stifness and backlash. J Sound Vib 341:246–259.<https://doi.org/10.1016/j.jsv.2014.12.028>
- 11. He X, Zhang S, Ouyang Y, Fu Q (2020) Vibration control for a flexible single-link manipulator and its application. IET Control Theory Appl 14(7):930–938. [https://doi.org/10.1049/](https://doi.org/10.1049/iet-cta.2018.5815) [iet-cta.2018.5815](https://doi.org/10.1049/iet-cta.2018.5815)
- 12. Korayem MH, Nikoobin A, Azimirad V (2009) Trajectory optimization of fexible link manipulators in point-to-point motion. Robotica 27(6):825–840. [https://doi.org/10.1017/S026357470](https://doi.org/10.1017/S0263574708005183) [8005183](https://doi.org/10.1017/S0263574708005183)
- 13. Cui L, Wang H, Chen W (2020) Trajectory planning of a spatial fexible manipulator for vibration suppression. Robot Auton Syst 123:103316.<https://doi.org/10.1016/j.robot.2019.103316>
- 14. Korayem MH, Rahimi HN, Nikoobin A (2012) Mathematical modeling and trajectory planning of mobile manipulators with fexible links and joints. Appl Math Model 36(7):3229–3244. <https://doi.org/10.1016/j.apm.2011.10.002>
- 15. Buondonno G, De Luca A (2015) A recursive Newton–Euler algorithm for robots with elastic joints and its application to control. IEEE Int Conf Intell Robot Syst 1:5526–5532. [https://doi.](https://doi.org/10.1109/IROS.2015.7354160) [org/10.1109/IROS.2015.7354160](https://doi.org/10.1109/IROS.2015.7354160)
- 16. Tomei P (1991) A simple PD controller for robots with elastic joints. Autom Control IEEE Trans 36(10):1208–1213. [https://doi.](https://doi.org/10.1109/9.90238) [org/10.1109/9.90238](https://doi.org/10.1109/9.90238)
- 17. Caverly RJ, Zlotnik DE, Bridgeman LJ, Forbes JR (2014) Saturated proportional derivative control of fexible-joint manipulators. Robot Comput Integr Manuf 30(6):658–666. [https://doi.](https://doi.org/10.1016/j.rcim.2014.06.001) [org/10.1016/j.rcim.2014.06.001](https://doi.org/10.1016/j.rcim.2014.06.001)
- 18. Yeon JS, Park JH (2008) Practical robust control for fexible joint robot manipulators. In: Proceedings of IEEE international conference robotics and automation. 3377–3382, 2008 [https://doi.](https://doi.org/10.1109/ROBOT.2008.4543726) [org/10.1109/ROBOT.2008.4543726](https://doi.org/10.1109/ROBOT.2008.4543726)
- 19. Park CW (2004) Robust stable fuzzy control via fuzzy modeling and feedback linearization with its applications to controlling uncertain single-link fexible joint manipulators. J Intell Robot Syst Theory Appl 39(2):131–147. [https://doi.org/10.1023/](https://doi.org/10.1023/B:JINT.0000015344.84152.dd) [B:JINT.0000015344.84152.dd](https://doi.org/10.1023/B:JINT.0000015344.84152.dd)
- 20. Chaoui H, Gueaieb W, Yagoub MCE, Sicard P (2006) Hybrid neural fuzzy sliding mode control of fexible-joint manipulators with unknown dynamics. In: Proceedings of industrial electronics conference (IECON) 4082–4087, 2006. [https://doi.org/10.1109/](https://doi.org/10.1109/IECON.2006.348032) [IECON.2006.348032](https://doi.org/10.1109/IECON.2006.348032)
- 21. Chien MC, Huang AC (2007) Adaptive control for fexible-joint electrically driven robot with time-varying uncertainties. IEEE Trans Ind Electron 54(2):1032–1038. [https://doi.org/10.1109/](https://doi.org/10.1109/TIE.2007.893054) [TIE.2007.893054](https://doi.org/10.1109/TIE.2007.893054)
- 22. Kim JY, Croft EA (2019) Full-state tracking control for fexible joint robots with singular perturbation techniques. IEEE Trans Control Syst Technol 27(1):63–73. [https://doi.org/10.1109/](https://doi.org/10.1109/TCST.2017.2756962) [TCST.2017.2756962](https://doi.org/10.1109/TCST.2017.2756962)
- 23. Li Y, Tong SC, Li TS (2012) Fuzzy adaptive dynamic surface control for a single-link flexible-joint robot. Nonlinear Dyn 70(3):2035–2048.<https://doi.org/10.1007/s11071-012-0596-7>
- 24. Li WP, Luo B, Huang H (2016) Active vibration control of fexible joint manipulator using input shaping and adaptive parameter auto disturbance rejection controller. J Sound Vib 363:97–125. [https://](https://doi.org/10.1016/j.jsv.2015.11.002) doi.org/10.1016/j.jsv.2015.11.002
- 25. Jia PX (2019) Control of fexible joint robot based on motor state feedback and dynamic surface approach. J Control Sci Eng. [https](https://doi.org/10.1155/2019/5431636) [://doi.org/10.1155/2019/5431636](https://doi.org/10.1155/2019/5431636)
- 26. Giusti A, Malzahn J, Tsagarakis NG, Althoff M (2018) On the combined inverse-dynamics/passivity-based control of elasticjoint robots. IEEE Trans Robot 34(6):1461-1471. [https://doi.](https://doi.org/10.1109/TRO.2018.2861917) [org/10.1109/TRO.2018.2861917](https://doi.org/10.1109/TRO.2018.2861917)
- 27. Qi Z, Xu Y, Luo X et al (2010) Recursive formulations for multibody systems with frictional joints based on the interaction between bodies. Mult Syst Dyn 24(2):133–166. [https://doi.](https://doi.org/10.1007/s11044-010-9213-z) [org/10.1007/s11044-010-9213-z](https://doi.org/10.1007/s11044-010-9213-z)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional afliations.