
International Journal of Aeronautical and Space Sciences (2018) 19:661–674
https://doi.org/10.1007/s42405-018-0076-5

ORIG INAL PAPER

Robustness Improvement for a Three-Loop Missile Autopilot Using
Discontinuous State Feedback

Donghyeok Hwang1 ·Min-Jea Tahk1

Received: 10 December 2017 / Revised: 6 February 2018 / Accepted: 6 February 2018 / Published online: 28 August 2018
© The Korean Society for Aeronautical & Space Sciences and Springer Nature Singapore Pte Ltd. 2018

Abstract
For several decades, the classical three-loop autopilot topologies have been successfully employed as missile longitudinal
autopilots. To achieve robustness against matched and unmatched parametric uncertainties, this paper proposes two possible
designs from a sliding mode control perspective. This paper first introduces what is termed a variable structure three-loop
controller (VS3LC), which requires the same commanded and sensed quantities as the classical three-loop autopilot, but uses
discontinuous feedback gains and an additional term for robustness improvement. It is found that the solution of this topology
results in continuous equivalent control having the same expression as the classical three-loop autopilot when in sliding mode.
Next, another variable structure pitch rate controller (VSPRC)which is insensitive to unmatchedmodel parameter uncertainties
as well as matched uncertainties is presented. The VSPRC combined with an additional outer-loop control of acceleration
results in another three-loop topology, which is named as a variable structure-combined three-loop controller (VSC3LC). The
robust performance and stability of the proposed variable structure controllers are illustrated through numerical simulations.

Keywords Sliding mode control · Three-loop autopilot · Robustness · Unmatched uncertainties

1 Introduction

Longitudinal autopilots for tactical missiles have been suc-
cessfully employed for over 50 years, and the classical
three-loop autopilot [1–3] has been successfully employed as
the design topology of choice during the past several years.
From a control point of view, however, modeling imprecision
may come from actual uncertainty about the plant or from
the purposeful choice of a simplified representation of the
system’s dynamics. Modeling inaccuracies can have strong
adverse effects on control systems. Therefore, any practical
design must address them explicitly.

To improve the robustness of the classical three-loop
topology, a “neoclassic” four-loop autopilot which uses four
gains instead of three has been presented [2]. In Ref. [2],
the four-loop topology uses the same plant model as the
three-loop autopilots except that an added first-order lag is
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explicitly taken into account using the additional gain. InRef.
[3], ten distinct topologies that use combinations of acceler-
ation, angular rate, and first-order leads have been examined
to determine the “best” from a robustness perspective. It has
been shown that the classic topology typically has the best
robustness properties. If there exists a large model mismatch
between the model for design and the actual plant, the classi-
cal three-loop design itself does not assure effective control
without exact modeling of the uncertainties or disturbance
estimation.

An effective approach to robust control is so-called slid-
ing control methodology. Due to the robustness of sliding
mode with respect to model uncertainties or external distur-
bances, sliding mode control has been applied to practical
systems, for example, autopilot design of agile missiles [4],
autopilot design of aircraft [6], an integrated attitude and
acceleration controller for skid-to-turn (STT) missiles [7],
and autopilot for agile missiles and integrated guidance and
control [8]. Higher order sliding mode control also has been
used for the design of integrated attitude control using lin-
earized attitude dynamics [5], aircraft pitch autopilots [9],
integrated guidance and autopilot for dual controlledmissiles
[10] and missile guidance laws [11]. A major difficulty asso-
ciated with the sliding mode method for missile acceleration
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control comes from the fact that the dynamics which describe
missile acceleration are non-minimum phase. To overcome
this difficulty, a number of methods have been proposed. In
references [15, 16], the plant inversion based on feedback
linearization is first applied to the control of angle of attack.
Normal acceleration is then controlled by the classical inte-
gral or proportional integral (PI) feedback. However, these
methods have a weakness which can be unstable with respect
to time delay. On the other hand, robust lateral acceleration
autopilot [17] is designed for a tactical missile modeled as
a second-order quasi-linear parameter varying system. In
Ref. [17], the augmented lateral acceleration signal is used
to overcome the effect of non-minimum phase. In Ref. [18],
angle of attack is assumed as the known value, which is per-
fect, and is applied to the asymptotic output tracking control
approach for angle of attack control.

In this paper, two simple but effective feasible designs
from a sliding mode control perspective are proposed. First,
the authors introduce what is termed a variable structure
three-loop controller (VS3LC) to improve the robustness of
the classical three-loop design againstmatched uncertainties.
When slidingmode control laws are applied to the realmissile
system, how easily control law can be implemented is very
important. One factor to be considered is what kind of infor-
mation the designed control law requires and whether the
required information can be easily obtained. The VS3LC law
needs the same information as the classical three-loop design,
but it requires discontinuous feedback gains instead of con-
tinuous feedback gains and an additional term for robustness
improvement. The main advantage of the proposed scheme
is that continuous equivalent control of the VS3LC has the
same expression as the classical three-loop autopilot when
in sliding mode.

Next, to deal with the unmatched parametric uncertain-
ties which are related with the aerodynamic coefficients, we
introduce another control law which is named as a vari-
able structure-combined three-loop controller (VSC3LC).
A state transformation that leads to the canonical subspace
with respect to the pitch rate coordinate and its derivatives
is derived to avoid the difficulty associated with the non-
minimum phase dynamics of missile acceleration. Variable
structure pitch rate controller (VSPRC), which is insensitive
to unmatched as well as matched uncertainties, is derived
with expression for uncertainties. The VSPRC combined
with an additional outer-loop control results in the proposed
VSC3LC which improves the robustness of the classical
three-loop design against matched and unmatched uncer-
tainties. The performance and robustness of the proposed
controllers are illustrated by numerical simulations in the
presence of uncertainties.

2 Preliminary Concepts

2.1 The Classical Three-Loop Autopilot Using State
Feedback

In this section, the classical three-loop missile autopilot is
designed in pitch plane using state feedback. The missile
airframe dynamics are determined by six-dimensional equa-
tions of forces and moments acting on the missile body. The
longitudinal missile dynamics, using the small disturbance
linearization assumptions, are given as

α̇ � Z1α + q + Z2δ,

q̇ � M1α + M2δ. (1)

The variable that is to be commanded is denoted as AL,
and modeled as

AL � −V Z1α − V Z2δ, (2)

where α is the angle of attack, q is the pitch rate, V is the mis-
sile velocity, δ is the fin deflection, AL is the missile normal
acceleration, and Z1, Z2, M1, and M2 are the aerodynamics
coefficients. The typical measurements available from the
inertial measurement unit are normal acceleration AL and
pitch rate q. It is desirable to replace the angle of attack
state in Eq. (1) with normal acceleration. Differentiating the
expression for AL and substituting from Eq. (1) yields:

ȦL � −V Z1(Z1α + q + Z2δ) − V Z2δ̇. (3)

Differentiating the expression for q and substituting from
Eq. (1) yields:

q̈ � M1(Z1α + q + Z2δ) + M2δ̇. (4)

Modeling these linear dynamics in state space form yields
the following pitch system state vector and control input.

⎡
⎣
ȦL

q̇
q̈

⎤
⎦ �

⎡
⎣

Z1 −V Z1 0
0 0 1

−M1
V M1 0

⎤
⎦

⎡
⎣
AL

q
q̇

⎤
⎦ +

⎡
⎣

−V Z2

0
M2

⎤
⎦δ̇. (5)

The goal is to drive the commanded output AL to track
the normal acceleration command ALC which is assumed
constant, because in autopilot design we usually impose the
requirement of tracking a step signal. In state feedback, the
control law is composed of three state feedback gains as fol-
lows:

δ̇ � k4ALC − [
k1 k2 k3

]
⎡
⎣
AL

q
q̇

⎤
⎦. (6)
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Fig. 1 Three-loop autopilot with
state feedback

1/4

321

Notice that the control law applied to the real plant is
actually not δ̇, but δ; so if we integrate both sides of Eq. (6),
the fin control, δ, will be (assuming δ0 �0 at the gain design
point)

δ � k4

∫
ALC − k1

∫
AL − k2

∫
q − k3q. (7)

This formulation results in a kind of three-loop autopilot,
which is presented in Fig. 1.

2.2 TheMatched and Unmatched Uncertainties
in SlidingMode Control

Consider the following linear time invariant system:

ẋ � Ax + Bu, (8)

where x and u are n- and m-dimensional state and control
vectors, respectively, and A and B are constant matrices,
rank(B)�m. The system is assumed to be controllable.
Because rank(B)�m, matrix B in Eq. (8) may be partitioned
(after re-ordering the state vector components) as

B �
[
B1

B2

]
, (9)

where B1 ε R(n−m)×m and B2 ε Rm×m. The nonsingular coor-
dinate transformation,

T �
[
In−m −B1B

−1
2

0 B−1
2

]
, (10)

reduces the system Eqs. (8) and (9) to regular form,

[
ẋ1
ẋ2

]
�

[
A11 A12

A21 A22

][
x1
x2

]
+

[
0
u

]
, (11)

where x1 ε R(n−m), x2 ε Rm. It follows from controllability of
(A, B) that the pair (A11, A12) is controllable as well. How-
ever, in practical applications, the system in Eq. (8) operates
under uncertainty conditions that may be generated by para-
metric variations �A and un-modeled dynamics f (t). Under

this condition, the real trajectory of the closed-loop control
system may be summarized by

ẋ � (A + �A)x + Bu + Q f (t), (12)

where f (t) ε Rl andQ is constantmatrix. Slidingmodes in any
manifold are invariant with respect to parametric variations
�A and un-modeled dynamics f (t) if

�A ∈ range(B), Q ∈ range(B). (13)

In other words, control u is assumed to be able to influence
all components of the vector via control matrix B. When
the uncertainty lies in the same channel as the input, then
by varying the input, the effect of the uncertainty can be
eliminated. In this case it is called a matched uncertainty.
Otherwise, it is called an unmatched uncertainty.

3 The Variable Structure Three-Loop
Controller (VS3LC)

3.1 Un-Modeled Dynamics

Consider a first-order lag into the flight control system that
captures relevant un-modeled dynamics reflected to the input
of the plant. In other words, let

δ̈ � − 1

T
δ̇ +

1

T
δ̇c, (14)

where δ̇ is the fin rate, δ̇c is the fin rate command, and T is an
uncertain delay but with known bounds 0<Tmin ≤T ≤Tmax.
Now the state variables of the longitudinal missile dynamics
are augmented with the fin rate δ̇, and the control is set to the
fin rate command δ̇c. The new state space representation is

⎡
⎢⎢⎣
ȦL

q̇
q̈
δ̈

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

Z1 −V Z1 0 −V Z2

0 0 1 0
−M1

V M1 0 M2

0 0 0 − 1
T

⎤
⎥⎥⎦

⎡
⎢⎢⎣
AL

q
q̇
δ̇

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0
0
1
T

⎤
⎥⎥⎦δ̇c.

(15)
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3.2 Design of SlidingMode Control Law
with Discontinuous State Feedback

Let the sliding surface be

s � [
k1 k2 k3 1

]
⎡
⎢⎢⎣
AL

q
q̇
δ̇

⎤
⎥⎥⎦ − k4ALC, (16)

where the k1–4 coefficients are selected to achieve the charac-
teristic required from the system when the state variables are
in sliding mode. ALC is the normal acceleration command,
and AL is commanded output. When in sliding mode, s �0,
thus Eq. (16) turns into Eq. (6) which describes the classical
three-loop autopilot using state feedback.

The sliding surface in Eq. (16) has relative degree one
because the first-time derivative of the sliding variables s is
a function of control δ̇c

ṡ �
3∑

i�1

(
fi +

ki
T

)
xi +

5∑
i�4

(
fi − ki

T

)
xi +

1

T
δ̇c, (17)

where x1 � AL , x2 � q, x3 � q̇, x4 � ALC , x5 � s and
k5 �1.

f1 � k1Z1 − k3M1

V
+ k21V Z2 − k1k3M2,

f2 � −k1V Z1 + k3M1 + k1k2V Z2 − k2k3M2,

f3 � k2 + k1k3V Z2 − k23M2,

f4 � −k1k4V Z2 + k3k4M2,

f5 � −k1V Z2 + k3M2.

Once sliding mode is established, the state variables sat-
isfy the condition of ṡ � 0, and the equivalent control is
given by

(18)

δ̇ceq � −
(
k1 + T̂ f1

)
AL −

(
k2 + T̂ f2

)
q

−
(
k3 + T̂ f3

)
q̇ +

(
k4 − T̂ f4

)
ALC,

where T̂ is the estimate of the unknown delay T. Substituting
δ̇ceq into Eq. (15) yields the sliding mode equation as

⎡
⎣
ȦL

q̇
q̈

⎤
⎦

�
⎡
⎣

Z1 + k1V Z2 −V Z1 + k2V Z2 k3V Z2

0 0 1
−M1

V − k1M2 M1 − k2M2 −k3M2

⎤
⎦

⎡
⎣
AL

q
q̇

⎤
⎦

+

⎡
⎣

−V Z2

0
M2

⎤
⎦ k4ALC.

(19)

It is evident from Eq. (19) that once sliding mode is estab-
lished, the uncertain delayT is rejected from the slidingmode
equation, and the flight control system becomes invariant to
the effect of the uncertain delay. The sliding surface gains
k1–4 must be chosen to satisfy some designer-chosen criteria.
A useful gain selection methodology in classical three-loop
design is to choose the open-loop crossover frequency so
that many stability problems can be avoided. Usually, the
crossover frequency is chosen to be no more than one-third
of the bandwidth of the actuator to ensure a well-behaved
flight control system response [13]. The closed-loop transfer
function from ALC to AL is

Gcl(s) � −k4
V Z2s2 + V (Z1M2 − Z2M1)

s3 + A1s2 + A2s + A3
, (20)

where

A1 � −k1V Z2 + k3M2 − Z1,

A2 � k2M2 − k3(Z1M2 − Z2M1) − M1,

A3 � −(k2 + k1V )(Z1M2 − Z2M1).

The open-loop transfer function of the three-loop design
can be expressed as

Gop(s) � (A1 + Z1)s2 + (A2 + M1)s + A3

s
(
s2 − Z1s − M1

) . (21)

If we assume that the open-loop crossover frequency is
beyond the airframe dynamics, we can say

∣∣Gop( jωcr )
∣∣ � (k3M2 − k1V Z2)ω

2
cr

ω3
cr

≈ 1. (22)

Solving for the crossover frequency yields

ωcr � k3M2 − k1V Z2. (23)
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For a third-order flight control system, the desired closed-
loop characteristic polynomial can be described by the three
positive parameters τ , ζd , and ωd in the following form:

d(s) �
(
s +

1

τ

)(
s2 + 2ζdωds + ω2

d

)
, (24)

where τ is desired time constant, ζ d is desired damping ratio,
and ωd represents the desired natural frequency of the sys-
tem.The positive selection of the three parameters guarantees
the stability of the closed-loop. Moreover, the autopilot per-
formance is totally described by these design parameters. By
equating both characteristic equations, Eqs. (20) and (24), an
analytical formula between the gains and design parameters
is derived as follows:

2ζdωd +
1

τ
� −k1V Z2 + k3M2 − Z1,

ω2
d +

2ζdωd

τ
� k2M2 − k3(Z1M2 − Z2M1) − M1,

ω2
d

τ
� −(k2 + k1V )(Z1M2 − Z2M1). (25)

In addition, we have already derived an expression for the
open-loop crossover frequency in Eq. (23). If we specify the
desired time constant, damping ratio andopen-loop crossover
frequency of the flight control system, we can solve the four
unknowns, k1–3 and ωd , as follows:

ωd � ωcr − 1
τ

− Z1

2ζd
(26)

and
⎡
⎣
k1
k2
k3

⎤
⎦

�
⎡
⎣

−V Z2 0 Z2

0 M2 Z2M1 − Z1M2

V 1 0

⎤
⎦

−1
⎡
⎢⎣

2ζdωd + 1
τ
+ Z1

ω2
d +

2ζdωd
τ

+ M1
ω2
d

τ(Z2M1−Z1M2)

⎤
⎥⎦ .

(27)

From Eqs. (26) and (27), the state feedback gains k1∼3 are
described in terms of the design parameters τ , ζd , and ωcr.
Finally, to get unity flight control system gain, we set the gain
of the closed-loop transfer function to unity and get

k4 � k2 + k1V

V
. (28)

Based on Eqs. (26)–(28), the autopilot design is handled
by the desired time constant, damping ratio, and open-
loop crossover frequency to achieve the desired performance
requirements.

Now, the control law enforcing slidingmode in the surface
s �0 is examined. The control law of the following form is
considered.

δ̇c � −ψ1AL − ψ2q − ψ3q̇ + ψ4ALC + ψ5s, (29)

where ψ1–3 are the discontinuous state feedback gains to
be determined. The additional term ψ5s is included for
robustness improvement. The Lyapunov function is chosen
as L � 1

2 s
2, which implies L̇ � sṡ. The existence condition

for sliding mode is fulfilled if

sṡ �
3∑

i�1

(
fi +

ki − ψi

T

)
xi s +

5∑
i�4

(
fi − ki − ψi

T

)
xi s < 0.

(30)

The following result gives a condition for the discontinu-
ous gains ψ1∼5 to make the system stable.

Theorem 1 The autopilot system in Eq. (29) will be stable if
the following conditions are met

ψi �
⎧⎨
⎩
ki + gT̂ fi , fi xi s > 0
ki , fi xi s � 0
ki − gT̂ fi , fi xi s < 0

, for i � 1, 2, 3,

ψi �
⎧⎨
⎩
ki − gT̂ fi , fi xi s > 0
ki , fi xi s � 0
ki + gT̂ fi , fi xi s < 0

, for i � 4, 5, (31)

where the estimate T̂ of the delay T is taken as the geometric
mean of the known bounds, 0<Tmin ≤T ≤Tmax,

T̂ � √
TmaxTmin (32)

and g ≥ √
Tmax/Tmin is constant for all time.

Proof If ψ i=1–3 are chosen as ki ± gT̂ fi in accordance with
the sign of f ixis, then

(
fi +

ki − ψi

T

)
xi s � fi xi s − gT̂

T
| fi xi s|, for i � 1, 2, 3

(33)

and if ψ i=4,5 are chosen as ki ∓ gT̂ fi according to the sign
of f ixis, then

(
fi − ki − ψi

T

)
xi s � fi xi s − gT̂

T
| fi xi s|, for i � 4, 5.

(34)
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3
+

̇

Fig. 2 Block diagram of a smooth control law for VS3LC

The constant g is defined as ≥ √
Tmax/Tmin , so the fol-

lowing inequality holds

0 < g−1 ≤ T̂

T
≤ g. (35)

Thus, if ψ i=1–5 are chosen as Eqs. (30) and (31), the con-
trol law of Eq. (29) ensures

sṡ �
3∑

i�1

(
fi +

ki − ψi

T

)
xi s +

5∑
i�4

(
fi − ki − ψi

T

)
xi s < 0.

(36)

From the definition of L, s converges to zero.
Notice that the control law applied to the real plant is

actually not δ̇c, but δc; so a smooth control law for VS3LC is
obtained by low pass filtering δ̇c [14]. Although the δ̇c shows
chattering phenomenon because of a switching function, the
δc applied to the real plant does not show the chattering phe-
nomenon. Figure 2 shows the overall block diagram of the
proposed method.

4 The Variable Structure Pitch Rate
Controller (VSPRC)

4.1 Model Uncertainties

The aerodynamic coefficients described by Z1, Z2, M1, and
M2 are dependent onMachnumber and angle of attack.These
parameters are usually measured from wind tunnel tests, and
these values may contain some error when compared with
true values because of the imperfection of the measurements.
These errors are assumed to be bounded and can be modeled
as multiplicative uncertainties

Zpert
i � (1 ± �i )Zi ,

Mpert
i � (1 ± �i )Mi . (37)

where Zi andMi are the true aerodynamic coefficients, Zpert
i

and Mpert
i are the measured aerodynamic coefficients, and

�i represents the admissible uncertainties, and its maxi-
mum value is about 0.2–0.5. Hence the longitudinal missile
dynamic model, using the small disturbance linearization

assumption, can be represented in state space form as fol-
lows:

⎡
⎢⎢⎣
ȦL

q̇
q̈
δ̈

⎤
⎥⎥⎦ �

⎡
⎢⎢⎢⎣

Ẑ1 −V Ẑ1 0 −V Ẑ2

0 0 1 0

− M̂1
V M̂1 0 M̂2

0 0 0 − 1
T̂

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
AL

q
q̇
δ̇

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

0
0
0
1
T̂

⎤
⎥⎥⎦δ̇c,

(38)

where Z1, Z2, M1, M2, and T are estimated as
Ẑ1, Ẑ2, M̂1, M̂2, and T̂ . Note that all the uncertainties
described in Eq. (38) are not matched with the control
action, so any selection of sliding surface cannot decouple
the parametric uncertainties from the state space representa-
tion. Therefore, a special mathematical method will need to
be developed to determine conditions for sliding mode to be
invariant to the unmatched uncertainties.

4.2 State Transformation into the Canonical Space

Sliding motion in any sliding surface could be invariant
to external disturbances and parametric perturbation if the
uncertainties act in a control space. The choice of a canoni-
cal space is due to the fact that the desired control could be
attained even if they do not act in a control space in the orig-
inal state representation [12]. To design an invariant sliding
surface for a flight control system, it would be reasonable
to consider autopilot design in the acceleration canonical
space. However, to avoid the difficulty associated with the
non-minimum phase dynamics of missile acceleration, we
consider a state transformation that leads to a canonical space
with respect to the pitch rate coordinate and its derivatives.
Consider the transfer function from a fin deflection δc to mis-
sile pitch rate q:

q � M2s + Z2M1 − Z1M2

(T s + 1)(s2 − Z1s − M1)
δc. (39)

The input δc and output q are related by a linear coefficient
differential equation of the form:

(40)

...
q �

(
Z1 − 1

T

)
q̈ +

(
M1 +

Z1

T

)
q̇ +

M1

T
q

+
M2

T
δ̇c +

Z2M1 − Z1M2

T
δc.

Equation (40) contains the derivative of control action δc.
To realize invariant sliding mode, the control should be cho-
sen so as to have a sliding surface s with a sign opposite to
the sign of rate ṡ that has first order discontinuous on the
surface. This condition is satisfied if output of the dynamics

M2δ̇c + (Z2M1 − Z1M2)δc � v (41)
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is used as the control, where v is the discontinuous function
of q, q̇ , and q̈ . Let us define

q1 � q, q2 � q̇, q3 � q̈. (42)

If v is considered to be control action, we can then repre-
sent Eq. (40) with new state variables in pitch rate canonical
subspace as follows:

⎡
⎢⎢⎣
q̇1
q̇2
q̇3
δ̇c

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0
M1
T M1 +

Z1
T Z1 − 1

T 0
0 0 0 Z1M2−Z2M1

M2

⎤
⎥⎥⎦

⎡
⎢⎢⎣
q1
q2
q3
δc

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0
0
1
T
1
M2

⎤
⎥⎥⎦ v,

(43)

where q(� q1) is the controlled variable. The goal is to drive
the commanded output q to track the pitch rate command qc
which is assumed constant.

4.3 Design of the Variable Controller
with Discontinuous State Feedback

Let the sliding surface be selected in pitch rate canonical
subspace

s � c1q1 + c2q2 + q3 − c3qc, (44)

where qc is the pitch rate command, q1, q2, q3 are defined in
Eq. (42), and the c1–3 coefficients are selected to achieve the
characteristics required from the system when the state vari-
ables are in sliding mode. This choice of the sliding surface
is due to the fact that the sliding mode in the canonical sub-
space can be invariant to parametric perturbations. It should
be noted that the sliding surface is a function of three states
only. Therefore, the control algorithm based on the knowl-
edge of this sliding surface will be a partial state feedback
law rather than a full state feedback law. Thus, it should be
checked whether the state space model in Eq. (43) is asymp-
totically stable or not. The derivative of the sliding variables
s is a function of control v

ṡ �
2∑

i�1

(
hi +

ci
T

)
xi +

4∑
i�3

(
hi − ci

T

)
xi +

1

T
v, (45)

where x1 � q, x2 � q̇, x3 � qc, x4 � s, and c4 �1.

h1 � M1

T
− c1c2 − c1Z1,

h2 � c1 + M1 +
Z1

T
− c22 − c2Z1,

h3 � c1c2 + c1Z1,

h4 � c2 + Z1.

Once sliding mode is established, the state variables sat-
isfy the condition of ṡ � 0 and the equivalent control is given
by

veq � −
(
c1 + T̂ ĥ1

)
q1 −

(
c2 + T̂ ĥ2

)
q2 +

(
c3 − T̂ ĥ3

)
qc,

(46)

where ĥ1, ĥ2, ĥ3 and T̂ are estimates of the model param-
eters h1, h2, h3 and unknown delay T. Substituting veq into
Eq. (43) yields the sliding mode equations as

[
q̇1
q̇2

]
�

[
0 1

−c1 −c2

][
q1
q2

]
+

[
0
c3

]
qc. (47)

It is evident from Eq. (47) that once sliding mode is estab-
lished, the parametric uncertainties ĥ1, ĥ2, ĥ3, and unknown
delay T̂ are rejected from the sliding mode equations, so
the flight control system becomes invariant to the effect of
the uncertainties. The sliding surface gains c1–2 are chosen
to satisfy some designer-chosen criteria. From Eq. (47), the
closed-loop transfer function from qc to q is

Gcl � c3
s2 + c2s + c1

. (48)

For a second-order closed control system, the desired
closed-loop characteristic polynomial can be described by
the two parameters τ and ζ d in the following form:

d(s) � s2 +
2

τ
s +

1

τ 2ζ 2
d

, (49)

where τ is desired time constant, and ζ d is desired damping
ratio. The control performance is totally described by these
design parameters. By comparing both characteristic poly-
nomials, Eqs. (48) and (49), relations between the gains and
design parameters are derived as follows:

c2 � 2

τ
,

c1 � c3 � 1

τ 2ζ 2 . (50)

Based on Eq. (50), the sliding surface gains are handled
by the desired time constant and damping ratio to achieve the
desired performance requirements.
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Next, the control law enforcing the sliding mode in the
surface s �0 is examined. The control law of the following
form is considered

v � −ψ1q1 − ψ2q2 + ψ3qc + ψ4s, (51)

where ψ1–2 are the discontinuous state feedback gains to
be determined. The additional term ψ4s is included for
robustness improvement. The Lyapunov function is chosen
as L � 1

2 s
2. The existence condition for sliding mode is

fulfilled if

sṡ �
2∑

i�1

(
hi +

ci − ψi

T

)
xi s +

4∑
i�3

(
hi − ci − ψi

T

)
xi s < 0,

(52)

where x1 � q1, x2 � q2, x3 � qc, x4 � s, and c4 �1. The
following result gives a condition for the discontinuous gains
ψ1–4 to make the system stable.

Theorem 2 The autopilot system in Eq. (51) will be stable if
the following conditions are met.

ψi �

⎧⎪⎨
⎪⎩
ci + T̂ ĥi + T̂ gi , xi s > 0
ci + T̂ ĥi , xi s � 0
ci + T̂ ĥi − T̂ gi , xi s < 0

, for i � 1, 2,

ψi �

⎧⎪⎨
⎪⎩
ci − T̂ ĥi − T̂ gi , xi s > 0
ci − T̂ ĥi , xi s � 0
ci − T̂ hi − T̂ gi , xi s < 0

, for i � 3, 4, (53)

with

gi ≥ gHi + |g − 1|
∣∣∣ĥi

∣∣∣, for i � 1, 2, 3, 4 (54)

where the estimate T̂ of the delay T is taken as the geometric
mean of the known bounds, 0<Tmin ≤T ≤Tmax,

T̂ � √
TmaxTmin . (55)

The ĥi of the parameter hi is taken so that the estimation
error on hi should be bounded by some known value Hi,

∣∣∣hi − ĥi
∣∣∣ ≤ Hi (56)

and g ≥ √
Tmax/Tmin is constant for all time.

Proof If ψ i=1,2 are chosen as ci + T̂ ĥi ± T̂ gi in accordance
with the sign of xis, then

(
hi +

ci − ψi

T

)
xi s �

(
hi − T̂ f̂i

T

)
xi s− gi T̂

T
|xi s| , for i

� 1, 2.

(57)

If ψ i=3,4 are also chosen as ci − T̂ ĥi ∓ T̂ gi according to
the sign of xis, then

(
hi − ci − ψi

T

)
xi s �

(
hi − T̂ f̂i

T

)
xi s− gi T̂

T
|xi s| , for i

� 3, 4.

(58)

Since hi � ĥi + (hi − ĥi ), where
∣∣∣hi − ĥi

∣∣∣ ≤ Hi , this in

turn leads to

(59)

(
hi − T̂ f̂i

T

)
xi s − gi T̂

T
|xi s|

≤
(
Hi + ĥi − T̂ ĥi

T

)
xi s − gi T̂

T
|xi s| .

Thus, by choosing gi to be large enough

gi ≥ gHi + |g − 1|
∣∣∣ĥi

∣∣∣ ≥ T

T̂
Hi +

∣∣∣∣
T

T̂
− 1

∣∣∣∣
∣∣∣ĥi

∣∣∣. (60)

We can guarantee that

sṡ �
2∑

i�1

(
hi +

ci − ψi

T

)
xi s +

4∑
i�3

(
hi − ci − ψi

T

)
xi s < 0.

(61)

From the definition of L, s converges to zero.

Fig. 3 The structure of VSC3LC

123



International Journal of Aeronautical and Space Sciences (2018) 19:661–674 669

Table 1 Missile parameters
Variable Value Units Description

VM 914 m/s Missile velocity

m 453 kg Missile mass

Iyy 1407 kg m2 Pitch moment of inertia

CNα 32.5928 – Pitch force coefficient
due to angle of attack

CMα −79.2582 – Pitch moment coefficient
due to angle of attack

CNδ 7.2025 – Pitch force coefficient
due to fin deflection

CMδ −68.4239 – Pitch moment coefficient
due to fin deflection

Q 511,990 kg /ms2 Dynamic pressure

S 0.073 m2 Reference area

d 0.3 m Reference length

Z1 −2.9356 s−1 Aerodynamics
coefficient

Z2 −0.6487 s−1 Aerodynamics
coefficient

M1 −641.2892 s−2 Aerodynamics
coefficient

M2 −553.6272 s−2 Aerodynamics
coefficient

5 The Variable Structure-Combined
Three-Loop Controller (VSC3LC)

In the previous section, the variable structure pitch rate
controller (VSPRC) has been designed to track pitch rate
reference in spite of the existence ofmodel unmatched uncer-
tainties. However, the objective of this study is to track the
reference acceleration. Hence, a cascaded control structure is
introduced, as shown in Fig. 3, where VSPRC is augmented
by an outer-loop controller (OLC) to control the acceleration.
The outer-loop controller is defined as

qc �
(

k2
s + k1

)
(k3ALC − AL), (62)

where the coefficients k1–3 are the outer-loop controller gains
to be chosen such that the closed-loop satisfies performance
requirements. Once sliding mode is established, the transfer
function from qc to q simplifies to

q

qc
� c1

s2 + c2s + c1
, (63)

where the gains c1–2 determine the characteristics ofVSPRC.
Also, if we assume steady-state condition, AL can be

related by q as

AL � Vq. (64)

By substitutingEqs. (62) and (63) intoEq. (64), the closed-
loop transfer function from ALC to AL is obtained,

Gcl(s) � Vk2k3c1
s3 + (c2 + k1)s2 + (c1 + k1c2)s + k1c1 + Vk2c1

,

(65)

and open-loop transfer function can be expressed as

Gop(s) � k1s2 + k1c2s + k1c1 + Vk2c1
s3 + c2s2 + c1s

. (66)

If we assume the open-loop crossover frequency is beyond
the airframe dynamics, the crossover frequency can be
approximated as

ωcr � k1. (67)

Also, if we consider the desired closed-loop characteris-
tics as

d(s) �
(
s +

1

τ

)(
s2 + 2ζdωds + ω2

d

)
(68)
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Fig. 4 Responses of VS3LC with unknown delay

Then controller gains are determined as

c2 � 2

τ
,

c1 � ω2
d +

2ζdωd

τ
− c2ωcr ,

ωd � c2 + ωcr − 1
τ

2ζd
,

k2 � ω2
d

V c1τ
− k1

V
. (69)

Based on Eqs. (67)–(69), the gain design of VSC3LC is
handled by the desired time constant, damping ratio, and
open-loop crossover frequency to achieve the desired perfor-
mance requirements.

6 Simulation Results

In this section, numerical simulation for VS3LC and
VSC3LC with and without uncertainty is performed to
demonstrate the effectiveness and robustness of the proposed

variable controllers for the design goals which are to achieve
a time constant of 0.3 s, open-loop crossover frequency of
50 rad/s, and a damping of 0.7. Table 1 summarizes the var-
ious missile parameters used in the examples.

Figures 4 and 5 show the responses generated by VS3LC.
The switching hyper-plane used is

s � [ −0.0007 −1.2012 −0.0928 1
]
⎡
⎢⎢⎣

AL
q
q̇
δ̇

⎤
⎥⎥⎦ + 0.0012ALC , (70)

where the sliding surface gains have been obtained to achieve
the design goals based on Eqs. (26)–(28). Figure 4 shows
the corresponding step response, control rate δ̇c, equivalent
control rate δ̇ceq and control command signal δc, and sliding
surface variable for a command ALC �10 g, and using Tmax

�1.5 ms and Tmin �0.5 ms. The estimate of T is 0.87, and
a value of 1.7321 has been used for the upper limit of g.
Although the δ̇c shows chattering phenomenon because of a
switching function, the δc applied to the real plant does not
show the chattering phenomenon.

Figure 5 compares the robustness of VS3LCwith the clas-
sical three-loop designwith respect to four different unknown
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Fig. 5 Comparison of VS3LC and 3LC

delays T � 10ms, 50ms, 100ms, and 200 ms. The clas-
sical three-loop controller (3LC) starts to suffer badly as the
unknown delay approaches the bandwidth of the system. The
uncertainty deteriorates some of the robustness in the three-
loop design and this effect getsworse as the delay gets longer.
However, the responses of VS3LC kept insensitive to the
uncertainty once sliding mode is established.

The performance of VSPRC and VSC3LC is examined
in Fig. 6. The following representation of the longitudinal
missile dynamics is considered,

⎡
⎢⎢⎣
q̇1
q̇2
q̇3
δ̇c

⎤
⎥⎥⎦ �

⎡
⎢⎢⎣

0 1 0 0
0 0 1 0

−32113 −789.26 −52.93 0
0 0 0 −2.18

⎤
⎥⎥⎦

⎡
⎢⎢⎣
q1
q2
q3
δc

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0
0
50

−0.0018

⎤
⎥⎥⎦ v,

(71)

which has been obtained by a canonical state transformation.
The switching hyper-plane used is

s � [
22.6757 6.6667 1 0

]
⎡
⎢⎢⎣
q1
q2
q3
δc

⎤
⎥⎥⎦ − 22.6757qc, (72)

Note that the control based on the knowledge of this slid-
ing surface is a partial state feedback law rather than a full
state feedback law. Therefore, it should be checked whether
the state space model in Eq. (71) is asymptotically stable
or not. The asymptotic stability of general motion in the
system of Eq. (71) (rather than of motion in the canonical
subspace only) is defined by the eigenvalues of the character-
istic equation of Eq. (71). Figure 6 shows the corresponding
step response, control signal, and sliding surface variable
for a command ALC �10 g. The estimate of T is 0.87, and
the admissible uncertainties are set to 30% of the true aero-
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Fig. 6 Responses of VSC3LC and VSPRC with model uncertainties

dynamic coefficients using values of g1 � 3594.1, g2 �
84.4, g3 � 8.9, and g4 �0.4.

Finally, we compare the performance of VS3LC and
VSC3LC using four different admissible uncertainties � �
0%, 30%, 50%, and 70% of the true value. Figure 7 shows
the acceleration responses for a command ALC �10 g.
All responses of the proposed variable structure controllers
show good asymptotic tracking of the desired acceleration.
Figure 7a shows almost identical step responses in the nom-
inal case (without considering the uncertainty). Figure 7b–d
shows the classical 3LC which tends to oscillate in the dis-
turbed case, and the difference between the transient response
of VS3LC and VSC3LC starts to occur as a result of the
unmatched uncertainties. It is seen that the transient perfor-
mance of VSC3LC is better than the case of VS3LC, because
VSPRC, which comprises the inner loop of VSC3LC, is
insensitive to unmatched uncertainties.

7 Conclusion

In this study, to achieve robustness against matched and
unmatched parametric uncertainties, two feasible designs
from a sliding mode control perspective are proposed for
longitudinal missile dynamics. The variable structure three-
loop controller (VS3LC), which uses the same state feedback
as the classical three-loop design when in sliding mode, is
presented. Variable structure pitch rate controller (VSPRC),
which is insensitive to unmatched as well as matched uncer-
tainties, is derived with expression for uncertainties. The
VSPRC combined with an additional outer-loop control
results in the proposed VSC3LC which improves the robust-
ness of the classical three-loop design against matched
and unmatched uncertainties. The simulation results show
acceptable performance regardless of uncertainties. Based
on their robust performance, the proposed controllers can
be considered as an efficient solution for controlling missile
acceleration, subject to parametric variation and un-modeled
dynamics.
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