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Abstract
This paper addresses trajectory optimization in the mid-course phase of an air-to-ground missile, when the main objectives 
are (a) to ensure that the target is locked on in the center of the missile’s field-of-view at a specified flight path angle and 
(b) to attain maximum possible speed to allow for sufficient maneuverability in the terminal phase. The method presents as 
a second-order cone program (SOCP) formulation for this trajectory optimization, taking advantage of partial linearization 
and lossless convexification techniques that effectively handle underlying non-convex characteristics of the problem. A 
well-established SOCP solver can then be readily used to obtain the optimal solution to this convex program. The proposed 
approach is validated by (a) proving the losslessness of the convexification, and (b) numerically comparing the results with 
an existing pseudo-spectral method.

Keywords Second-order cone programming · Lossless convexification · Convex optimization · Trajectory optimization · 
Air-to-ground missile

1 Introduction

The typical precision-guided tactical missiles are equipped 
with a seeker for target detection and/or recognition. 
Depending on whether the missile uses seeker information, 
the guidance algorithm is divided into two phases: one for 
mid-course guidance, the other for terminal guidance. The 
main objectives of the mid-course guidance are to ensure 
that the target is locked on in center of the missile’s FOV 
(field-of-view) at a specified flight path angle with sufficient 
maneuverability [1]. However, in the case of air-to-ground 
missiles, it is not trivial to design the optimal mid-course 
guidance considering wide regime of initial conditions and 
several constraints. Therefore, it is important to generate 
the optimal mid-course trajectory according to the initial 
condition in order to maximize the performance of the mis-
sile. In this paper, a convex programming approach to mid-
course trajectory optimization for air-to-ground missiles is 
presented to find out the possibility of real-time trajectory 
optimization. The maximum allowable altitude constraint 

is additionally considered with impact angle and angle-of-
attack constraints.

The way to generate the missile trajectory is largely 
divided into the analytic and numerical methods. The ana-
lytic method for impact angle control have been proposed 
based on the optimal control theory or proportional naviga-
tion guidance law using simplified linear model [2–9]. In 
recent years, although the practical constraints such as accel-
eration limit and seeker’s field-of-view have been considered 
for the derivation of guidance laws [6–9], they still depend 
on limited constraints and simplified models. In addition to 
the analytic method, various numerical methods have been 
also proposed to solve optimal control problems such as 
trajectory optimization [10–12]. The standard way to solve 
optimal control problems is to divide the whole interval of 
optimal control problems into specified subintervals, and to 
calculate the optimal values of states and controls at the ends 
of the specified subintervals using existing nonlinear pro-
gramming methods [13]. However, nonlinear programming 
is very sensitive to initial conditions and cannot guarantee 
convergence, and also requires long computation time. As 
an alternative, convex programming approaches have been 
attempted in the aerospace field because it is robust to ini-
tial conditions and ensures convergence with the polynomial 
time [14, 15]. Particularly, in the case of the second-order 
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cone programming, research papers in various areas includ-
ing the real-time trajectory optimization technique have been 
published [16–20].

In order to use convex programming, it is necessary to 
convert general nonlinear optimal control problems into con-
vex problems and the following three problems should be 
addressed. At first, an appropriate method for integration of 
objective function and dynamic model should be presented. 
While the pseudo-spectral methods define the specific dif-
ferential and integral operator based on the representation, 
the convex programming approach needs to define the dif-
ferentiation and integration method such as the trapezoidal 
rule [21, 22]. Second, nonlinear equations such as state con-
straints, control constraints and dynamic model should be 
convexified. There are two main ways to perform the convex 
transformation; one is linearization method and the other 
is relaxation method. Since linearization method sequen-
tially calculates linear model for an equilibrium point, it is 
straightforward to implement [23–26]. However, the opti-
mality and convergence of the solution cannot be generally 
guaranteed and the optimal solution can be obtained in the 
case where the nonlinear characteristics are not critical. On 
the other hand, relaxation method transforms a non-convex 
problem into a convex problem by relaxing the constraint. 
If the relaxation does not affect the solution of the original 
problem, it is called as lossless convexification and then we 
can easily obtain the optimal solution using convex program-
ming [19, 27–30]. However, the proof for the lossless con-
vexification should be performed based on the optimal con-
trol theory. Finally, a monotone-independent variable with 
a specific initial and final value should be defined. Although 
time is the typical independent variable for dynamics and 
objective function, there are a number of problems with 
free final time. If the final time is not specified, we need to 
sequentially predict the final time or find an independent 
variable in the state variables [19, 23].

In this paper, the convex approach to mid-course trajectory 
optimization problem of the air-to-ground missile with boost-
glide phase is proposed. The objective is to maximize the final 
velocity satisfying the specific final impact angle with altitude 
and angle-of-attack constraints. Since the original problem is 
a nonlinear optimal control problem with free final time, it 
should be converted to convex optimization problem. The main 
contribution of this paper is as follows: (a) the losslessness of 
the convexification is proved based on the maximum princi-
ple of optimal control theory and (b) change of independent 
variable is proposed to tackle the free final time problem and 
(c) proposed approach is validated numerically comparing the 
results with an existing pseudo-spectral method.

The paper is organized as follows. Section 2 gives a 
summary of the mid-course trajectory optimization prob-
lem formulation with change of independent variable. In 
Sect. 3, details of partial linearization, discretization and 

lossless convexification are described for convex program-
ming. And a sequential second-order cone programming 
algorithm is presented to obtain the convergent solution. 
Numerical simulations and conclusion are given in Sects. 
4 and 5, respectively.

2  Problem Formulation

2.1  Mid‑course Trajectory

In this section, the mid-course trajectory optimization prob-
lem of an air-to-ground missile with boost-glide phases is 
described. Figure 1 shows the engagement scenario of the 
short-range air-to-ground missile with altitude constraint.

The nonlinear equations of motion in a two-dimensional 
longitudinal plane are given in Eq. (1).

where m =

{
m0 −

(mf−m0)
tT

t t ≤ tT

mf t > tT

, T =

{
T0 t ≤ tT
0 t > tT

.

Here, m is the mass of missile, g is the gravitational accel-
eration, and T  is the thrust magnitude with the burning time 
tT . L,D represent the aerodynamic lift and drag force and 
are assumed as the first order and second order function of 
angle-of-attack as follows:

where q =
1

2
�V2, Sref, q represent the reference area and 

dynamic pressure, respectively. CL0
,CL�1

 and CD0
,CD�2

 are 

(1)

ẋ = V cos 𝛾 ,

ẏ = V sin 𝛾 ,

V̇ =
1

m
(T cos 𝛼 − D) − g sin 𝛾 ,

�̇� =
1

mV
(T sin 𝛼 + L) −

1

V
g cos 𝛾 ,

(2)
L =

(
qSref

)(
CL0

+ CL�1
�
)
,

D =
(
qSref

)(
CD0

+ CD�2
�2
)
,

Fig. 1  Mid-course trajectory geometry. x, y,V , � represent the down-
range, altitude, velocity and flight path angle, respectively. The sub-
scripts 0, f ,T  denote the initial condition, final condition and target. 
And ymax, rd represent the maximum allowable altitude and target 
detection range of seeker
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the aerodynamic coefficients for lift and drag. Assuming the 
angle-of-attack is small enough for all t ∈

[
t0, tf

]
 , the trigo-

nometric functions of angle-of-attack are approximated as 
follows:

If we denote the state variables as z =
[
x y V �

]
 and 

the control variables as u =
[
� �2

]
 , the dynamic equa-

tions (1) are described as follows:

where m =

{
m0 −

(mf−m0)
tT

t t ≤ tT

mf t > tT

, T =

{
T0 t ≤ tT
0 t > tT

.

The constraints on altitude and angle-of-attack are shown 
in Eq. (5):

Now we define problem P0 as nonlinear optimal control 
problem with dynamics, state constraint, control constraint, 
initial condition, and final condition.

Dynamics

State constraint

Control constraint

Initial condition

Final condition

(3)cos � ≈ 1, sin � ≈ �.

(4)

ż =
dz

dt
= fz(z) + Bz(z)u

=

⎡
⎢⎢⎢⎢⎣

V cos 𝛾

V sin 𝛾
T

m
−

qSref

m
CD0

− g sin 𝛾

−
1

V
g cos 𝛾 +

qSref

mV
CL0

⎤
⎥⎥⎥⎥⎦
+

⎡
⎢⎢⎢⎢⎣

0

0

0
1

mV

�
T + qSrefCL𝛼1

�

0

0

−
qSref

m
CD𝛼2

0

⎤
⎥⎥⎥⎥⎦

�
𝛼

𝛼2

�
,

(5)
0 ≤ y ≤ ymax,

−�max ≤ � ≤ �max.

P0 ∶ min − V
(
tf
)
subject to:

ż = fz(z) + Bz(z)u.

0 ≤ y ≤ ymax.

u2
1
= u2, 0 ≤ u2 ≤ u2max = �2

max
.

z
(
t0
)
=
[
x
(
t0
)
y
(
t0
)

V
(
t0
)
�
(
t0
) ]

.

x
(
tf
)
= xf = xT − rd cos �f,

y
(
tf
)
= yf = yT − rd sin �f,

�
(
tf
)
= �f.

2.2  Transformation of Dynamic Equations

Since the problem P0 is a nonlinear optimal control prob-
lem, it is extremely difficult to find the solution analytically. 
Instead, the solution can be numerically obtained through 
nonlinear programming, convex programming, etc. In order 
to use numerical methods, there should be an independent 
variable that has boundary values and monotonic property. 

In this paper, since the final time is not specified, we set x 
as an independent variable. As a result, the new state vari-
able is defined as q =

[
y V �

]
 and the dynamic Eq. (4) is 

reconstructed as follows:

where m =

{
m0 −

(mf−m0)
tT

t t ≤ tT

mf t > tT

, T =

{
T0 t ≤ tT
0 t > tT

.

Then, the problem P1 is re-defined using new independ-
ent variable.

Dynamics

State constraint

(6)

q� =
dq

dx
= fq(q) + Bq(q)u

=

⎡⎢⎢⎢⎣

tan �
T

mV cos �
−

qSref

mV cos �
CD0

−
g

V
tan �

−
1

V2
g +

qSref

mV2 cos �
CL0

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣

0

0�
T+qSrefCL�1

�

mV2 cos �

0

−
qSref

mV cos �
CD�2

0

⎤⎥⎥⎥⎦

�
�

�2

�
,

P1 ∶ min − V
(
xf
)
subject to:

q� = fq(q) + Bq(q)u.

0 ≤ y ≤ ymax.
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Control constraint

Initial condition

Final condition

3  Formulation to Second‑Order Cone 
Programming

The second-order cone programming, specific field of con-
vex programming, is defined as follows [31]:

where x ∈ Rn is the optimization variables. A ∈ Rm×n with 
m ≤ n and rank(A) = n, c ∈ Rn, b ∈ Rm are all given. K  is 
convex set that is the Cartesian product of linear cones K+ 
and quadratic cones Kq as follows:

Since the problem P1 still have nonlinear dynamics and 
non-convex control constraint, the proper convexification 
should be performed for the dynamic equation and control 
constraint. At first, in the case of nonlinear dynamics, lin-
ear equations are derived through partial linearization with 
trust region. And the discretization based on the trapezoidal 
rule is used to cope with the integration. Secondly, the non-
convex control constraint is relaxed into the convex control 
constraint using the lossless convexification and the detailed 
proof is shown in “Appendix”.

3.1  Partial Linearization

Assume that qk is the k th optimal solution of the problem P1. 
The nonlinear equations (6) are converted to linear equations 
using the partial linearization:

where

u2
1
= u2, 0 ≤ u2 ≤ u2max = �2

max
.

q
(
x0
)
=
[
y
(
x0
)
V
(
x0
)
�
(
x0
) ]

.

y
(
xf
)
= yf = yT − rd sin �f,

�
(
xf
)
= �f.

(7)
(P) ∶ min cTx

subject to Ax = b, x ∈ K,

(8)
K+ = {x ∈ R ∶ x ≥ 0},

Kq =

{
x ∈ Rn ∶ xn ≥

√
x2
1
+⋯ + x2

n−1
, xn ≥ 0

}
.

(9)q� = A
(
qk
)
q + Bq

(
qk
)
u + c

(
qk
)
,

where aij represents the element of the i th row and the j th 
column of the A matrix. Since the partial linearization tech-
nique does not require information about the control values 
for the linearization, it is known that it reduces the oscil-
lation characteristics and also increases the convergence 
speed. In addition, the validity of the linearization is estab-
lished by adding the following trust region:

3.2  Discretization

For the numerical methods, the continuous optimal control 
problem such as problem P1 needs to be converted to non-
linear programming formulation through appropriate discre-
tization process. The entire flight trajectory is divided into 
N equal sections according to the independent variable and 
the discrete points are denoted as follows:

In this paper, the trapezoidal rule in Eq. (12) is used to 
deal with the dynamic equations. Through the discretiza-
tion, the dynamic equations can be described as the algebraic 
form at all discrete points:

A
(
qk
)
=

�fq
(
qk
)

�q
,

c
(
qk
)
= fq

(
qk
)
− A

(
qk
)
qk,

a13 = sec2 � ,

a22 = −
T

mV2 cos �
+

g tan �

V2
−

�Sref

2m cos �
CD0

,

a23 =
T tan �

mV cos �
−

g sec2 �

V
−

�VSref tan �

2m cos �
CD0

,

a32 =
2g

V3
,

a33 =
�Sref tan �

2m cos �
CL0

,

a11 = a12 = a21 = a31 = 0,

(10)
‖‖‖q − qk

‖‖‖ ≤ �q.

(11)xi = x0 +
(xf − x0

N

)
× i, i = 0, 1,… ,N − 1,N.

(12)
qk
i
= qk

i−1
+

Δx

2

[
fq
(
qk
i−1

)
+ B

(
qk
i−1

)
uk
i−1

+ fq
(
qk
i

)
+ B

(
qk
i

)
uk
i

]
,

i = 1,… ,N.



483International Journal of Aeronautical and Space Sciences (2020) 21:479–492 

1 3

Since the air-to-ground missile with the solid propulsion 
system has the specific burning time, this should be consid-
ered for the dynamics formulation. At first, the iT th section 
including the burning time tT is calculated in (13):

where tTsim
�
iT
�
=
∑iT

i=1

2Δx

(Vi−1 cos �i−1+Vi cos �i)
.

Considering the mass dynamics of missiles in (1), the 
mass and thrust of missile is approximated as follows:

3.3  Lossless Convexification

For the convex programming, the non-convex control con-
straint also needs to be represented as convex form. If the 
equality in the constraint can be replaced by the inequality 
yielding the same optimal solution, the problem P1 can be 
represented as convex problem. Such a convex relaxation is 
called as a lossless convexification [27–30]. In this section, 
we prove a lossless convexification related to the control 
constraint based on the maximum principle of optimal con-
trol theory [32].

3.3.1  Maximum Principle

From the optimal control theory, the Hamiltonian, the 
Lagrangian and the endpoint functions are defined as fol-
lows [30, 32]:

where l(t) and �
(
tf
)
 represent the Lagrange term for running 

cost and the Mayer term for terminal cost, respectively. And 
p(t) is the costate variable, and �, �, �, � are multipliers. The 
following theorem represents the maximum principle with 
state constraints [30, 32].

Theorem 1 Let {x(⋅), u(⋅)} be an optimal pair on the inter-
val 

[
t0, tf

]
 such that x(⋅) has a finite number of junction times. 

Then there exists a constant p0 ≤ 0, a piecewise absolutely 
continuous p(⋅), piecewise continuous �(⋅) and �(⋅), a vector 
�
(
�i
)
 for each point of discontinuity �i in p(⋅), and constant � 

and � such that the following conditions are satisfied:

(13)tTsim
(
iT − 1

)
≤ tT < tTsim

(
iT
)
,

(14)mk
i
=

{
m0 −

(
mf − m0

)(
i−1

iT

)
i ≤ iT

mf i > iT

,

(15)Tk
i
=

{
T0 i ≤ iT
0 i > iT

.

(16)H(t) = p0l(t) + pT(t)f (t),

(17)L(t) = H(t) + �T(t)g(t) + �T(t)h(t),

(18)G
(
tf
)
= p0�

(
tf
)
+ �T(t)b

(
tf
)
+ �T(t)h

(
tf
)
,

 (i) the non-triviality condition 

 (ii) the pointwise maximum condition 

 (iii) the differential equations 

 

 

 (iv) the stationary condition 

 (v) the complementary slackness conditions 

 

 

 

 (vi) the jump conditions 

 

 (vii) the prescribed boundary conditions 

 (viii) the transversality conditions 

 

3.3.2  Proof of Lossless Convexification

At first, the assumption for trust region is needed to facilitate 
the proof of lossless convexification. If the trust region is 
set to be large enough and system dynamics is not highly 
nonlinear, the following assumption is valid.

(19)
(
p0, p(t), �(t), �(t), �, � , �

(
�1
)
,…

)
≠ 0 ∀t;

(20)
u(t) = argmaxH

(
t, x(t),�, p(t), p0

)
a.e.t � ∈ �(t);

(21)ẋT(t) = 𝜕pL(t),

(22)−ṗT(t) = 𝜕xL(t) a.e.t,

(23)Ḣ(t) = 𝜕tL(t);

(24)�uL(t) = 0 a.e.t;

(25)g(t) ≤ 0, �(t) ≤ 0, �T(t)g(t) = 0 a.e.t,

(26)h(t) ≤ 0, �(t) ≤ 0, �T(t)h(t) = 0 a.e.t,

(27)h
(
�i
)
≤ 0, �

(
�i
)
≤ 0, �T

(
�i
)
h
(
�i
)
= 0 ∀�i,

(28)h
(
tf
)
≤ 0, � ≤ 0, �Th

(
tf
)
= 0;

(29)pT
(
�−
i

)
= pT

(
�+
i

)
+ �T

(
�i
)
�xh

(
�i
)

∀�i,

(30)H
(
�−
i

)
= H

(
�+
i

)
− �T

(
�i
)
�th

(
�i
)

∀�i;

(31)x
(
t0
)
= x0, b

(
tf
)
= 0;

(32)pT
(
tf
)
= �xg

(
tf
)
,

(33)−H
(
tf
)
= �tg

(
tf
)
.
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Assumption 1 The trust region (10) should be large enough 
to be inactive for all x ∈

[
x0, xf

]
.

For the problem P1 under the Assumption 1, the Ham-
iltonian, the Lagrangian and the endpoint functions are 
described as follows:

The differential equations (22) for costate variables are 
described as follows:

The stationary equations (24) are represented as follows:

The complementary slackness conditions for the state and 
control variables are as follows:

(34)
H = py

(
a13� + cy

)
+ pV

(
a22V + a23� + cV + b22u2

)

+ p�
(
a32V + a33� + c� + b31u1

)
,

(35)
L = H + �0

(
u2
1
− u2

)
+ �1

(
−u2

)
+ �2

(
u2 − u2max

)
+ �y1(−y) + �y2

(
y − ymax

)
,

(36)
G
(
xf
)
= p0

(
−V

(
xf
))

+ �y1
(
−y

(
xf
))

+ �y2
(
y
(
xf
)
− ymax

)
.

(37)p
�

y
= −

�L

�y
= �y1 − �y2,

(38)p
�

V
= −

�L

�V
= −

(
pVa22 + p�a32

)
,

(39)p
�

�
= −

�L

��
= −

(
pya13 + pVa23 + p�a33

)
.

(40)
�L

�u1
= p�b31 + 2�0u1 = 0,

(41)
�L

�u2
= pVb22 − �0 − �1 + �2 = 0.

(42)�0 ≤ 0, �0
(
u2
1
− u2

)
= 0,

(43)�1 ≤ 0, �1
(
−u2

)
= 0,

(44)�2 ≤ 0, �2
(
u2 − u2max

)
= 0,

(45)�y1 ≤ 0, �y1(−y) = 0,

(46)�y2 ≤ 0, �y2
(
y − ymax

)
= 0,

(47)�y1 ≤ 0, �y1
(
−y

(
xf
))

= 0,

The transversality conditions are as follows:

Since the handover point generally exists between the 
minimum and maximum altitude, the following assumption 
is valid for normal engagement scenarios.

Assumption 2 The final value of altitude exists between 
the minimum and maximum value.

Theorem 2 represents a lossless convexification for the 
control constraint. The detailed proof is given in “Appendix”.

Theorem 2 Under Assumptions 1 and 2, let (q∗, u∗) be an 
optimal solution of P2. Then, u2

1
= u2 is satisfied almost eve-

rywhere on 
[
x0, xf

]
.

Based on Theorem 2, thus, the following problem P2 
represents the final second-order cone problem based on 
discretization and relaxation.

Dynamics

(48)�y2 ≤ 0, �y2
(
y
(
xf
)
− ymax

)
= 0.

(49)py
(
xf
)
=

�G

�y
= −�y1 + �y2,

(50)pV
(
xf
)
=

�G

�V
= −p0,

(51)p�
(
xf
)
=

�G

��
= 0.

P2 ∶ min − V
(
xf
)
subject to:

Hq̄ = F.

Table 1  Specification of missile

Specification

Weight 30 kg (before burn-
ing)/22 kg (after 
burning)

Thrust 6000 N
Burning time 3.0 s
Seeker detection range 2.0 km
Maximum allowable altitude 2.0 km
Maximum allowable angle-of-attack 10°
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State constraint

Control constraint

Initial condition

Final condition

0 ≤ y ≤ ymax

‖‖‖q − qk
‖‖‖ ≤ �q.

u2
1
≤ u2, 0 ≤ u2 ≤ u2max = �2

max
.

q
(
x0
)
=
[
y
(
x0
)
V
(
x0
)
�
(
x0
) ]

.

y
(
xf
)
= yf = yT − rd sin �f,

�
(
xf
)
= �f.

3.4  Sequential Second‑Order Cone Programming

Sequential second-order cone programming is a local opti-
mization method based on successive convex approxima-
tion. At first, we assume the initial state and control profile 
using initial and final values or any other approximation. 
From the second optimization, the information obtained at 
the previous optimization phase is used to convexify the 
dynamics and to approximate mass and thrust. The dynamics 
is sequentially convexified at the optimal point and mass and 
thrust profile is also estimated until we obtain the convergent 
solution.

Fig. 2  Sequential convergence 
of missile trajectory

Algorithm : Sequential Second-Order Cone Programming
1: procedure Minimize the objective
2:     0 ← 0( 0),

0( ) (Initial state and control profile)
3: = 1

4: for = 0: do
5: , , ← −1

6: , , ← −1, , ,

7: , ← , ,

8: ← solution of second-order cone problem P2
9: if | − −1| ≤ do
10: return
11:    end
12: end
13: return
14: end procedure
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Fig. 3  Sequential values of 
residual function

Fig. 4  Initial and final profile of 
velocity and flight path angle

Fig. 5  Sequential estimation of 
burning time



487International Journal of Aeronautical and Space Sciences (2020) 21:479–492 

1 3

4  Simulation Results

In this section, the mid-course trajectory optimization for 
air-to-ground missiles satisfying constraints is generated 
by applying the sequential SOCP. Table 1 shows the speci-
fication of the air-to-ground missiles used in numerical 
simulations.

T h e  i n i t i a l  c o n d i t i o n s  i s  s e t  t o 
q
(
x0
)
=
[
1000 m 100 m/s 0 deg

]T and the discrete points 
are set to be 401 including the initial point. Trust region and 
convergence condition are set as follows:

(52)rq =
[
500 m 300 m/s 30 deg

]
,

(53)� =
[
1 m 0.5 m/s 0.05 deg

]
.

As we mentioned in Assumption 1, trust region is set 
to be large enough considering the feasible range of each 
variable. And convergence condition is set to be small 
enough reflecting the computation time. To solve the SOCP, 
MOSEK, which is one of the state-of-the-art interior point 
methods, is applied.

4.1  SOCP Results for Mid‑course Trajectory 
Optimization

The initial state and control profile is set as a line that lin-
early connects the initial condition and the final condition. 
Since the final velocity is not specified, it is set to Mach 
1.0. Figure 2 shows the sequential convergence of missile 
trajectory as a result of 9 iterations by SOCP. It can be seen 

Fig. 6  Final profile of angle-of-
attack

Fig. 7  Validation of lossless 
convexification
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Fig. 8  Comparison on missile 
trajectory

Fig. 9  Comparison on missile 
velocity

Fig. 10  Comparison on flight 
path angle
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that the initial trajectory converges into the final trajectory 
even though it is set to be significantly different from the 
converged trajectory. After the second iteration, it can be 
seen that the trajectory is almost similar to the final tra-
jectory satisfying constraints for the maximum altitude and 
final impact angle.

Figure 3 represents the natural logarithm of residual 
function E measuring errors of trapezoidal approxima-
tion of original nonlinear dynamics in each iteration. The 
error seems to be decreased almost exponentially through 
the iteration except third iteration. The residual function is 
described as [19]:

Fig. 11  Comparison on angle-
of-attack

Fig. 12  Mesh point location of 
GPOPS-II

Table 2  Results for SOCP and GPOPS-II

SOCP GPOPS-II

Maximum velocity 629.2 m/s 639.6 m/s
Final velocity 211.4 m/s 212.6 m/s
Downrange at maximum altitude 4107 m 4212 m
Maximum FPA 26.77° 20.26°

Total energy 

(
∫

1

2
�2dt

)
0.0337 0.0251
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Figure 4 represents the initial and final profile of velocity 
and flight path angle. Similar to the result of missile tra-
jectory, it can be shown that the final convergent profile is 
quite different from the initial profile. Especially, the veloc-
ity profile is completely changed reflecting the burning time 
of thrust.

Figure 5 shows the sequential estimation of burning time 
in (13). Although the initial estimation is completely dif-
ferent from the true value due to the initial very inaccurate 
profile of velocity, the burning time is stably estimated from 
the first optimization phase. The final estimation of burning 
time is 3.006 s which is 0.6% different from true value.

Figure 6 gives the final profile of angle-of-attack gener-
ated within angle-of-attack limit. However, it can be seen 
that the initial command is largely generated in order to raise 
the altitude and the command slightly sharply changes at 
the end of burning. For the real application, some modifi-
cation of the problem should be considered to reduce such 
phenomena.

Figure 7 represents the difference between square of 
u1(= �) and u2

(
= �2

)
 . As we expected in Theorem 2, we 

can see that two values are almost identical in the entire 
trajectory.

4.2  Comparison with Nonlinear Programming

In this section, we compare the result of sequential SOCP 
and the results of GPOPS-II, which is a one of nonlinear 
programming software, to verify the proposed method. The 
solver and tolerance of GPOPS-II are set to IPOPT and 10−3 , 
respectively. Figures 8, 9, 10 and 11 show the comparison 
of the trajectory, velocity, flight path angle, and angle-of-
attack, then there is a slight difference between the two 
results. Since the initial angle-of-attack of SOCP is gener-
ated larger than that of GPOPS-II, the initial flight path angle 
increases up to about 27°.

Because SOCP and GPOPS-II use the different tran-
scription for numerical optimization, it is considered that 
the discrete change of the dynamics due to thrust affects 
the difference. While the collocation points of GPOPS-II 
based on pseudo-spectral methods are concentrated around 
the end of burning time, the discrete points of SOCP are 
uniformly distributed. Also, since the downrange is set to 
be as an independent variable in this paper, it is difficult to 
accurately estimate the burning time and reflect the phase 

(54)E
(
qk, uk

)
=

N∑
i=1

‖‖‖‖q
k
i−1

− qk
i
+

Δx

2

[
fq
(
qk
i−1

)
+ B

(
qk
i−1

)
uk
i−1

+ fq
(
qk
i

)
+ B

(
qk
i

)
uk
i

]
,
‖‖‖‖1.

transition effect in the model. Figure 12 represents the mesh 
point location result of GPOPS-II in each iteration. As the 
iteration goes on, more mesh points are created around the 
transition time unlike the uniform discrete points of SOCP.

In order to generate more accurate results, consideration 
for discrete change such as pseudo-spectral convex optimiza-
tion [33, 34] should be given in the future research. Table 2 
shows detailed values for both methods.

5  Conclusion

This paper presents mid-course trajectory optimization of 
air-to-ground missile using SOCP, one of convex program-
ming. Since the initial conditions and the engagement sce-
narios are so varied for air-to-ground missiles, it is necessary 
to quickly generate the mid-course trajectory according to 
the operational purpose. SOCP is applied to various aero-
space problems due to the robustness of the initial conditions 
and computational efficiency. In this paper, the mid-course 
trajectory optimization problem with altitude constraint 
is reformulated as SOCP performing the proof of lossless 
convexification. And the sequential SOCP is proposed to 
cope with the nonlinear dynamics and it is verified through 
simulation. Finally, the results of SOCP are compared with 
results of nonlinear programming for validation.

Appendix: Proof of Lossless Convexification

The proof of lossless convexification is carried out using 
the proof by contradiction. Let us assume that there exists a 
certain interval 

[
x1, x2

]
⊂
[
x0, xf

]
 that satisfies u2

1
< u2 . There 

should exist a constant p0 ≤ 0 for an optimal solution (q∗, u∗) 
satisfying the conditions in Eqs. (19)–(33) in Theorem 1.

(a) In the interval 
[
x1, x2

]
⊂
[
x0, xf

]
 , the following relation-

ship is obtained: 

  The values of �1, �2 can be determined from comple-
mentary slackness conditions (42) and (43): 

(b) From the stationary condition (40), the following equa-
tion is derived: 

(55)u2
1
< u2, u2 > 0.

(56)�0 = �1 = 0.
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(c) From the stationary condition (41), the following equa-
tion is derived: 

  Hamiltonian in Eq. (34) can be re-formulated as fol-
lows: 

  Based on the pointwise maximum condition (20), 
u2 is determined according to the switching function 
pVb22 : 

 

  Since u2 should be positive as in Eq. (55), pV is deter-
mined as follows: 

(d) Since p� = pV = 0 from (57) and (62), the differential 
equations (37)–(39) are described as follows: 

 

 

  Since the downrange is monotonically increasing and 
a13 cannot be 0, then 

  Therefore, we obtain �y1 = �y2 from Eq. (63). If the 
altitude is larger than 0, then �y1 = 0 from Eq. (45) 
and if the altitude is less than ymax , then �y2 = 0 from 

(57)
𝜕L

𝜕u1
= p𝛾b31 = p𝛾

(
T + qSrefCL𝛼

)

mV2 cos 𝛾
= 0,

→ p𝛾 = 0 ∵T ≥ 0, q > 0, Sref > 0, CL𝛼
> 0.

(58)
�L

�u2
= pVb22 + �2 = 0,

→ pVb22 = −�2 ≥ 0.

(59)
H = py

(
a13� + cy

)
+ pV

(
a22V + a23� + cV

)

+ p�
(
a32V + c�

)
+ p�b31u1 + pVb22u2.

(60)if pVb22 = 0 → u2 ∈
[
0, u2max

]
,

(61)if pVb22 > 0 → u2 = 0.

(62)pV = 0 ∵b22 < 0.

(63)p
�

y
= −

�L

�y
= �y1 − �y2,

(64)p
�

V
= −

�L

�V
= −

(
pVa22 + p�a32

)
= 0,

(65)p
�

�
= −

�L

��
= −

(
pya13 + pVa23

)
= −pya13 = 0.

(66)py = 0.

Eq. (46). Thus, the multipliers �y1 and �y2 should be 0 
regardless of the altitude condition: 

(e) From Assumption 2, Eqs. (47), (48), (49) give 

(f) The altitude constraint is described as follows: 

  The constraint S(q) is second-order constraint with 
respect to the control and then the derivatives of the 
constraint is calculated 

  The jump condition (29) for the costate is 

  If the altitude constraint is active, the flight path 
angle should be 0. Therefore, 

  Since p� , pV , py are 0 from (57), (62), (66), then 
�1
(
�1
)
, �2

(
�1
)
 should be 0: 

(g) Because the Hamiltonian, endpoint, and state constraint 
functions are autonomous, then 

(67)�y1 = �y2 = 0.

(68)�y1 = �y2 = py
(
xf
)
= 0.

S(q) = y − ymax ≤ 0.

(69)
S(q)

�q
=

⎛
⎜⎜⎝

1

0

0

⎞
⎟⎟⎠
,
S�(q)

�q
=

⎛
⎜⎜⎝

0

0

sec2 �(1 + 2� tan �)

⎞
⎟⎟⎠
,

where S�(q) = y� = � sec2 � .

(70)

⎛⎜⎜⎝

py
�
�−
1

�
pV

�
�−
1

�
p�
�
�−
1

�
⎞
⎟⎟⎠
=

⎛
⎜⎜⎝

py
�
�+
1

�
pV

�
�+
1

�
p�
�
�+
1

�
⎞
⎟⎟⎠
+ �1

�
�1
�⎛⎜⎜⎝

1

0

0

⎞
⎟⎟⎠

+ �2
�
�1
�⎛⎜⎜⎝

0

0

sec2 �(1 + 2� tan �)

⎞⎟⎟⎠
.

(71)
⎛⎜⎜⎝

py
�
�−
1

�
pV

�
�−
1

�
p�
�
�−
1

�
⎞⎟⎟⎠
=

⎛⎜⎜⎝

py
�
�+
1

�
+ �1

�
�1
�

pV
�
�+
1

�
p�
�
�+
1

�
+ �2

�
�1
�
⎞⎟⎟⎠
.

(72)�1
(
�1
)
= �2

(
�1
)
= 0.

(73)H(t) = 0∀t.
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From Eqs. (51) and (68), p�
(
xf
)
 and py

(
xf
)
 are 0 and then:

From the above results, we conclude

This contradicts the non-triviality condition (19). There-
fore, the following equation holds:
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