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Abstract
In this paper, a new hybrid schemewhich combines radial basic function (RBF) neural network with a model following sliding
mode control technique to take their common features is used to solve attitude control problem of gliding guide projectile. The
attitude kinematics model described by second-order nonlinear uncertain system is divided into two single-input single-output
subsystems by considering the nonlinearity as disturbance. To avoid generating high control value, the coupled inputs are
kept as one nominal input instead of being included in lumped uncertainties. The uncertainties in the plant are cancelled by
an adaptive RBF neural networks estimator, which is designed based on Lyapunov theory. To verify the effectiveness of the
proposed control strategy, attitude tracking control experiments are simulated under strong internal and external disturbances.

Keywords Model following control · Sliding mode control · Tracking differentiator · RBF neural network · Attitude tracking
control

1 Introduction

Traditional ballistic missiles and flying missiles have not
been able to achieve full penetration. Therefore, with the
improvement of missile defence system, the new missile
called boost-gliding-guided projectile which combines the
advantages of both ballistic missiles and flying missiles is
developed [1]. This kind of missile is launched by barrel
weapon. Once coming through the muzzle, it opens the tail
wing, which enables it to spin at a specified speed and to
maintain stable fight. After a few seconds, the small rocket
booster engine on the missile begins working to assist the
missile in climbing. Once the rocket shuts down, the mis-
sile detect system starts to work. When the missile reaches
somewhere near the vertex, the duck rudders are opened.
Then the guiding system continuously adjusts the deflec-
tions of the rudders to control the attitude of the projectile.
By this way, the range is extended and precise strike can be
achieved [2]. Due to the rotating characteristics of the pro-
jectile and some other factors, such as the delay between
the control instructions and the response of the rudder sys-
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tem, there is significant cross coupling between the yaw
channel and the pitch channel. What’s more, the gliding-
guided projectile control model which is always constructed
under some assumptions differs from the actual one, and the
projectile suffers from uncertain disturbance and dynamic
parameters perturbation in flight. In other words, the atti-
tude control problem studied in this paper can be classified
as the control problem of nonlinear multiple-input multiple-
output (MIMO)uncertain system.Todealwith such problem,
researchers have proposed many methods, such as feed-
back linearization method, fuzzy method, variable structure
method [3–10] and so on. Among them, variable structure
method is widely used to solve nonlinear control problems
[11–15], for its merits of simplicity in implementation, fast
dynamic response, and robustness against parameter varia-
tions. However, traditional sliding mode control suffers from
the chattering problem [16]. As a remedy to this drawback,
higher order sliding mode control approach is proposed [17–
20]. Furthermore, to cope with the uncertain terms in model
plant, estimator should be used. Artificial neural network
(ANN) is an efficient tool to estimate disturbance due to
its major advantages such as strong self-learning skills, and
powerful ability to map nonlinear system. Usually, ANNs
adopt Hebb or learning rule to adjust weights of networks
[21], but that can only guarantee the system is convergent
around the ideal value. So, researchers propose online adap-
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tive neural network [22–26], which is based on Lyapunov
stable theory, to ensure the stability of closed-loop system.

In general, estimator is assigned to figure out the uncer-
tainties in plant parameters, as well as coupling inputs and
external disturbance [27,28].

In this paper, we take the gliding guided missile as a
research object, and a composite control strategy is proposed
to solve the problem of cross coupling and uncertain distur-
bance. Specifically, the coupled control inputs are regarded
as a single channel input, while the rest part of the plant
is treated as lumped uncertainty. Model following control
approach is adopted in the framework of full-order sliding
mode control, in this way, it is feasible to get the desired con-
trol quality. The uncertainties are cancelled by an adaptive
RBF neural network estimator, and the convergence of sys-
tem is demonstrated through Lyapunuov stable theory. The
effectiveness of the control method proposed in this paper is
verified through simulation. Simulation results show that the
controller proposed can achieve high control precision, and
is robust to internal and external disturbances.

The rest of this study is organized as follows. In Sect. 2, the
problem to be solved is described. In Sect. 3, the decoupling
control is designed based on model following SMC and an
adaptive RBF network estimator, and the stability of system
is proved. In Sect. 4, comparison simulation is performed,
and the improved attitude controller is given.

2 Gliding-Guided Projectile Attitude
Kinematics Model

Consider that the gliding-guided projectile is gliding along
a short flight path, assuming the flight speed and rotational
speed of the projectile are constant, and neglect the variation
of the dynamic pressure and Mach number as well as other
physical parameters. Under the assumption that the attack
angle and side slip angle are small, the attitude kinematics
model of the gliding-guided projectile can be constructed as
[23]

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

θ̇ = a1α − a2β + a3δz

−ϕ̇ cos θ = a1β − a2α − a3δy

ϑ̈ = b1α − b2β + b4δz − b3ϑ̇ + b5 cosϑ · ψ̇

ψ̈ cosϑ = b1β + b2α + b4δy − b3 cosϑ · ψ̇ − b5ϑ̇,

(1)

where α represents angle-of-attack; β represents side slip
angle; θ and ϕ are trajectory inclination angle and trajectory
deflection angle ,respectively; ϑ and ψ are angle of pitch
and angle of yaw, respectively; δz and δy are equivalent rud-
der angle of pitch channel and equivalent rudder angle of
yaw channel, respectively; ai and bi are kinetic coefficients,
a1 = QS

mv
(Cα

L +Cδ
L) ,a2 = QS

mv
C ′′

μ(γ̇ d/v),a3 = QS
mv

(Cα
L ,b1 =

QS
E (m′

z + m′
σ ),b2 = QSlγ̇ D

Ev
m′′

y ,b3 = QSlD
Ev

m′
zz ,b4 =

QSl
E m′

σ ,b5 = C γ̇
E , where m is mass, v is velocity, D is mis-

sile diameter, S and l are characteristic area and characteristic
length, respectively, Q is dynamic pressure, γ̇ is rotational
speed of the missile, E and C are equatorial damping coeffi-
cient and polar damping coefficient, respectively,Cα

L andCδ
L

are derivation of lift induced by missile and that induced by
canard, respectively, C ′′

μ and m′′
y are Magnus force and the

derivation of Magnus moment, respectively,m′
z is derivation

of the staticmoment,m′
zz is the derivationof equatorial damp-

ing moment, and m′
σ is the derivation of control moment

induced by canard.
When studying the attitude control problem of the projec-

tile, we can think the attitude change speed is faster than the
change speed of velocity vector direction of projectile cen-
ter of mass [24]. Without loss of generality, we assume that
ϑ̇ ≈ α̇, ϕ̇ ≈ β̇. From (1) and the assumption of α = ϑ − θ ,
β = (ψ − ϕ) cos θ , cos θ ≈ cosϑ , we obtain

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β̈ = −k1β̇ − k2α̇ + k3β + k4α

+ k5δy − k6δz − k7δ̇y

α̈ = −k1α̇ − k2β̇ + k3α − k4β

+ k5δz − k6δy − k7δ̇z,

(2)

where k1 = b3 + a1, k2 = b5 + a2, k3 = b1 − b3a1 + b5a2,
k4 = b2 −b3a2 −b5a1, k5 = b4 −b3a3, k6 = b5a3, k7 = a3.
Here the steering gear system is considered to be second
order, the steady output of equivalent rudder deflection of a
spinning gliding missile is denoted as [25]:

[
δy
δz

]

= kskr

[
cos γd sin γd

− sin γd cos γd

]

, (3)

where

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

ks = 1
√

(1 − T 2
s γ̇ 2)2 + (2μsTsγ̇ )2

kr = τ γ̇ + arccos
1 − T 2

s γ̇ 2
√

(1 − T 2
s γ̇ 2)2 + (2μsTsγ̇ )2

,

(4)

where δyc and δzc are equivalent rudder deflect angle con-
trol signal for pitching channel andyawchannel, respectively,
ks is gain of canard, Ts is time constant of steer gear system,
μs is system damping ratio, τ is delay time, γd is delay phase
angle.
By omitting δ̇y and δ̇z , from (1), (2) and (3), we get

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

β̈ = −k1β̇ − k2α̇ + k3β + k4α

+ κ5δyc − κ6δzc

α̈ = −k1α̇ − k2β̇ + k3α − k4β

+ κ5δzc + κ6δyc,

(5)
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where

κ5 = k5kskr cos γd − k6kskr sin γd ,

κ6 = k5kskr sin γd + k6kskr cos γd .
(6)

Taking parameter variation and external disturbance into con-
sideration, with denoting u1 = δyc, u2 = δzc, x1 = β, x2 =
β̇, x3 = α, x4 = α̇, we get

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ẋ1 = x2
ẋ2 = f1(x, t) + Δ f1(x, t) + g11(x, t)u1 + Δg11(x, t)u1

+ g12(x, t)u2 + Δg12(x, t)u2 + d1
ẋ3 = x4
ẋ4 = f2(x, t) + Δ f2(x, t) + g21(x, t)u1 + Δg21(x, t)u1

+ g22(x, t)u2 + Δg22(x, t)u2 + d2,

(7)

where f1(x, t) = −k1x1 − k2x2 + k3x1 + k4x3, f2(x, t) =
−k1x4+k2x2+k3x3−k4x1, g11 = κ5, g12 = −κ6, g21 = κ5,
and g22 = κ6.

In (7), we can see that x1, x2 are all influenced by the
coupled inputs, which makes the control problem very com-
plicating. To solve this problem, we denote a nominal input

vector U = [
U1 U2

]T
, and it satisfies

U = F

[
u1
u2

]

=
[
g11 g12
g21 g22

] [
u1
u2

]

. (8)

The rest part beside control U in (7) is treated as a lumped
uncertainty, which is denoted as

d =
[
dp
dq

]

=

⎡

⎢
⎢
⎣

f1(x, t)+Δ f1(x, t) + g11(x, t)u1 + Δg11(x, t)u1
+ g12(x, t)u2 + Δg12(x, t)u2 + d1

f2(x, t)+Δ f2(x, t) + g21(x, t)u1 + Δg21(x, t)u1
+ g22(x, t)u2 + Δg22(x, t)u2 + d2

⎤

⎥
⎥
⎦ .

(9)

Then (7) can be transformed into two decoupled subsystems:

ẋ p = Apxp + BpU1 + Bpdp,

yp = x1,
(10)

and

ẋq = Aqxq + BqU2 + Bqdq ,

yq = x3,
(11)

where xp = [
x1 x2

]T
, xq = [

x3 x4
]T
, Ap =

[
0 1
0 0

]T

, Bp =
[
0 1

]T
, Aq =

[
0 1
0 0

]T

, Bq = [
0 1

]T
, and y = [

yp yq
]T

are

output signals.
The object is to design a control inputU so as to drive the

output vector y = [
yp yq

]T
to follow the control command

yc = [
y1c y2c

]T = [
ypc yqc

]T
in spite of the uncertainties

and external disturbances.

3 Design of Control

In this section, we design a controller based onmodel follow-
ing control method in the framework of a full-order sliding
mode control suggested in [32]. Besides, the uncertainties are
compensated by an adaptive RBF neural network estimator.
Because the subsystems (10), (11) have similar forms, we
only take(10) as an example to display the design process of
control.

3.1 Model Following Control with Full-Order Sliding
Mode

Let

ẋ pm = Apmxpm + Bpm y1c, (12)

be a stable model satisfying certain structural conditions
stated by the following assumption:

Assumption 1 Apm and Bpm in (12) satisfy

Ap − Apm = BpL, Bpm = BpM, (13)

where L and M are known matrixes.

Define a sliding surface [25]

σ = BT
p xp + z p, z p(0) = −BT

p xp(0), (14)

where

ż p = −BT
p Apmxp − BT

p Bpm y1c, (15)

where the chosen sliding surface offers the full-order sliding
mode, i.e., the order of the sliding surface is identical to the
origin system’s [32]. The dynamics of auxiliary z p provides
perfect model following once σ goes to zero and the sub-
system (10) tracks the desired model dynamic given by (12)
[28]. Differentiating (14) and using (10) with (15) give
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σ̇ = BT
p Apxp + BT

p BpU1 + BT
p Bpdp − BT

p Apmxp

− BT
p Bpm y1c

= BT
p Lxp + BT

p BpU1 − BT
p BpMy1c+

BT
p Bpdp.

(16)

Let the control U1 be split as

U1 = Ueq +Un, (17)

where the equivalent controlUeq is put in charge of the known
dynamics andUn takes care of the lumpeduncertainty in (16).
Choosing

Ueq = −Lxp + My1c − (BT
p Bp)

−1kpσ, (18)

where kp is a positive constant. From (16), (17), and (18),
we obtain

σ̇ = −kpσ + BT
p BpUn + BT

p Bpdp. (19)

Next, the compensator Un will be designed.

3.2 Design of Adaptive Compensator

The uncertainties in parameter and external disturbance are
themain factors influencing the existence of the slidingmode
for σ . To neglect the uncertain term in (19), RBF neural
network is used to design an adaptive compensator.

The compensator Un is designed as

Un = −ρ, (20)

where ρ is the upper bound of the uncertain term in (19)
which is hard to be predicted. Thus, we use RBF neural net-

work to estimate its value dynamically. χ = [
x1 x2

]T
is the

input vector of RBF network, the estimation of ρ is defined
as

ρ̂ = ŵTϕ(χ), (21)

where ŵT is the weight for RBF network and ϕ(χ) is chosen
to be Gauss function with the form

ϕ(χ) = exp

(

−‖χ − ci‖2
b2i

)

, i = 1, 2, . . . , n, (22)

where ci denotes the center of the i th neuron, bi denotes the
width of the ith neuron, and n denotes the number of neurons.
Therefore, the compensator using RBF network for esti-
mating the upper bound of the uncertainties is designed as
follows:

Un = − ρ̂. (23)

From (19) and (23), we can have

σ̇ = − kpσ + BT
p Bp(dp − ρ̂). (24)

Because

dp − ρ̂ = dp − ρ∗ − ρ̂

= η + w∗ϕ(χ) − ŵϕ(χ)

= η + w̃ϕ(χ),

(25)

where η = dp −ρ∗ represents approximate error of the opti-
mal RBF network, the w∗ represents the optimal weight for
RBF network, ρ∗ = w∗ϕ(χ) represents the optimal output
of RBF network, and w̃ = w∗ − ŵ. Then (24) becomes

σ̇ = − kpσ + BT
p Bp(η + w̃ϕ(χ)). (26)

Lyapunov function is defined as V = 1
2σ

2 + 1
2N w̃2, and

weight value of the RBF network is adjusted online by adap-
tive algorithm. Choosing ˙̂w = N BT

p Bpσϕ(χ), where N is
positive constant, the following is derived:

V̇ = σ σ̇ − N−1w̃ ˙̂w
= σ(−kpσ + BT

p Bp(η + w̃ϕ(χ))) − BT
p Bpσw̃ϕ(χ)

= − kpσ
2 + BT

p Bpση

≤ − kp|σ |2 + BT
p Bp|σ |η

= − kp|σ |(|σ | − k−1
p BT

p Bpη).

(27)

To lead V̇ ≤ 0, kp should satisfy kp ≥ BT
p Bpη

|σ | . If and only if

|σ | = k−1
p BT

p Bp, V̇ = 0. When V̇ = 0, |σ | ≡ k−1
p BT

p Bpη.
According to LaSalle invariance principle [33], system (14)
is asymptotic stable, which means |σ | → k−1

p B−1
p η when

t → ∞. Besides, the convergence rate depends on kp.
Due to V ≥ 0, V̇ ≤ 0, V is bounded when t → ∞.

Therefore, w̃ is bounded. It is noted that the larger the kp is,
the smaller approximate error the optimal RBF network has,
which will make σ have a smaller convergence radius and as
a result, the effect of model tracking will be improved.

4 Simulation and Results

In this section, the validity of the proposed control scheme is
demonstrated by applying it to the attitude control problem
of a certain type of gliding guided projectile.

4.1 Simulation Parameters

The parameters of the gliding-guided projectile are given in
Table 1.
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Table 1 Parameters for a gliding-guided projectile

b1/s−2 b2/s−2 b3/s−2 b4/s−2 b5/s−2

−129.4 0 0.191 97.519 2.286

α1/s−1 α2/s−1 α3/s−1 γ̇ (r/s) τ/s

0.287 0 0.062 10 0.015

ks Ts/s μs δmax/
◦ δ̇max/(rad/s)

1 1/150 0.7 20 200

Table 2 The parameters of
controller

Parameter N kp kq

Value 21 200 200

The attitude angle tracking command is given by

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

βc = y1c =

⎧
⎪⎨

⎪⎩

1◦, 1 < t ≤ 2

−1◦, t > 2

5◦, t ≤ 1.6

αc = y2c =
{
4◦, 1.6 < t ≤ 3

7◦, t > 3.

(28)

The controller parameters are set as Table 2 shows. The initial
value of weight w of RBF network is [0.1 0.1 0.1 0.1 0.1]T ,
cp = [−1◦ − 0.5◦ 0◦ 0.5◦ 1◦]T , cq = [−7◦ −
3.5◦ 0◦ 3.5◦ 7◦]T , and b = 2.

Since the second-order system in (7) is split into two sub-

systems, Ap = Aq =
[
0 1
0 0

]

, Bp = Bq = [
0 1

]T
.

The reference model to be followed is chosen as

ẋm = Amxm + Bmum, (29)

where Am =

⎡

⎢
⎢
⎣

0 1 0 0
− 400 − 36.6 0 0
0 0 0 1
0 0 − 200 − 24.6

⎤

⎥
⎥
⎦.

Besides, Bm =

⎡

⎢
⎢
⎣

0 0
400 0
0 0
0 200

⎤

⎥
⎥
⎦. The initial values for the

plant and model are

x(0) = [
0.01 0 0.01 0

]T
,

xm(0) = [
0 0 0 0

]T
.

(30)

Next, we perform two kinds of experiments: 1, the closed-
loop system of attitude suffers from strong internal and exter-
nal disturbance; 2,Monte Carlo experiments with parameters
variation.

4.2 Attitude Decoupling Control Simulation Under
Strong Internal and External Disturbances

4.2.1 Comparison Experiment Between the Proposed
Decoupling Controller and ESO-PD Controller

In this simulation, severe disturbances are considered. Δ f1
(x, t), Δ f2(x, t), Δg11(x, t), Δg12(x, t), Δg21(x, t), and
Δg22(x, t) are 40%uncertainty in f1(x, t), f2(x, t), g11(x, t),
g12(x, t), g21(x, t) and g22(x, t), respectively. The external
disturbance vector is

d =
[
4x1 sin(0.5t)
3x3 cos(t)

]

. (31)

For performance comparison, the ESO (extended state
observer)−PD (proportional and differential) controller pro-
posed in [10] is also simulated under the same conditions.

Simulation results are shown as Fig. 1. From Fig. 1a, b,
we can see that both the proposed method and ESO-PD
method can track the desired output with smooth trajecto-
ries. It should be noted that the proposed method responses
are relative more quick than ESO-PD method. As shown in
Fig. 1c, d, the sliding surfaces start from zero point and have
a smooth trajectory with no chattering phenomenon, which
demonstrates the characteristics of full-order SMC. And this
can be verified from the attitude tracking trajectory with ref-
erence model attitude as shown in Fig. 1e, f. Figure 1g, h
shows the estimation of lumped uncertainties. A deviation
from the trajectory of lumpeduncertainties is observedwhen-
ever there is a step change in α and β. But the output of
the adaptive compensator is able to response to the change
timely. From Fig. 1i, j, we can observe that ESO-PD method
always demands much larger control commands to response
to the change of attitude angle tracking instructions. Despite
that, the controller proposed in this paper performs better in
dealing with the coupling terms contained in (7), which has
been demonstrated by Fig. 1a, b. Figure 1k, l shows the equiv-
alent canard angle. It should be noted that both of the two
methods change sharply at certain time, which may do harm
to the actuator. To prevent this phenomenon, it is essential
to arrange a transition process for the reference inputs. The
method is described in the following.

4.2.2 Tracking Differentiator (TD)

In this paper, a discrete tracking differentiator (TD) is used
to provide transition process for yic, i = 1, 2:

⎧
⎪⎨

⎪⎩

vi1(k + 1) = vi1(k) + hvi2(k)

vi2(k + 1) = vi2(k) − rhsat(vi1(k) − yic(k),

vi2(k), r0, h0),

(32)
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Fig. 1 Comparison analysis between the proposed decoupling con-
troller and ESO-PD controller: a tracking effect of yaw commands; b
tracking effect of pitch commands; c sliding surfaceσp ;d sliding surface
σq ; e tracking of xpm ; f tracking of xqm ; g lumped uncertainty estima-

tion of dp; h lumped uncertainty estimation of dq ; iequivalent canard
angle commands in yaw channel; j equivalent canard angle commands
in pitch channel; k equivalent canard angle in yaw channel; l equivalent
canard angle in yaw channel

where vi1 represents transition signal, whose differential is
vi1, h is integration step, vi1(k), vi2(k) and yic(k) denotes
their states at T = kh, h0 is filter factor, which plays an
important role in noise suppression. Here, it is not needed to
filter the control command, so h0 = h. r0 represents speed
factor, and it is used to adjust tracking speed. Let Td represent
the time of the transition process, then the following equation
holds:

r0 = 4(yic − vi1(t0))/T
2
d , (33)

where vi1(t0) represents the initial value of vi1.

In (32), sat(ξ1, ξ2, r , h) is denoted as

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

a = rh, a1 = ha, z = ξ1 + hξ2

g =

⎧
⎪⎪⎨

⎪⎪⎩

vi2 − sign(z)
r(h −

√
8|z|
r + h2)

2
, |z| ≥ a1

vi2 + z

h
, |z| < a1

sat(ξ1, ξ2, r , h) = a,

(34)

where sign(·) denotes the standard sign function.
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Fig. 2 The overview attitude decoupling control of the gliding guided
projectile

4.2.3 The Overview Attitude Decoupling Control of the
Gliding-Guided Projectile

The attitude decoupling control of the gliding guided pro-
jectile based on full-order sliding mode control and adaptive
RBF network compensator is depicted as Fig. 2. As shown,
TD provides gradient signal for the reference inputs y1c and
y2c, by which the large jumping phenomenon and saturation
of the control signal is avoided. Model following controllers
are designed in the framework of full-order slidingmode con-
trol. What’s more, an adaptive compensator based on RBF
network is proposed to enhance system robustness against
parameter variation and external disturbance.
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Fig. 3 Comparison analysis between the improved controller and pro-
posed method without TD: a tracking effect of yaw commands; b
tracking effect of pitch commands; c sliding surfaceσp ;d sliding surface
σq ; e tracking of xpm ; f tracking of xqm ; g lumped uncertainty estima-

tion of dp; h lumped uncertainty estimation of dq ; i equivalent canard
angle commands in yaw channel; j equivalent canard angle commands
in pitch channel; k equivalent canard angle in yaw channel; l equivalent
canard angle in yaw channel
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4.2.4 Simulation and Analysis for the Improved Attitude
Controller

In this subsection, the improved attitude controller is sim-
ulated under the same conditions used in Sect. 4.2.1. The
simulation results are shown in Fig. 3.

As Fig. 3a, b shows, the improved method can also track
the desired output precisely, despite it responding slower than
that without TD. From Fig. 3c, d, we can see that the sliding
surface profile generated by the improved method is flat-
ter. The attitude tracking with reference model attitude is
depicted in Fig. 3e, f. From Fig. 3g, h, we can note that the
improved method can still respond to the change of lumped

(a)

(b)

Fig. 4 Attitude tracking ofβ andα: a tracking effect of yaw commands;
b tracking effect of pitch commands

uncertainties timely. The transition process arranged by the
TD greatly reduces the control commands around the time of
reference inputs switching just asFig. 3i, j shows.Because the
improved method generates smaller control commands, the
equivalent canard angles needed are smaller, which greatly
reduce the burden on the actuator and means a lot to the
stability of the system.

4.3 Monte Carlo Experiments with Parameter
Variation

To demonstrate the robustness of our method, we perform
Monte Carlo experiments 100 times. The external distur-
bance is the same as that in Sect. 4.1. The standard deviation
of the error of the aerodynamic parameters is set to be 30%
of the nominal value. As Fig. 4 shows, attitude response
curve is constrained within a very narrow envelope, which
means the proposed control method is insensitive to parame-
ter variation. Figure 5 shows the estimation errors for lumped
uncertainty. The curve appears to be ladder shape due to the
relatively large sampling period, but it does not prevent the
RBF networks from estimating the uncertainties precisely as
the figure exhibits.

5 Conclusion

In this paper, an attitude decoupling control strategy is pro-
posed for gliding-guided projectile based onmodel following
SMC and RBF neural network. The coupling inputs are kept
as a nominal input instead of being included in lumped uncer-
tainty, so high control value is avoided. Also, control signal
jumping phenomenon is avoided by using of TD, which
provides a transition process for the reference inputs. The
coupling effects have been weakened completely using of
RBF network, which is demonstrated by simulations.

(a) (b)

Fig. 5 Estimation errors: a lumped uncertainty estimation error of dp; b lumped uncertainty estimation error of dq
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