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Abstract
The paper considers the smoothing of tabulated curves describing airfoils. Smoothing is required to eliminate airfoil contour
distortions that occur during the design of the aircraft wing surface. The problem of ensuring a smooth change in the curvature
of the smoothed contour is presented as a problem of minimizing the quadratic function of many variables. To minimize
the objective quadratic function, the gradient descent method with a constant step was used. According to the developed
technique, with the help of a computer program, the smoothing of the airfoil was carried out. As a result, a rather smooth
diagram of the profile curvature was obtained, which confirmed the effectiveness of the developed smoothing technique.
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List of symbols

xi , yi Abscissa and ordinate of the i th point
of the smoothed fragment of the airfoil
contour

n Number of points of the smoothed frag-
ment of the airfoil contour

y � f (x) A tabulated function describing the
contour of the smoothed airfoil

f I I (xi ) The second derivative of the f function
at the i th point

Y The ordinate vector of the points of the
smoothed fragment of the airfoil con-
tour

Q The vector of the second derivatives
of the f function at the points of the
smoothed fragment of the airfoil con-
tour

T Transposition sign
F(Y ) Objective function
ai Weight coefficient of the objective

function at the i th point
A One-diagonal matrix of weight coeffi-

cients ai , matrix size is n × n
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h � xi − xi−1 The distance between points xi and
xi−1 of the smoothed fragment of the
airfoil contour along the X axis

l Iteration number of the minimization
procedure

Y l The ordinate vector of the points of
the smoothed fragment of the airfoil
contour at the l th iteration of the min-
imization procedure

Y 0 The ordinate vector of the points of
the smoothed fragment of the airfoil
contour before the start of the mini-
mization procedure

∇F
(
Y l

)
Objective function gradient calculated
at the Y l point

tl Step size of the gradient descent
ε1, ε2 Small positive numbers
M Iteration limit
‖∇F

(
Y l

)‖ The norm of gradient vector of the
objective function, calculated at the Y l

point
‖Y l+1 − Y l‖ The normof the difference between the

ordinate vectors of the points of the
smoothed fragment of the airfoil con-
tour at the l +1 st and the l th iterations
of the minimization procedure∣∣F

(
Y l+1

) − F
(
Y l

)∣∣ Module of the difference between the
values of the objective function at the
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l + 1 st and l th iterations of the mini-
mization procedure

K Five-diagonal coefficient matrix of
numerical differentiation formula

Y ∗ The ordinate vector of the points of
the smoothed fragment of the airfoil
contour corresponding to theminimum
value of the objective function

1 Introduction

Improving the surfaces of aircraft wings to reduce aero-
dynamic drag is a promising direction for increasing the
cost-effectiveness of air transportation and reducing the
harmful effects on the environment. The choice of wing pro-
file largely determines the aerodynamic characteristics of the
aircraft. The optimal profile shape provides high lift and low
aerodynamic drag.

A number of published studies [1–3] considermethods for
optimizing the airfoil and wing surface to improve aerody-
namic performance. The papers [4, 5] describe methods for
designing airfoils and wings corresponding to the required
aerodynamic characteristics.

Information about profile contours is usually presented
in the form of an ordered discrete point basis. Profile curves
and lines connecting the corresponding cross-sectional points
form the frame of the wing surface. The main tool for
describing pointwise curves in geometric modeling systems
is currently spline functions belonging to the C2 class. The
spline function equations describe the behavior of the flexi-
ble rail. The methods for constructing parametric models of
airfoils based on Bezier curves and B-splines are discussed
in [6, 7].

In addition to obtaining the optimal profile shape to reduce
aerodynamic drag, the problem of its smoothing is also rel-
evant. When designing a wing, many iterations of changing
the geometric characteristics of the airfoil are performed.
Such changes are required in the course of aerodynamic opti-
mization, as well as further design development of the wing
surface (Fig. 1). In this case, the appearance of irregularities
in the contour of the profile is possible.

Irregularities in the profile lead, in turn, to the appearance
of irregularities in the surface of the wing. It is pointed out
in [8, 9] that the presence of surface roughness in transonic
flight modes leads to a significant change in the pressure
distribution along the chord compared to a smooth surface
with the formation of local supersonic flow regions. At the
same time, significant drops in the pressure coefficient �Cp
were observed,which lednot only to an increase in resistance,
but in some cases to a decrease in lift.

It is also noted in [10] that the existing methods for
determining the effect of surface irregularities on drag for
transonic velocities give insufficiently accurate and, as a rule,
underestimated values. In particular, the revealed quadratic
character of the dependence of the increase in resistance on
the size of the irregularity is shown.

Since modern long-range aircraft cruise at transonic
speeds, then to reduce the harmful drag caused by wing sur-
face irregularities at the design stage, the task of smoothing
pointwise given contours of airfoils is an urgent task.

In [11], a general formulation of the smoothing problem is
given in relation to the curves of the frameof aircraft surfaces.
This problem is presented as minimizing the sum of squared
deviations of the values of the function being approximated
at the contour nodes. In the general case, it consists in solving
one of the following extremal problems:

1. Find the minimum of functionality

� � εV2 +U2,

where U2 � ∑N
i�0(δyi )

2—sums of squared deviations yi ,

V2 � ∫α

(
y

′′)2
(x)dx—potential energy of an elastic rod.

The parameter ε characterizes the degree of smoothing: as
ε → 0 we arrive at a pure interpolation problem.

2. Find

minU2 �
N∑

i�0

|δyi |,

The smoothing problem is considered solved if the fol-
lowing condition is met:

|δyi | ≤ Y∗, i � 1, 2, 3, · · · , N − 1,

where Y∗ is given.
There is a knownmethod for solving problem 1—interpo-

lationwith smoothing, based on the use of parametric splines,
developed by A. D. Tuzov [12]. A feature of the method
is that it proposes a clear iterative smoothing process and
proves that this process is convergent. The advantage of this
smoothing method is that certain points can be fixed during
the smoothing process. In addition, the curves themselves
obtained by this method meet most of the requirements of
aviation production, are easily calculated and belong to the
C2 class. The error δi for setting the i-th contour point in this
method is defined as half the deviation of the rail at point i
when it is released while simultaneously fixing the rest of the
contour.

In [13], a technique for automated design of optimal con-
tours, developed by I. R. Esheeva, is considered, designed
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Fig. 1 Curvature diagrams of a wing’s sections

to correct the coordinates of the points of sections of com-
plex surfaces of aircraft, to obtain the optimal contour of the
section. The values of the curvature function and the integral
of the curvature function are used as criteria for assessing
the optimality of the contour. The technique is intended for
smoothing transverse curves of the frame of aircraft fuselage
surfaces, therefore, for the smoothed curve, only the continu-
ity of the first derivative of the interpolating contour function
is checked. Thus, this method is not applicable for smoothing
airfoils, since the continuity requirements for both the first
and second derivatives of the function that interpolates the
contour are applied to them.

In [14], the least squares method is proposed, adapted
for smoothing pointwise given aerodynamic contours. The
profile approximation is carried out taking into account the
condition of the exact passage of the contour through two
points, for example, the initial and final ones.

The authors carried out a comparative analysis of smooth-
ing contours using the least squares method and smoothing
cubic splines. The results of the study show that for smooth-
ing contours of the airfoil type, it is most expedient to use the
method of smoothing cubic splines due to the more effective
elimination of unregulated inflection points.

The method of smoothing a grid of three types of flat
sections, described by Keel and Tuzov in [15], is designed to
smooth the curves of the skeletonof surfaceswhen linking the
shape of aircraft. The method is essentially a development of
Tuzov’s smoothing procedure for the case of a grid of curves
in three-dimensional space.

As studies have shown, in some cases, the use of smooth-
ing by cubic splines does not allow eliminating the existing
irregularities of the spline. An example of such a circuit is

shown in Fig. 2. The figure shows the upper half of the sym-
metrical convex profile of the vertical tail of a medium-haul
passenger aircraft. The calculations performed showed the
impossibility of eliminating the existing concavity by the
method of A. D. Tuzov due to very small (10–8…10–6 mm)
values of the error δi for setting the points of the section.

In previous works [16–18], the authors considered the
issues of smoothing the contour, which has sections with
different types of smoothness violations.

As a result of applying the developed smoothing proce-
dures, it was possible to eliminate unregulated changes in
the sign of curvature, and the contour is convex through-
out. However, significant differences in the curvature graph
remain (Fig. 3). Thus, it is required to solve the problem of
ensuring a smooth change in the curvature of the smoothed
contour.

2 Materials andmethods

2.1 Optimization via smoothing

The table function describing the upper half of the smoothed
airfoil is denoted as y � f (x). and the following vector is
introduced

Y � (y1, y2, . . . , yn)
T .

Here yi � f (xi ), i � 1, 2, . . . , n, xi and yi are the
abscissa and ordinate of the i th point, respectively the num-
ber of points of the smoothed contour fragment is n, and the
transposition sign is T .
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Fig. 2 Curvature diagram for an airfoil not smoothed by the cubic spline method

Fig. 3 Curvature diagram of smoothed airfoil
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Next, we introduced the vector

Q �
(
f I I (xi ), f I I (xi ), · · · , f I I (xi )

)T
,

where f I I (xi )—is the second derivative of the f function at
the i th point.

The problem of contour smoothing is considered as a
problem of minimizing a function of several variables of the
following form

F(Y ) � QT AQ, (1)

where A—is a one-diagonal matrix of weight coefficients ai ,
matrix size is n × n.

2.2 Objective function

To solve the problem, it was necessary to represent the objec-
tive function in the form of an explicit dependence on the
ordinates of the nodes of the smoothed contour. For this, the
values of the second derivative f I I (xi ) of the y � f (x) func-
tion were expressed in terms of the values of the function at
five points i−2, i−1, i , i +1, i +2, using the non-difference
formulas of numerical differentiation [19].

The formula expressing the values of the second derivative
of a function in terms of the values of the y � f (x) function
at fivepoints, after discarding the infinitesimal residual terms,
is presented as:

f I I (xi ) � 1

24h2
(−2yi−2 + 32yi−1 − 60yi + 32yi+1 − 2yi+2

)
,

(2)

where h � xi − xi−1.
Since the objective function is a quadratic form given by

a diagonal matrix, it is represented as a sum of squares

F(Y ) �
n∑

i�1

ai

[
1

24h2
(−2yi−2 + 32yi−1 − 60yi + 32yi+1 − 2yi+2)

]2
.

(3)

2.3 Minimization of the objective function
by themethod of gradient descent
with a constant step

Since the objective function has continuous first partial
derivatives at all points of the smoothed contour, the gra-
dient descent method with a constant step is used to find the
minimum of the objective function [20].

The search for theminimumof the F(Y ) function, accord-
ing to thismethod,was carried out by constructing a sequence

of points
{
Y l

}
, l � 0, 1, . . . , such that

F
(
Y l+1

)
< F

(
Y l

)
, l � 0, 1, . . . .

Thepoints of the
{
Y l

}
sequencewere calculated according

to the following rule

Y l+1 � Y l − tl∇F
(
Y l

)
, l � 0, 1, . . . (4)

Here, the Y 0 point corresponds to the values of the ordi-
nates of the contour points before the start of smoothing
according to the developed method; ∇F

(
Y l

)
is the objective

function gradient calculated at the Y l point; the step size tl is
set before the first iteration and remains constant as long as
the function decreases at the points of the sequence, which is
controlled by checking the condition F

(
Y l+1

)− F
(
Y l

)
< 0.

The construction of the
{
Y l

}
sequence ends at the Y l point

where one of the three conditions is met:
• ‖∇F

(
Y l

)‖< ε1, where ε1—is small positive number;
• l ≥ M , where M—iteration limit;
• The following two inequalities hold twice simultane-

ously ‖Y l+1 − Y l‖< ε2,
∣∣F

(
Y l+1

) − F
(
Y l

)∣∣ < ε2, where
ε2—is small positive number.

For the convenience of calculating the gradient of the
objective function (2) is rewritten in matrix form

(5)

f I I (xi )

� 1

24h2

[
i − 2 i − 1 −i i + 1 i + 2

0 · · · 0 −2 32 −60 32 −2 0 · · · 0

]

×

⎡

⎢
⎢⎢⎢⎢⎢
⎣

y1
y2
...

yn−1

yn

⎤

⎥
⎥⎥⎥⎥⎥
⎦

.

Next, we introduce a five-diagonal matrix of dimension
n × n.

K =
1

24h2

⎡

⎢⎢
⎢⎢
⎢
⎢⎢
⎢⎢
⎢⎢
⎣

−60 32
32 −60
−2 32

−2 0 0
32 −2 0

−60 32 −2

· · ·
0 0
0 0
0 0

0 0 0
0 0 0
0 0 0

...
. . .

...
0 0
0 0
0 0

0 0 0
0 0 0
0 0 0

· · ·
−2 32
0 −2
0 0

−60 32 −2
32 −60 32
−2 32 −60

⎤

⎥⎥
⎥⎥
⎥
⎥⎥
⎥⎥
⎥⎥
⎦

.

(6)

After that, the vector of values of the second derivatives
was redefined as follows

Q � KY . (7)
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Taking into account Eq. (7), the objective function was
written as

F(Y ) � KT Y T AY K . (8)

Thus, to find the gradient of the objective function, the
following formula is obtained

∇F(Y ) � 2
[
KT AY K

]
. (9)

2.4 Objective functionminimization algorithm

• Step 1. Set Y 0, 0 < ε < 1, ε1 > 0, ε2 > 0, M ;
• Step 2. Set l � 0;
• Step 3. Set ∇F

(
Y l

)
;

• Step 4. Verify that the algorithm termination criteria are
met. ‖∇F

(
Y l

)‖< ε1: if the criterion ismet, the calculation
is finished, Y ∗ � Y l ; if the criterion is not met, then go to
step 5;

• Step 5. Check the fulfillment of the inequality l > M : if the
inequality is satisfied, then the calculation is over: Y ∗ �
Y l ; if not, then go to step 6;

• Step 6. Set the step size tl ;
• Step 7 Calculate Y l+1 � Y l − tl∇F

(
Y l

)
;

• Step 8.Check if the condition ismet F
(
Y l+1

)−F
(
Y l

)
< 0:

if the condition is met, then go to step 9; if the condition
is not met, set tl � tl

2 and go to step 7.
• Step 9. Check the conditions ‖Y l+1 − Y l‖< ε2,∣

∣F
(
Y l+1

) − F
(
Y l

)∣∣ < ε2: if both conditions are met at
the current value of l and l � l − 1, then the calculation is
over, Y ∗ � Y l ; if at least one of the conditions is not met,
set l � l + 1 and go to step 3.

3 Results

On the basis of the above algorithm, a computer programwas
developed, with the help of which the considered airfoil was
smoothed.

The program is written in C++ . To obtain the initial data,
files are used to export an array of point coordinates from the
CAD system. Using the NX system as an example, these are
text files with the.dat extension, in which each line contains
thex , y and z coordinates of one point in the array, sepa-
rated by tabs. Data for the vector Y 0 are taken from the y
coordinates, the value h � xi − xi−1 is obtained from the x
coordinates.

The block diagram of the program is shown in Fig. 4.
After entering the initial data, the program is executed in the
sequence described below.

The number of points of the smoothed fragment of the
curve N and the weight coefficients ai are set, the variables
used in the calculations and arrays for storing the values of
the matrices are declared. The dimensions of the arrays are
1 more than the dimensions of the matrices for storing their
values at each iteration of the algorithm.

Y 0, ε1 > 0, ε2 > 0, M are set (step 1 of the algorithm).
The iteration cycle l � 0, 1, . . . , M is initiated, within

which further operations are performed. The beginning of the
cycle l � 0 corresponds to step 2 of the algorithm, reaching
the limit number of iterations l � M corresponds to step 5.

For values l > 0, the values of the elements of the vector
Y l+1 � Y l − tl∇F

(
Y l

)
are calculated, which corresponds to

step 7 of the algorithm. For iteration l � 0, these operations
are skipped.

The gradient vector of the objective function ∇F
(
Y l

)
is

calculated (step 3 of the algorithm). This is done in several
steps.

Afive-diagonalmatrix K is introduced by formula Eq. (6).
To obtain the vector of second derivatives Ql in accordance
with Eq. (7), the matrix K is multiplied by the vector Y l

(Fig. 5).
The transposition of the vector Ql is performed.
A one-diagonal matrix A of weight coefficients ai is writ-

ten.
The transposed vector Ql is multiplied by the matrix A.

Further, to obtain the value of the objective function F
(
Y l

)
,

the result of this operation is multiplied by the vector Ql

(Fig. 6).
Further, to calculate ∇F

(
Y l

)
in accordance with Eq. (9),

the matrix K is multiplied by 2 and by the matrix A (since
the matrix K is diagonal, then KT � K ). Since Ql � KYl ,
the result, in turn, is multiplied by the vector Ql (Fig. 7).

Next, ‖∇F
(
Y l

)‖ is calculated and the condition
‖∇F

(
Y l

)‖< ε1 is checked (step 4 of the algorithm).
The condition l > 0 is checked; for the iteration l � 0, all

the operations described below are not performed.
The gradient descent step tl is set (step 6 of the algorithm).
The fulfillment of the condition F

(
Y l+1

) − F
(
Y l

)
> 0 is

checked, when it is fulfilled, the step value tl � tl
2 is reduced

(step 8 of the algorithm).
If the previous condition is not met, the norm of the

difference of vectors ‖Y l+1 − Y l‖ is calculated and the
simultaneous fulfillment of the conditions ‖Y l+1 −Y l‖< ε2,∣∣F

(
Y l+1

) − F
(
Y l

)∣∣ < ε2 (step 9 of the algorithm). If not
executed, the value of l is incremented and the next iteration
of the loop is executed.

The result is an array of y coordinates for the points of the
smoothed fragment of the curve.

As a result of smoothing, the interpolation error was
0.1–0.8%, except for two end points, where it reached 1.5%
and 4.3%.
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Fig. 4 Program flowchart

Figures 8 and 9 show a smoothed profile curve built in a
CAD system and a diagram of its curvature.

4 Discussion and conclusions

As can be seen from Figs. 8 and 9, smoothing made it pos-
sible to obtain a fairly smooth curve of the profile curvature,
however, an unforeseen concavity appeared in the tail part of
the profile.

Also, as a limitation of the developed technique, it should
be noted the numerical differentiationmethod used, designed
for equidistant nodes of the curve. In the considered case, this

is admissible, since the smoothed fragment is located in the
tail part of the profile, where the step of the nodes is constant
and equal to 5% of its chord length. However, to smooth
the sections that lie closer to the nose of the profile, where
smaller values of the step of the nodes of the curve are used,
a method for calculating the second derivatives is required,
which allows for their uneven location.

Thus, the results of the performed smoothing confirm the
correctness of the choice of the objective function and the
effectiveness of the developed smoothing technique for the
tasks of ensuring the smoothness of the change in curvature.
However, the methodology requires some modifications.
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Fig. 5 Fragment of the source code of the program

Fig. 6 Fragment of the source code of the program

First, restrictions should be introduced to prevent the
appearance of unforeseen inflections on the curve. The most
promising is the use of methods of conditional minimiza-
tion of the objective function with restrictions that prevent
changing the sign of the curvature at the contour nodes.

Secondly, it is required to apply a method for calculat-
ing the second derivatives of a function approximating the
contour, which can be used in the case of unequally spaced
contour nodes.
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Fig. 7 Fragment of the source code of the program

Fig. 8 Airfoil curvature diagram after smoothing

5 Conclusion

The smoothing of airfoils with tabulated coordinates is con-
sidered. The smoothing of the contour, convex throughout,
but having significant differences in the curvature diagram,
is studied. The problem of ensuring a smooth change in the
curvature of the smoothed contour is considered.

The contour smoothing problem is presented as a problem
of minimizing the quadratic function of many variables. As

arguments of the quadratic function, the values of the sec-
ond derivatives of the function interpolating the curve of the
smoothed airfoil given in a table at its nodes are used.

To solve the problem, the quadratic function is presented
in the form of an explicit dependence on the ordinates of
the nodes of the smoothed contour. The values of the second
derivative of the function interpolating the contour at each of
its nodes are expressed in terms of the values of this function
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Fig. 9 Concavity on the airfoil tail curvature diagram after smoothing (enlarged)

at five points using non-difference numerical differentiation
formulas.

To find the minimum of the objective quadratic function,
the gradient descent method with a constant step was used.

An algorithm for minimizing the objective function using
the gradient descentmethod has been developed. A computer
program developed on the basis of this algorithm smoothed
the considered airfoil.

The effectiveness of the developed smoothing technique
for the problems of ensuring the smoothness of curvature
changes is confirmed.

A disadvantage of the technique is revealed in the form of
the possibility of unforeseen concavities smoothed airfoil.

Directions for further research are determined to prevent
the appearance of unforeseen inflections on the curve and to
ensure the possibility of applying the technique with unequal
distances between the points of the smoothed curve.
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