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Abstract

In this study, a flight control design strategy based on incremental nonlinear dynamic inversion (INDI) and smoothing algorithm
is presented. The INDI is an enhanced version of the nonlinear dynamic inversion technique with a better robust performance.
It reduces the aircraft model dependence via the feedback information of the state derivative, that is, angular acceleration for
the aircraft attitude motion (or angular velocity related to the wind axis parameters). However, the state derivatives cannot
always be obtained by direct measurement, thus they need to be estimated on-line. Moreover, taking into account that INDI
requires one-step delay of state derivative and the fact that the inertial measurement unit (IMU) operates faster than the flight
control computer (FCC), there will be additional information that can be used to improve the estimation. Therefore, a fixed-lag
smoothing algorithm based on a discrete Kalman filter is proposed for angular velocity and angular acceleration estimation.

The smoother utilizes the state variable from the sensor measurement and thus dealing with noise and delay.

Keywords Incremental nonlinear dynamic inversion - Smoothing algorithm - Control augmentation system

Abbreviation

P Air density (kg/m?)

\% Airspeed (m/s)

b Wingspan (m)

S Wing surface area (m2)

c Mean aerodynamic chord (m)

m Mass of the aircraft (kg)

J Moment of inertia matrix of the aircraft (kg m?)

Dqgr Roll, pitch and yaw rates around x, y, z body
axis (rad/s)

o, B Angle of attack and sideslip angle (rad)

0, ¢ Pitch and roll angle (rad)

Se, O, 02 Elevator, rudder and aileron deflection (rad)

L M, N Moments around x, y, z body axis (N m)

Dy, Yo, Ly Total aerodynamic drag, total aerodynamic
sideslip force, and lift force (N)

Xt, Y1, ZT Thrust force along x, y, z body axis (N)

Vin Inner loop virtual control (rad/sz)

Vout Outer loop virtual control (rad/s)

C;, Cp, Cp, Aerodynamic moment coefficients
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Subscripts

k Discrete index
cmd Commanded
0 Point at the current solution of the system

A

, ~ Estimation, augmentation of a vector or matrix

1 Introduction

Flight control design for super maneuverable aircraft requires
the use of nonlinear control approaches to overcome the lim-
itations of linear control techniques. There exist a variety of
nonlinear control techniques such as backstepping, nonlinear
dynamic inversion (NDI), and sliding mode control. Among
them, NDI has proved to be a suitable controller design
approach for fighter aircrafts and has been applied for high
angle of attack flight [1] and super maneuverable aircrafts
[2]. However, NDI approach presents limited robustness due
to modeling error and uncertainties that causes model mis-
match; therefore, this method has been enhanced using robust
techniques, adaptive control approach [3], and incremental
control [4, 5].

In [4], a modified version of NDI is presented based on
the idea that all changes in the aircraft model can be reflected
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in the measurement of the state derivative, giving as a result
arobust NDI scheme. Since model dependence is eliminated
from aircraft equations of motion, only the incremental com-
mand is required, which is the reason why this method is also
referred as incremental nonlinear dynamic inversion (INDI)
[5]. The main advantage of this method is that the state-space
equations of motion are simplified and only the informa-
tion about the influence of the control is needed, making
the system not only robust but also insensitive to model-
ing error and uncertainties that are present in the dynamics
of the system. INDI has been successfully applied to heli-
copter flight control [6] whose robustness is tested for some
model inaccuracies. Also, in [7] and [8], it is shown that
INDI control strategy is a suitable choice for micro aerial
vehicles.

INDI works properly assuming the availability of the
derivative of the state, but in reality, conventional sensors
do not provide this information directly. Therefore, the state
derivative (that can be angular acceleration for aircraft’s atti-
tude motion) availability configurates the main drawback of
this approach. In [9], several methods are reviewed for angu-
lar acceleration measurement and they are categorized into
two classes: direct measurement using special sensors, and
indirect measurement, where the velocity signal is used to
estimate angular acceleration signal. Regarding to indirect
measurement, the main goal is to provide adequate noise
attenuation and appropriate delay characteristics. Predictive
filter [10], Kalman filter [11], and sliding mode differentiator
[12] can be seen as feasible alternatives.

Recently, INDI has been implemented using indirect mea-
surement methods. In [5], a predictive filter is utilized to
estimate the angular acceleration values obtained from IMU
sensors, whereas in [8] a second-order filter is employed for
this purpose. In both cases, the availability of angular accel-
eration is solved but the noise and delay can still affect the
performance of the aircraft responses. Therefore, a Kalman-
based estimator appears as an appropriate alternative since
it can provide accurate (optimal) estimation and can handle
noise and delay problems.

Regarding estimation theory, it is known that based on the
available information, one can perform either prediction, fil-
tering or smoothing. Among them, smoothing can perform
better because it uses past, present, and future values [13].
Besides, from smoothing techniques, the fixed-lag version is
implemented when there exists a delay between the signal
generator and the signal estimation [14], which is the case
of the INDI technique. This is because the incremental form
of the state-space system requires one-step delay estimation
of the state derivative. Furthermore, taking into account the
sample frequency difference between the inertial measure-
ment unit (IMU) and the flight control computer (FCC), it is
known that in general, IMU sensor works faster than FCC,
thus more information is available for the estimation. In other
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words, the lag of the smoother will increase when the sample
frequency between the IMU and the FCC increases, leading
to a more accurate estimation.

In this work, a fixed-lag smoothing algorithm based on
[15] is proposed as an alternative to the angular accel-
eration and angular velocity availability problem for the
implementation of the INDI flight control design. The
results show that a discrete Kalman-based smoother can
attenuate noise and provide an accurate estimation for angu-
lar velocity and angular acceleration. It is observed that
when the sample frequency operation between the sen-
sors and the FCC is increased, the covariance matrix of
the smoother will be reduced indicating a better perfor-
mance. Also, by running simulations with different power
spectral density (PSD), which indicates the quality of the
sensor, it can be seen that for low-quality sensors (high
PSD) even though the noise is not completely attenu-
ated, the tracking performance of the command response
can be still maintained. Hence, if the measurement infor-
mation is very noisy, the smoother can still provide a
good estimation but it cannot reduce the noise level,
showing the limitation of indirect measurement used with
INDI.

This paper is structured as follows: Sect. 2 states the
main equations of INDI. Section 3 reviews the smoothing
algorithm based on the discrete Kalman filter equations. Sec-
tion 4 covers the flight control design with INDI and the
smoother for angular acceleration and angular velocity esti-
mation. Finally, Section 5 presents the simulations and results
considering IMU sensor noise effect.

2 Incremental Nonlinear Dynamic Inversion

The INDI technique exploits the principle of feedback
linearization, transforming a nonlinear system into an equiv-
alent linear system through state feedback. In contrast with
NDI, the nonlinear system in state-space form is based on
the incremental form of the dynamics of the system [5].

The aircraft’s equations of motion in the state space form
is represented by the following equation.

X = f(x)+ Gx)u, (1)

where x is the nn x 1 state vector, x = dx/dt is the time deriva-
tive, u is the m x 1 input vector, f(x)is an x 1 vector that
can include nonlinear functions, and G(x) is the n x m con-
trol effectiveness matrix. The incremental form of Eq. (1) is
obtained from the first-order term of its Taylor series expan-
sion as follows:

0
X ~xg + a[f(x) + G(X)u]xo,uo(x — X0)
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. a%[f(x) + Gl (1 — 1),

0
X ~xo + a[f(X) + Gl xg,uo(x — x0) + G(x0)(u — uop).

@

Here xo and up represent a one-step previous solution
of x and u, respectively. Furthermore, it is known that the
surface deflections represented by the actuator dynamics
operate faster than the aircraft dynamics. Then, assuming
that x & xg, since u changes faster than x, Eq. (2) yields:

x = Xo + G(x0)(u — up). 3

It can be seen that instead of the control u only, this rep-
resentation uses the incremental command Au = (1 — ugp),
thus up should be available. Then, applying the inversion to
Eq. (3), the control law is defined as:

u = G(x0)~ (v — %o) + uo, 4

with v being the pseudo input that controls the system using
some linear control law. At this point, the inversion does not
require information of f(x) but only the control effectiveness
matrix G(xp), which is require to make the inversion process
simpler. Finally, the derivative of x at the previous step (x)
is required for this approach, which can be obtained through
direct measurement or estimation [11].

In [5] and [6], the robustness of INDI is studied and shown
that under certain conditions this technique is insensitive to
uncertainties in aerodynamic model, center of gravity, and
moment of inertia.

3 Smoothing Algorithm

As mentioned earlier, in estimation theory there exists three
kind of approaches, filtering, prediction, and smoothing. All
of these methods follow the principle that the larger the avail-
able information is, the more accurate the estimation will be,
thus it is expected the smoothing algorithm that uses past,
present, and future measurement information, to provide the
best estimations.

Among smoothing algorithms, we can find three different
types: the fixed-interval algorithm that provides the optimal
estimate using all available data; the fixed-point algorithm
that estimates a point at a specific time; and the fixed-lag
algorithm that estimates a value at some fixed lag [14]. In this
work, since the estimation is accomplished online, a fixed-
lag algorithm is implemented to achieve angular acceleration
and angular velocity estimation. The lag is defined by the
time difference between x and X, and a better estimation is
obtained when the lag is larger.

The smoothing algorithm can be seen as an extension of
the discrete Kalman filter; thus, this section will state the
Kalman equations to later define the smoothing algorithm.

3.1 Discrete Kalman Filter

The widely known Kalman filter is a state estimator that pro-
vides an optimal estimate X for a state vector x; such that

. ) . .
the variance of error filter E [ka — Xk || ] reaches its min-

imum value [14]. The term E[x] = ffooo xf(x)dx refers to
the expectation value of a Gaussian distribution f(x).
Having the discrete signal process model:

Xyl = Frxp + Grwy, 5)

Zkt1 = Hip1Xp41 + Vg,

where x; is the state vector, Fj is the transition matrix, zj
is the measurement vector, H, is the observation matrix, v
is the measurement noise vector and wy is the process noise
vector.
The derivation of Kalman filter equations is well known
and can be summarized in the following equations.
Prediction

Xir1/k = FiXisk,

T T (6)
Piv1jk = Fr Py Fy + GrQrGy .
Update
K = Pk+1/ka7;.1(Hk+lPk+1/ka7;.1 + Rk+1)7] s
Pri1ke1r = Prarjk — Kgot Hiat Preyt s @)

Rier1/k+1 = Xkt /k + Kir1 @t — His1 Xkes1 780).

The Kalman filter algorithm is composed of two stages:
the prediction and the update. First, the state Xi41/ is pre-
dicted from Xy /k- Here Pryq i is the prior estimate covariance
matrix and Qy is the process noise covariance matrix. Then
the Kalman gain Ky, is obtained, and the state and covari-
ance are updated using the predicted state Xy /k and the
observation zj to finally get the estimation Xy /x+1 and its
covariance matrix Py /k+1-

3.2 Fixed-lag Smoothing Algorithm

As explained before, this algorithm estimates a state at
fixed delay in the past. Fixed-lag smoothing equations can
be derived from the Kalman filter equations using an aug-
mented state-space signal model of Eq. (5), with the idea
of getting recursive equations for the estimate: Xx_y/;x =
E[x;_nlzx] and the error covariance matrix Pr_y;x = E

{[xk_N — ik—N/k][xk—N —fk_N/k]T|Zk} with N as a fixed
lagandk =0,1,2, ..., N.

@ Springer
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Fig. 1 Diagram of the linearized system using INDI
Fig.2 Augmented discrete Viey1
signal model
Xi+1 Zg41
Wy »| G +, Hen  p—>
A 4
Fye < Xjer1= X
A 4
|delay |
: Xgar= -1
|
Xear= Xy
The model of Fig. 2 represents the augmented signal and Using Eq. (8), it can be obtained the following augmented
has the following equations in state-space form. smoothing equations [15].
Xkt F, 0 --- 00 Xk G - ~
| : X1k = FeXpsk,
Y1 ro--00 Xk 5 £ B BT L& 00T
5 2 Piv1jk = Fr P Fy + GrQGy
xk+1 = 07 --- 00 xk + 0 Wi, ~ ~ ~T ~ ~ ~T ~ 1
Kiy1 = Prsryk Hi ) [Hisd Pesr ik Hiyp + Rl 9
Pri1/i+1 = Prvt/k — Kirt Hir1 Pres1 7k
XN 00---10 Xy 0 . .
k+1 k =~ =~
- - - D" - = - X1kl = Xkrl/k + Kir1 [2he1 — Hiwt Xier 1751,
Xk
1
X
]; where
sl = [Hk+1 0. 00] X |+ Ukt
o Rkt1/k+1 K1
- - ~1 1
Xhe+1/k+1 Kt
= 22 ” 2
or Xkrt/kel = | Xkt | Kot = | Ky |,
X+l = FiX + Gy,
e ®) ¥ KN
Zhk+l = Hir1Xk+1 + V1. | Xk+1/k+1 | | Bkr1
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i 1 2 N
Pres1/k+1 Pk+1/k+1 Pk+1/k+1 Pk+1/k+l
1 1,1 1,2 1N
Pk+1/k+l Pk+1/k+1 Pk+1/k+1 T Pk+l/k+1
5 _ 2 2,1 2,2 2,N
Pry1jke1 = Pk+1/k+l Pk+1/k+] Pk+1/k+1 Pk+l/k+]
N N1 N,2 N.N
L Pk+1/k+1 Pk+1/k+1 Pk+1/k+1 e Pk+1/k+1 i

. £ ii _

Making xk+1/k+l ) xk"'l*.l/k"'] an.d Pk+1/k+1 -
P+1-i/k+1, the smoothing recursive equations are summa-
rized as follows:

' i1 T
Piie = P Fro s

i i T T -1
Kiv1 = P i [Hk+1Pk+l/ka+1 + Rk+1] )

i ' T T
Plf+1/k+1 = Plé+1/k [1 - Hk+1Kk+1:|v

ai s i .
Xer1/ke1 = Yisn t Ki (241 — His1Xks1/k]-

(10)

Equation (10) is initialized by Pé 0 = 0 for all i
1,2, .., N.

The properties of the fixed-lag smoother studied in [15]
show that a reduction in error covariance P,é;’l Jk+1 OCCUIS
when 7 increases. Then, for a large lag N, the smoother will
perform better.

4 Flight Control Design using INDI
and Smoothing Algorithm

A control augmentation system (CAS) for the F-18 HARV
aircraft was designed using INDI with the time-scale sepa-
ration method dividing the dynamics into the fast and slow
dynamics. Then a smoother is implemented in both, the inner
loop for angular acceleration estimation and the outer loop
for angular velocity estimation.

4.1 A Control Augmentation System with INDI

The F-18 HARV aircraft aerodynamic model is obtained
from the NASA technical paper [16]. The CAS consists
on three commands: pcmg and Bemg for lateral-directional
mode and ocmg for longitudinal mode. Furthermore, the
two-time scale separation method is used, where the system

is divided into the fast dynamics for angular rates [ pqr ]T

and the slow dynamics for wind axis parameters [Ol B ]T.
From the nonlinear equations of motion that describe the
aircraft model, we use the following relations to implement
the INDI algorithm:

Moment equations

L p p p
M| =J|lqg|+|qg|x]|J]|gqg (11)
N F r r

Wind axis translational equations

1 —Ls+Zpcosa — X7 sina

o= —
Vmcos B +mg(cos « cos ¢ cos 6 + sin ¢ sin 9)i|

+¢g —tan f(pcosa — rsinw),
| [ D, sinB +Y,cos B — X7 cosasin B
B=— — +mg(sin 6 cos o cos B + cos 8 sin ¢ cos O
Vmcos B

— cos ¢ cos @ sin & sin B)

12)

+ psina — rcosa.

For the inner loop, the moment equations in Eq. (11) can
be express in the form of Eq. (1) as follows:

o=—-J"ox Jo+J VA+I'Ds, (13)

T . .
where § = [8, 8. 8, | is the control input vector,

T . .
[pgr] is the angular rate vector, J is the moment of
inertia matrix and A and D are matrices that contain the
aerodynamic coefficients.

CiB+ 5 (Ci,p+Cyr)
Cmy + 77 Cmyq
| CupB+ 55 (C,p + G, r)
Claa Cl5e1 + Clagr Clar
0 Cus, +Cnmy, 0

| Cus, Cus, +Cus,y i,

The incremental form of Eq. (13) in the form of Eq. (3),
is:
o =ao+J "D — 8). (14)

Applying the inversion according to Eq. (4), Eq. (14)
yields:

1=\ ! .

5= (J— D) [vin — @] + 80. (15)

Notice that the model is simplified and only J~'D is
needed. Instead of f(x), wo is required, which is obtain
through the measurement of w.

Then, for the outer loop, the wind axis translational rela-
tions in Eq. (12) are used. Here, the input does not correspond

to surface deflection vector § anymore, but to the angular rates
q and r. Thus, the terms that multiply pitch rate and yaw rate
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Table 1 F-18 control surface position and rate limits

Surface  Position limit Rate limit Time constant
(deg) (deg/sec) (sec)

Elevator  10.5, — 24 +40 0.0333

Rudder  35,—-35 £100 0.0333

Aileron 30, — 30 +82 0.0333

Table 2 Gain parameters for INDI

Parameter Value

Second-order command filter Damping ratio 0.7
Natural frequency 2.19

Inner loop controller gains Roll rate gain 5
Pitch rate gain 7
Yaw rate gain 5

First-order command filter gains Roll rate gain 5
Pitch rate gain 10
Yaw rate gain 5

Outer loop controller gains Angle of attack gain 1.5

Sideslip angle gain 1.5

are required. Following the form of Eq. (3), the expression
in Eq. (12) is expressed in incremental form as:

a | _[do q—4qo0
=[] ool 0] a0

where

1 = .
G(x) = 1 — e g PScCi, —tan B sina .
ﬁ,oSECDq sin B(1 — cos B) 7 pSbCy, cos® B — cosa

'g 40 T T T
» ; INDI
8 20p- jm\\ Command ||
e |
g 0
2 20
0 2 4 6 8 10 12 14 16 18
WO————— O —
S INDI i
g :
k) Command |
g S -
=
o
<
0
0 2 4 6 8 10 12 14 16 18
0.5 T T T T T ‘ : :
_ INDI
-g’: [ Command
g ° .
o]
o i i
-0.5 i i
0 2 4 6 8 10 12 14 16 18
Time (sec)

Fig. 4 Command response

Applying the inversion according to Egs. (4), (16) yields:

oo fg)elz) o
r Bo ro

Here, the angular rates g and r are the control input for the

outer loop. Also, [ & fo ]T are the one-step delayed angular
velocities that need to be obtained through the measurement

of [a 8]".
From Egs. (15) to (17), the system becomes linear in the
form of X = v, and is controlled linearly with a propor-

tional control. Besides, a command filter is used to provide
desired handling requirements; second-order filter is used for
the outer loop and first-order filter is used for the inner loop.
Finally, first-order actuator dynamics was considered with
parameters shown in Table 1. The gain values are found in
Table 2.

Inner Loop
(] e 1
1 I
Pemd R : . :

a y ' F18 | X[1]x

cma Cmd. c v p filter K FARY -:—>
Bemg sier C—) K CONTROLLER !
T CONTROLLER q !
]
Po, o, To p.q,7 :
P.q,T SMOOTHER !
}
O T e ———————————————————— {
SMOOTHER |—%£
Outer Loop

Fig. 3 Diagram of INDI with time scale separation and smoothing algorithm
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5
Ng """""" True
K Estimated
°
g 0
5 v
Q
z
-5
0 2 4 6 8 10 12 14 16 18 20
0.5
"""""" True
Estimated

0.2
“‘g """""" True
0 (\\ Estimated
B o V
3
s
-0.2

2 4 6 8 10 12 14 16 18 20
Time (sec)

Fig.5 Angular acceleration (inner loop)

0.1 T T

'rm\ """"" True
0.05 | Estimated ||

-0.05

(dAlpha/dt)(rad/sec)
o

-0.1
0 2 4 6 8 10 12 14 16 18 20
0.02 T T
""""" True
0.01 ?ﬁﬂ Estimated ||
0 ‘ \ A

ul

-0.02
0

(dBeta/dt)(rad/sec)

2 4 6 8 10 12 14 16 18 20
Time (sec)

Fig.6 Angular velocity (outer loop)

4.2 Discrete-time Smoother

As mentioned before, the information of x¢ cannot always
be obtained by direct measurement, thus it needs to be esti-

mated. For this case, wy = [ Po go Fo ]T for the inner loop

and [(3{0 BO ]T for the outer loop, need to be estimated. As
shown in previous section, a smoother can provide a better
estimation than Kalman filter or other kind of predictors if
the lag N is large enough. From INDI, in Eq. (3), the term
Xo is only one-unit time delay of x, this leadstoalag N =1,
which is a small value. However, if the frequency or sample
time difference between the IMU sensor and the FCC is con-

S5
=
g, N
% A
©
=
Q
25
w 0 2 4 6 8 10 12 14 16 18
Time (sec)
S 20
: 10 }
@
5 o ]
° L/
Z 10
0 2 4 6 8 10 12 14 16 18
Time (sec)
3 5
=
g o i\
8 —
kel
=
-5
© 0 2 4 6 8 10 12 14 16 18
Time(sec)
Fig.7 Surfaces deflection
< 40 T T
[0
» —— INDI
B 20 ) |
g / q\ Command
[]
s 0
5
¥ -20
0 2 4 6 8 10 12 14 16 18
10 :

INDI P
Command

Alpha (deg)
[$)]

0
0 2 4 6 8 10 12 14 16 18
0.5
INDI
Command

i

Beta (deg)
o
5

S
13

2 4 6 8 10 12 14 16 18
Time (sec)

Fig.8 Command reponses

sidered, the sensor works faster, thus the lag N will increase.
It means that a time delay in the FCC can be interpreted as
many units delay in the sensor measurement. For example, if
the FCC works at 100 Hz and the sensor works at 1000 Hz,
then a time delay unit for the control law will be consider as
ten times delay for the sensor, which will provide additional
information that can be exploited with a smoother rather than
Kalman filter estimator. This can be explained in a simpler
way; while the sensor works faster than the FCC, there is
more available measured information and if we use all this
information to obtain a value in the past, we will get a better
estimation rather than using only the previous value.
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5 ‘ 0.1
“‘8 N D T B B True ,m\ """"" True
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€0 : > 2 ]
= 4 B
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g g °
0 2 4 6 8 10 12 14 16 18 20 5 ‘
< -0.05 ‘
i
U
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2 Estimated 0 2 4 6 8 10 12 14 16 18 20
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2 0.02
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= I Y e e [ S S S S ST S| iy True
0 2 4 6 8 10 12 14 16 18 20 2 001 ﬂ Estimated ||
12 A
N A R A S| BTty True = 0 ) [,
Q i . o
% {‘\M Estimated 8 T/
g O 4 ] ] ]
= g 001 U
2
s
0.2 -0.02
0 2 4 6 8 10 12 14 16 18 20 2 4 6 8§ 10 12 14 16 18 20
Time (sec) Time (sec)
Fig.9 Angular acceleration (inner loop) Fig. 10 Angular velocity (outer loop)

A double integrator model has been used to implement
the smoother for angular velocity and angular acceleration
estimation based on [11]:

=[oo]la] <[]
y=[1 0][2]“;.

(18)

Taking into account two cases: first, x| as position and x;
as velocity and second; x| as velocity and x, as acceleration.

Then, the discrete form of Eq. (18) yields a discrete time
signal model same as Eq. (5):

_[rar) o7,
1o 1 k 1ka

=[10]xke1 + veat.

Xk+1

Zk+1

Then, using Kalman filter relations from Eqgs. (6) to (7),
the state estimate Xi41 /k+1 at current time, the Kalman gain
K+1 and the covariance matrix Py.1/k+1 are obtained. These
values are used to build the augmented smoother equations
according to Eq. (9). Finally, the smoothing algorithm in
Eq. (10) with a fixed lag N, and i = 1, 2, ..., N is initialize
with Pé 0= 0. A separated smoother is implemented in each

loop, three in the inner loop for [ po 4o Fo ]T, and two in the

. T
outer loop for [ &g Bo | .
A complete scheme of the CAS using INDI and smoother
is shown in Fig. 3.
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P do((raxd/sec )
]
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o
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Fig. 11 Comparison of roll angular acceleration estimation

5 Simulation and Results

The performance of the INDI control and the smoother is
tested through simulation using matlab/simulink. A com-
plex maneuver is implemented for the command, with 30°/s
roll rate for 2 s, 9° angle of attack command, while the S
command is kept to O for a proper coordinated turn. The
sample frequency for the controller is 70 Hz, the IMU sensor
works at 1400 Hz and the sensors for side slip angle and beta
angle works at 700 Hz. In this way, the lag for the inner loop
smoother is N = 20 and for the outer loop smoother the lag
is N = 10. The power spectral density (PSD) for the IMU
sensors is taken as PSD = 10‘9(deg/s)2 1/Hz, and for the
and B sensors this value is PSD = 10‘9(deg)21/Hz.

From Fig. 4, it can be observed that the INDI controller
approach performs well showing a good command tracking
response for roll command and alpha command, however,
the 0—f angle command has small deviation within 0.5°. This
is due to the high roll command applied to the system that
requires both rudder and aileron deflection.
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In Fig. 5, the angular acceleration estimation for the inner
loop shows a good performance with a very light presence
of noise; whereas the estimation is also good for angular
velocities in Fig. 6. Moreover, from Fig. 7, we can see that
the surface deflection responses are smooth without presence
of noise.

Then, changing sample frequency to 700 Hz for the IMU
sensors, and 350 Hz for o and B sensors, the fixed lag is
reduced to N = 10 for the inner loop and N =5 for the outer
loop. This will be interpreted as reduction in the performance

of the smoother. From Fig. 8, we can notice that a good
tracking performance of the command is maintained, since
the estimation shown in Figs. 9, 10 is still good. However,
from Figs. 11, 12, where the smoothers and Kalman filter are
compared, it can be observed that the performances of the
smoother with higher lag are always better with a reduction
on the delay.

The performance of the smoothers can be also seen from
the graphs of the values of the covariance matrix. In Fig. 13,
the variance of the smoother, Pyy1_y/k+1 related to roll angu-
lar acceleration p becomes smaller for a lag N = 20. Similar
situation happens for the variance related to ¢ in Fig. 13,
where Py11-10/k+1 has the smaller value. To see the improve-
ment, we can use the following relation:

[ Pes1—n/k+1 — Pratjke1]

x 100%.
tr[ Pest k1]

Improvement =

For the inner loop: when N = 5 the improvement is 32.7%,
when N = 10 the improvement is 55.5%.

For the outer loop: when N = 10 the improvement is
37.5%, when N = 20 the improvement is 61.3%.

The power spectral density (PSD) in the previous results
was fixed, however, these values may vary depending on the
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Fig. 13 Variance for angular acceleration and angular velocity for different lag N in the smoother

Table 3 Parameters for IMU

Sensors Parameter IMU sensor quality
Unit High Medium Low
Noise PSD (deg/sec)*/Hz 1072 1076 10
0 (deg/sec?)? 1078(180/7)? 1075(180/7)? 1073(180/7)?
R (deg/sec)? 1.4x 1076 1.4x1073 1.4x 107!
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quality of the sensor. In Ref. [17] the IMU sensors are cat-
egorized according to its PSD value, where a smaller value
corresponds to a higher sensor quality. In Table 3, these val-
ues are summarized with its corresponding noise covariance
R and process covariance Q. The methodology to tune the
smoother begin with the relation R = PSD/T, where T is
the sample time. When R is fixed, Q is changed to obtain a
good estimation. It was noticed that when Q is increased, the
Kalman gain K also increases as can be seen in Eq. (7) and
the covariance Pry1/k+1 = Pry1/k — K1 Hie1 Py attains
a smaller value. This is interpreted as a better estimation with
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< 40
[
7] INDI
_§’ 20 //4—} — Command [
[9]
IS 0
€ 20
2 4 6 8 10 12 14 16 18
10 S
—_ INDI P
jo))
S ——— Command //
© O
<
=3
<
0
0 2 4 6 8 10 12 14 16 18
0.5
. — INDI
i f\ ——— Command
S 0
£ U
5]
)
-0.5
0 2 4 6 8 10 12 14 16 18
Time (sec)
Fig. 177 Command response with low-quality sensor

reduced delay. Whereas, increasing Q means a less accurate
estimation with bigger delay.

The results previously shown in Fig. 4 correspond to a
simulation for high-quality IMU sensor. A simulation for
medium and low IMU sensor quality was also performed
according to Table 3 with a lag N = 20 for the inner loop
smoother.

Figure 14 shows that for a medium-quality sensor when
PSD = 107%(deg/s)? 1/Hz, the tracking performance of
the command response is good. Besides, the estimation of
angular acceleration in Fig. 15 is also good but it shows an
increment in the noise level. This problem is also reflected in
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the surface deflection response in Fig. 16 where the chatter-
ing effect occurs, more visible for rudder surface response.
For the low-quality sensor case in Figs. 17, 18, 19, even
though the estimation is good, the noise cannot be completely
attenuated. Despite noisy signal, the command response
maintains a good performance as in previous cases. The main
problem can be reflected in the surface deflection response,
where the chattering is increased compared to previous case.
As PSD increases, the noise level also increases and it
becomes harder for the smoother to completely remove the
noise from the signal. There is always a tradeoff between the
accuracy of the estimation with smaller delay and the reduc-
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Fig.21 Angular acceleration (inner loop)

tion of the noise. If the values of Q and R are changed such
that the noise level is reduced more it can affect the accu-
racy of the estimation, generating higher delay that can lead
to instability when implementing the INDI. Thus, a proper
value for Q and R has to be chosen.

As stated before referring previous works [5] and [6],
using INDI, the control system is insensitive to uncertain-
ties and changes in the aerodynamic derivatives, center of
gravity and moment of inertia. The last simulation shows
the performance of this control strategy under changes in the
aerodynamic derivatives (A and D matrices from previous
section). Here, it a reduction of 20% of the following coeffi-
cients was considered: C,, o Ci,, Cn,, Cmy,» Cis, and Cy; .
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In Fig. 20, the command response shows a good perfor-
mance even in the presence of uncertainty due to changes
in the aerodynamic derivatives. Furthermore, the estimation
of angular acceleration and angular velocity in Figs. 21, 22
is accomplished but with slight degradation compared to the
results obtained in the previous case (Figs. 5, 6).

6 Conclusion

Incremental nonlinear dynamic inversion approach can pro-
vide a robust flight control design for fighter aircrafts.
Addressing the problem of state derivative availability, a
smoother algorithm can handle this problem, using extra
available information provided by sensor, however, it is
preferable when the quality of the IMU sensor is high, which
can be the case of fighter aircrafts that can employ expen-
sive sensors. For low-quality sensors, more investigation is
required to reduce the chattering effect produced by noise.
Additionally, when a direct measurement method using spe-
cial sensors is employed to obtain angular acceleration or
angular velocity, the smoother could still be used as a redun-
dancy system.
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