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Abstract
This paper introduces and investigates several methods of filtering and delay synchronization in incremental control law
structures. It is shown that proper filter and delay synchronization is of great importance for both the performance and
stability of the control laws. It is derived how to synthesize complementary filters in case of sensor dynamics, sensor delays
and internal control law filtering such as roll-off filters and notch filters. The complementary filters are compared to common
synchronization approaches previously applied in incremental control laws. It is shown that the proposedmethods are beneficial
for Multiple Input Multiple Output (MIMO) systems in case that different delays and filtering is present in the different
measurement signals. In case of strongly coupled input effectiveness, the synchronization on the actuator feedback may
become even unstable, where the complementary filter approach recovers the design closed-loop behavior. In addition, it is
derived how to initialize the complementary filters for a transient-free engagement in non-steady-state conditions. The results
are compared in simulation with a roll rate control law for a fixed wing aircraft.

Keywords Incremental control laws · Complementary filters · Sensor dynamics · Sensor delays

1 Introduction

In the past decade, the control concept Incremental Non-
linear Dynamic Inversion (INDI) gained a lot of interest,
especially in the domain of flight control.While control tech-
niques such as Non-linear Dynamic Inversion (NDI) [1–4]
and Backstepping (BS) [5] rely on accurate models of the
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plant to be controlled, INDI simply uses measurements of
derivatives of the output and the input effectiveness. This
is because the knowledge of the state dependent dynam-
ics can be approximated by an appropriate measurement.
INDI can, therefore, be interpreted as a sensor-based control
method. This reduced model-dependency has been proven to
be advantageous when controlling aerial vehicles because of
multiple reasons:

1. Novel aerial vehicle configurations might be complex to
model or the models might be inaccurate or lacking the
influence of dominating physical effects.

2. Aircraft models depend on aerodynamic parameters,
which are expensive to identify, e.g., by performing
extensive flight test campaigns;

3. Changes in the vehicle design require a repetition of the
identification process, and therefore the flight test cam-
paigns;

4. Robustness against a wide range of faults or structural
damages;

5. Robustness against disturbances;
6. Suitability for automatic take-off and landing, especially

for ultra-light aerial vehicles, where ground effects have
a large impact and are difficult to model;
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7. Unified control strategieswithout the necessity of switch-
ing or blending between different control laws for differ-
ent flight phases.

Incremental non-linear flight control techniques, such as
INDI, have been successfully demonstrated on several aerial
platforms and for different applications: the Cessna Citation
II [6,7], VTOL transition UAVs with movable tilts [8–10],
quadrotor UAVs [10–12], hexacopter [14], a hybrid tail-sitter
UAV [15,16], the automatic take-off and landing of a fixed
wing tail-wheel aircraft [17], a helicopter [18], an airship
[19], a piloted all attitude fixed wing turboprop demonstra-
tor simulated aircraft [20], and a commercial civil aircraft
simulation model [21,22].

It is commonly known that one major challenge of INDI
is its sensitivity towards measurement delays in the output
derivative feedback [23–26] and actuator command delay
[EINDI]. In van’t Veld et al. [27], the authors show that the
stability of INDI controllers subject to measurement time
delay is an issue, especially, when the transmission delay of
the actuator measurements and that of the relevant output
derivative measurement are not equal. Delays are usually
encountered for several reasons:

1. Control signal transmission delay;
2. Sensor signal delays;
3. Processing and scheduling delays.

In van’t Veld et al. [27], it is observed that INDI is more
sensitive to output derivative measurement delay than actu-
ator delay. Additionally, signal filtering can introduce lag to
the system which might be an issue for the controller perfor-
mance and stability as demonstrated in van’t Veld et al. [27]
as well. The use of signal filtering in control laws is of high
importance, for performance, stability, safety and robustness.
There are several reasons for introducing filtering of the used
signals. The most common reasons are:

1. Anti aliasing filtering;
2. Roll-off filtering for noise attenuation;
3. Notch filtering for attenuation of structural mode excita-

tion;
4. Filtering for estimation of certain variables, e.g., comple-

mentary filtering;
5. Filtering for bias removal.

Another common issue related to INDI for aircraft control
applications is that measurements of the angular accelera-
tions are often required. Although sensors for measuring
the angular rate derivative exist, they are not part of the
standard equipment of aerial vehicles. Hence, the rate deriva-
tive needs to be estimated in most applications. Obtaining
the rate derivative by calculating the discrete derivative of
the rate measurement using a differentiator, is not recom-

mended because of its sensitivity to sensor noise leading
to an amplification of noise on the control signal. In [24],
the angular accelerations were estimated with this technique,
using backward finite differences, and a first-order low-pass
filter was introduced before the actuators to attenuate high-
frequency oscillations caused by numerical noise. With the
sensor dynamics and measurement delays present, a low-
amplitude high-frequency oscillation still remained in the
control commands. [28] proposed to filter the measurement,
using a second-order low-pass filter, in combination with a
discrete differentiation. This allows to estimate the deriva-
tive for low frequencies, while attenuating high-frequency
sensor noise. Since this kind of second-order filter differen-
tiator introduces lag and produces a delayed estimate of the
relevant output derivative which degrades the controller per-
formance and stability, several techniques were proposed to
accommodate this issue. [29] proposes the use of an input
scaling gain to increase the controller robustness to delays
in the feedback loop, when using the second-order filter dif-
ferentiator. Other approaches are based on the importance
of delaying the actuator and state derivative measurements
equally, which has been demonstrated in van’t Veld et al.
[27]. [6,11,27] synchronize the actuatormeasurement in time
with respect to the angular acceleration by a synchronization
filter. This synchronization corresponds to the second-order
low-pass filter and a time delay, corresponding to the rela-
tive delay between the angular rates and actuator deflection
measurements. Besides the second-order filter differentiator,
complementary filters have been proposed for estimating the
angular accelerations, where the measured rate is low-pass
filtered and differentiated and the high-frequency part of the
rate derivative is obtained using a high-pass filtered model-
based rate acceleration estimate [14,30]. The latter further
proposed a synchronization scheme on the actuator feed-
back in combination with the complementary filter. In [23],
a linear predictive filter is designed to predict the angular
rate derivatives from angular rates and references thereof.
The coefficients of the predictive filter are computed using
least squares estimation [31] designs a nondelay differen-
tiator based on a precise-delay differentiator, to acquire the
output derivatives without delay.
In this paper, it is investigated how to compensate for filter
and sensor dynamics in the implementation of different types
of incremental control laws. We start with the Non-Linear
Dynamic Inversion (NDI) control law through the actuators
introduced as Actuator-NDI (ANDI) in Steffensen et al. [32].
From this control law, several other derived control laws
can be obtained by applying appropriate assumptions. The
most basic form is Incremental Non-linear Dynamic Inver-
sion (INDI) [28]. This control lawdoes not explicitly take into
account the actuator dynamics. TheExtended INDI (E-INDI)
[9] takes the actuators into account, but neglects the state
dependent terms. The filter synchronization is derived ana-
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lytically for the ANDI control law, using a complementary
filter exploiting relevant model information to compensate
for the negative effects of the filters and sensors. Analysis is
made for the initialization of the filter, to investigate methods
of transient-free activation of the control law. An analytical
comparison is made of synchronization techniques used in
literature, and a re-formulation of these synchronization tech-
niques is performed in terms of equivalent complementary
filters with several benefits for MIMO systems when the fil-
ters applied to the measurements differ.
The contribution of this paper consists of:

• Formulation of a complementary filter structure that
can be used for ANDI, E-INDI and INDI control laws.
The benefits are 1) an inherent synchronization which
increases the robustness with regard to phase delays 2)
It allows to apply different filtering on the different mea-
surement signals. For example to attenuate structural
modes in the various axes of the aircraft, different notch
filters might be required on the different measurement
signals.

• Formulation of a proper initialization method for these
complementary filters as used in incremental control
laws, for transient-free engagement in non-steady-state
conditions.

• Derivation of alternative formulations of popular syn-
chronization techniques in the actuator feedback path as
modified complementary filters. These alternative formu-
lations have the benefit that they can recover the design
closed-loop transfer function structure inMIMO systems
when different sensor filtering in the various feedback
channels are used. It is shown that the synchronization in
the feedback canbecomeevenunstable in case of strongly
coupled input effectiveness, where the equivalent com-
plementary filter exactly recovers the design closed-loop
behavior.

• Application of appropriate filters on the output of the
reference model based on the filtering on the measured
signals for use in the error controller feedback.

• Derivation of an un-delayed state estimate using a cas-
caded complementary filter taking into account signal
filtering and delays. This un-delayed state estimate can
be used to obtain an un-delayed ẏmdl . This cascaded filter
additionally provides an ẋ estimate that can be used in
control laws based on ANDI.

Based on a general linear MIMO system, the closed-loop
dynamics is analyzed analytically for (1) vanilla (perfect
knowledge of all variables) INDI (2) INDI with complemen-
tary filter and ẏmdl (3) filter differentiator approach without
synchronization (4) filter differentiator approach with syn-
chronization (5) Hybrid INDI, i.e., complementary filter
approach with synchronization. The analysis done in this

paper further provides insights into the relations between
these different approaches. Additionally, the cascaded com-
plementary filter is demonstrated for an ANDI control law,
introduced in Steffensen et al. [32], and compared to the E-
INDI law [9].

2 Control laws

The following section provides a derivation of the ANDI
(Actuators in Non-Linear Dynamics Inversion), E-INDI
(Extended Incremental Non-linear Dynamic Inversion) and
INDI (Incremental Non-linear Dynamic Inversion) control
laws, as a basis for the investigation in Sects. 4 and 5.

2.1 Summary of ANDI control law

We consider the ANDI control law introduced in Steffensen
et al. [32], as depicted in Fig. 1. The ANDI is based on NDI,
hence includes the stability guarantees in terms of Lyapunov
and exact inversion for tracking as well as specified error
dynamics. With the assumption of first-order actuators from
ANDI, the approximate concepts INDI and E-INDI can be
deduced. Hence, the ANDI is taken as a starting point, and
the concepts of synchronization will be extended directly to
INDI and E-INDI. As was shown in Steffensen et al. [32], the
ANDI control law corresponds to an INDI control law if the
bandwidth of the actuators tends to infinity, and corresponds
to the E-INDI [9] if the Fx ẋ term is neglected as explained
later in this section. The ANDI control law allows to actively
account for the actuator and state dependent dynamics and is
summarized in the following. Consider the system

ẋ = f (x, u),

y = h(x), (1)

with system state x ∈ R
n , actuator state u ∈ R

k , output y ∈
R
m , f ∈ C (r+1)(Rn × R

k;Rn) and h ∈ C (r+1)(Rn;Rm).
Note, that the time dependence (t) was here and in the fol-
lowing omitted for better readability. The actuator dynamics
are given by:

u̇ = �(uc − u) , (2)

with diagonalmatrix� ∈ R
(k×k) with its entries representing

the bandwidth of the different actuators. In Steffensen et al.
[32] the ANDI control law is derived assuming the system to
have a relative degree of r ∈ N, i.e., the r th derivative of y
with respect to time is the first derivative of y which explicitly
depends on u. For the sake of simplicity, we assume here
r = 1:

ẏ = F(x, u), (3)
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with F ∈ C1(Rn × R
k;Rm). The second derivative of y is

then

ÿ = Fx ẋ + Fuu̇, (4)

where Fx = ∂F(x,u)
∂x and Fu = ∂F(x,u)

∂u . Substituting Eq. (2)
into (4) results in

ÿ = Fx ẋ + Fu�(uc − u) , (5)

which is solved for uc, assuming Fu� to have full row rank
and choosing ÿ = ν as the virtual command:

uc = (Fu�)† (ν − Fx ẋ) + u, (6)

where (Fu�)† denotes a right inverse matrix that solves the
linear equation system given in Eq. (5). The virtual control
input ν is designed using a linear error controller as

ν = ÿref + k1(ẏref − ẏ) + k0(yref − y). (7)

By applying the control law to the system, the desired error
dynamics are obtained as designed, because Fu� has full
row rank such that (Fu�)(Fu�)† = Im×m :

ÿ = Fx ẋ + Fu�
(
(Fu�)† (ν − Fx ẋ) + u − u

)

= ÿref + k1(ẏref − ẏ) + k0(yref − y).
(8)

The block diagram of the ANDI controller is depicted in Fig.
1.

2.2 ANDI control lawwithmeasured output

It is often not possible to directly measure the time derivative
ẏ, which is needed to calculate the pseudo-control ν in Eq.
(7), which is then used in the ANDI control law in Eq. (6).
We propose to estimate ẏ using the complementary filter
whichwill be introduced in Sect. 3.3, that uses amodel-based
estimate of ẏ and the measured and filtered output signal y f

as depicted in Fig. 2. In addition, due to the filtering of y, it
is proposed to filter the reference signal yre f with the same
filtering as the measurement to synchronize the error term.
This filtering includes the filtering by F , which is anyfiltering
applied to the signal, e.g., roll-off filters or notch filters, the
measurement delay Dy , as well as the sensor dynamics S.
The control law is, hence, modified as such:

uc = (Fu�)† (ν − Fx ẋ) + u

= (Fu�)†
(
ÿre f + k1(ẏre f − ˆ̇y)

+ k0(yre f , f − y f ) − Fx ẋ
) + u.

(9)

In addition, ẋ needs to be estimated, which is covered in
Sect. 4.6. Note, that in some cases ˆ̇x is the same as ˆ̇y, and the
same complementary filtered signal can be used.

2.3 ANDI and INDI

To arrive at the INDI control law from the ANDI control
law, a special choice of error dynamics have to be made as
shown in Steffensen et al. [32]. The error dynamics shall be
chosen as a product of actuator and system error dynamics
as shown in Eq. (10). The actuator loop of the ANDI error
dynamics, i.e., the second part of Eq. (10), shall be chosen
with the same bandwidth as the actuators,ω. The assumption
necessary on the system is that all actuators need to have the
same bandwidth, that is � = ωIk×k .

Ey(s) (s + K0) (s I + ωI ) = 0, (10)

with the errors defined as:

ey = yre f − y,

ėy = ẏre f − ẏ.
(11)

In the time domain, this can be expressed as:

ëy + k1ėy + k0ey = ëy + K0ėy + ω(ėy + K0ey) = 0. (12)

Then, the pseudo-control ν is chosen as:

ν = ÿre f + K0ėy + ω(ėy + K0ey), (13)

and by inserting ν into Eq. (6), the ANDI control law can be
expressed as:

uc = 1

ω
(Fu)

† (
ÿre f + K0ėy − Fx ẋ

)

+ (Fu)
† (
ėy + K0ey

) + u,

(14)

whichwas first shown in Steffensen et al. [32]. If the actuators
have a high bandwidth ω, the first term of Eq. (14) can be
neglected, and the remaining part is equivalent to the INDI
control law:

uc = (Fu)
† (
ėy + K0ey

) + u. (15)

Similar to Sect. 2.2, the INDI law can be implemented as
depicted in Fig. 3 using a complementary filtered estimate of
ẏ and synchronizing yre f and y f .
It shall be noted that sometimes the first term in Eq. (14)
is included using variables from a reference model [20,33],
such that the command path exactly corresponds to theANDI
control law. If the system is (sufficiently) linear, this will
only affect the feed-forward part of the system, and hence
not change the closed-loop poles.

123



Aerospace Systems (2023) 6:285–304 289

Fig. 1 ANDI with known
outputs and state and output
derivatives

Fig. 2 Block diagram of ANDI
with synchronization

Fig. 3 Block diagram of INDI
with synchronization

2.4 ANDI and E-INDI

In literature, several extensions to the vanilla INDI control
law can be found. Two approaches that are taking explicitly
the actuator dynamics into account are [9,11]. While [11]
assumes that all actuators have the same bandwidth, i.e.,� =
Ik×kω, [9] considers the more general case of actuators with
different bandwidth. As was shown in Steffensen et al. [32],
choosing the error dynamics given in Eq. (12), the respective
control laws from [9,11], can be re-formulated as

uc= (Fu�)†
(
ÿref+ K0ėy +�y

(
ėy +K0ey

))+u, (16)

which in case of� = Ik×kω,�y = Im×mω, can be expressed
as

uc = 1

ω
(Fu)

† (
ÿre f + K0ėy+ ω

(
ėy+ K0ey

))+ u. (17)

This control law equals the ANDI control law in Equation
(14), if Fx ẋ is neglected.

3 Complementary filters and initialization

In the following section, the complementary filter design and
initialization is presented, and a formal initialization method
is derived for transient-free engagement in non-steady-state
conditions. As will be shown later, this design of the comple-
mentary filters will inherently contain the synchronization
properties that have earlier been shown to be crucial for
increasing performance and stability of INDI control laws.
The use of this type of complementary filter design, allows
for the use of different filters in the individual measurement
channels, which is not directly achievable using common
synchronization techniques on the actuator feedback.

3.1 Basic complementary filter concept and
initialization

Figure 4 depicts a simple complementary filter, which will
be used as an introductory example for the derivation of the
initialization in non-steady-state conditions.

First consider the zero-valued steady-state case. Then, the
relation between the inputs and outputs of the filter can be
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Fig. 4 Block diagram of complementary filter

Fig. 5 Block diagram of complementary filter with reset

derived as follows:

Ẏ (s) = (1 − H(s) + H(s))Ẏ (s)

= (1 − H(s)) Ẏ (s) + H(s)sY (s),
(18)

where U1(s) = Y (s), U2(s) = Ẏ (s) and assuming that y(0)
and ẏ(0) are zero. In case that the model ẏ is accurate, the
filter perfectly distributes the high-frequency part of the ẏ
estimate to the model-based ẏ and the low-frequency part to
the differentiated y measurement.
In case of non-steady-state initial conditions, the filter needs
to be carefully initialized. In the following, amethod to obtain
the correct initialization is derived. For now, consider H(s) as
a first-order filter such that the differential equations describ-
ing the x1 and x2 dynamics, as depicted in Fig. 5, are given
by:

ẋ1/2 = ω(u1/2 − x1/2), (19)

whereu1 = y andu2 = ẏ. In theLaplace domain, accounting
also for non-zero initial conditions, the following relation is
obtained:

X1/2(s) = ω

s + ω
U1/2(s) + 1

s + ω
x1/2(0). (20)

The complementary filter calculates ẏ as shown in Fig. 5 by

ẏ = ẋ1 + u2 − x2. (21)

Fig. 6 Block diagram of complementary filter with sensor dynamics

In the Laplace domain, accounting for non-zero initial con-
ditions, this results in

Ẏ (s) = sX1(s) − x1(0) +U2(s) − X2(s). (22)

Substituting Eq. (20) into (22) results in

Ẏ (s) = s

(
ω

s + ω
U1(s) + 1

s + ω
x1(0)

)
− x1(0) +U2(s)

−
(

ω

s + ω
U2(s) + 1

s + ω
x2(0)

)

= sω

s + ω
U1(s) − ω

s + ω
x1(0)

+U2(s) − ω

s + ω
U2(s) − 1

s + ω
x2(0).

(23)

Substituting U1(s) = Y (s) and U2(s) = Ẏ (s) = sY (s) −
y(0), results in

Ẏ (s) = sω

s + ω
Y (s) − ω

s + ω
x1(0)

+U2(s) − ω

s + ω
(sY (s) − y(0)) − 1

s + ω
x2(0)

= − ω

s + ω
x1(0) +U2(s) + ω

s + ω
y(0) − 1

s + ω
x2(0).

(24)

Initializing the integrators with x1(0) = y(0) = u1(0) and
x2(0) = 0 as depicted in Fig. 5 by the red dotted lines, results
in

Ẏ (s) = U2(s) = Ẏ (s). (25)

Hence, in case of an accurate model of ẏ, the output of the
filter will exactly match the true ẏ, also at the initial time
instance when engaging the control law.

3.2 Complementary filter and sensor dynamics

Usually, the output y of the plant is measured by a sensor
with corresponding sensor dynamics S(s). These dynamics
may include an anti-aliasing filter because of the (down) sam-
pling of the sensor signal for the flight control computer. For
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now consider these dynamics to be described by a first-order
filter such that the measured plant output that is used in the
complementary filter corresponds to

Ys(s) = S(s)Y (s). (26)

The complementary filter in Fig. 6 is given by

Ẏ (s) = (1 − H(s)S(s)) Ẏmdl(s) + sH(s)Ys(s). (27)

To show the proper synchronization, now assume that ẏmdl =
ẏ. The complementary filter for zero initial conditions results
in:

Ẏ (s) = (1 − H(s)S(s)) Ẏ (s) + sH(s)Ys(s). (28)

Hence, with an accurate model of ẏ, the filter again exactly
distributes the high-frequency part of the ẏ estimate to the
model-based ẏ and the low-frequency part to the differenti-
ated y in the presence of the sensor dynamics S(s).
To determine the initial values of the integrator state in the
sensor filter model used in the complementary filter, we start
with considering the differential equations of the sensor filter
and the sensor filter model, as depicted in Fig. 7, given by

˙̃x1/2 = ω̃(ũ1/2 − x̃1/2), (29)

where ũ1 = y and ũ2 = ẏ. The resulting relation in the
Laplace domain is

X̃1/2(s) = ω̃

s + ω̃
Ũ1/2(s) + 1

s + ω̃
x̃1/2(0). (30)

The estimate of ẏ is calculated by the complementary filter
as depicted in Fig. 7 by

ẏ = ẋ1 + ũ2 − x2, (31)

which results in the Laplace domain to

Ẏ (s) = sX1(s) − x1(0) + Ũ2(s) − X2(s). (32)

For X1(s) and X2(s), the relation in Eq. (20) is inserted. The
input U1(s) and U2(s) are the states of the sensor filter and
sensor filter model as depicted in Fig. 7, i.e.,U1(s) = X̃1(s),
U2(s) = X̃2(s):

Ẏ (s) = s

(
ω

s + ω
X̃1(s) + 1

s + ω
x1(0)

)
− x1(0) + Ũ2(s)

−
(

ω

s + ω
X̃2(s) + 1

s + ω
x2(0)

)
. (33)

Substituting X̃1 and X̃2 in Eq. (33) by relation (30) results in

Ẏ (s) = sω

s + ω

[
ω̃

s + ω̃
Ũ1(s) + 1

s + ω̃
x̃1(0)

]
+ s

s + ω
x1(0)

− x1(0) + Ũ2(s)

− ω

s + ω

[
ω̃

s + ω̃
Ũ2(s) + 1

s + ω̃
x̃2(0)

]
− 1

s + ω
x2(0).

(34)

Fig. 7 Block diagram of complementary filter with reset
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Using that Ũ1(s) = Y (s) and Ũ2(s) = Ẏ (s) = sY (s)− y(0)
results in

Ẏ (s) = sω

s + ω

[
ω̃

s + ω̃
Y (s) + 1

s + ω̃
x̃1(0)

]
+ s

s + ω
x1(0)

− x1(0) + Ẏ (s)

− ω

s + ω

[
ω̃

s + ω̃
(sY (s) − y(0)) + 1

s + ω̃
x̃2(0)

]

− 1

s + ω
x2(0)

= sω

(s + ω)(s + ω̃)
x̃1(0) + s

(s + ω)
x1(0)

− s + ω

(s + ω)
x1(0) + Ẏ (s)

− ω

s + ω

[
− ω̃

s + ω̃
y(0) + 1

s + ω̃
x̃2(0)

]
− 1

s + ω
x2(0)

= sω

(s + ω)(s + ω̃)
x̃1(0)

− ω(s + ω̃)

(s + ω)(s + ω̃)
x1(0) + Ẏ (s)

+ ωω̃

(s + ω)(s + ω̃)
y(0) − ω

(s + ω)(s + ω̃)
x̃2(0)

− 1

s + ω
x2(0).

(35)

Initializing the integrators as discussed before with with
x1(0) = u1(0) = x̃1(0) and x2(0) = 0 as depicted in Fig. 7
by the red dotted lines, results in

Ẏ (s) = ωω̃

(s + ω)(s + ω̃)
(y(0) − x̃1(0)) + Ẏ (s)

− ω

(s + ω)(s + ω̃)
x̃2(0)

(36)

Hence, the sensor model state needs to be initialized to
x̃2(0) = ω̃ (y(0) − x̃1(0)) which corresponds to the time
derivative ˙̃x1(0) of the sensor filter state as depicted in Fig.
7 by the red dotted lines.

Note that in case the sensor state x̃1 is initialized to y(0),
˙̃x1(0) will be 0. This will be the case if the sensor is reset,
and then the integrator state x̃2 of the sensor model could be
initialized with 0. Otherwise, alternatively as an approxima-
tion of ˙̃x1 the model based ẏ could be used as initialization
value for x̃2.

3.3 Complementary filter, sensor dynamics and
additional filtering

Often the measured output ys of the plant is additionally
filtered to attenuate noise, vibrations from engines, pickup
of structural modes, etc. Commonly roll-off filters or notch
filters are used for this purpose. Furthermore, transmission
delays might be present on the measurements such that the

Fig. 8 Block diagram of complementary filter with sensor dynamics
and filtering

signal used by the complementary filter corresponds to

Y f (s) = F(s)Dy(s)S(s)Y (s), (37)

where F(s) is the transfer function of the roll-off or notch
filters, D(s) is the transmission delay of the measurement
and S(s) is the sensor dynamics. The complementary filter
needs then to be updated as shown in Fig. 8, such that

Ẏ (s) = (
1 − H(s)F(s)Dy(s)S(s)

)
Ẏ (s)

+ H(s)F(s)Dy(s)S(s)Ẏ (s)

= (
1 − H(s)F(s)Dy(s)S(s)

)
Ẏ (s) + sH(s)Y f (s).

(38)

The initialization of thefilters can be derived in a similarman-
ner as in the previous sections. In the following, we denote
the series of the filters as

Fcy(s) = F(s)Dy(s)S(s). (39)

The complementary filtered estimate of the derivative of the
output signal y is, hence, given by

ˆ̇Y (s) = (1 − H(s)Fcy(s))Ẏmdl(s) + sH(s)Y f (s), (40)

where Ẏmdl(s) is the model-based estimate of Ẏ .

4 Synchronization techniques with related
complementary filters

In the following, the proposed synchronization is compared
to other synchronization approaches in literature. For the
analysis, we consider a MIMO linear time invariant system:

ẋ(t) = Ax(t) + Bu(t) + Bdd(t),

y(r−1)(t) = Cx(t),
(41)

where r is the relative degree of the system, A is the system
matrix, B is the input effectiveness, Bdd(t) is the disturbance
term, C the output matrix, and with the restriction that:
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Table 1 Effect of synchronization on CAX in closed-loop

Synchronization CAX contribution

Vanilla INDI
(
I − Ḡ A

)

INDI with complementary filter and ẏmdl
(
I − Ḡ A

)

INDI with derivative filter and synchronization
(
I − Ḡ AH Fcy

)

Hybrid INDI (I − Ḡ AFcy)

CB(I − GA(s))−1GA(s)(CB)† = (
I − Ḡ A(s)

)−1
Ḡ A(s),

(42)

where GA(s) are the actuator dynamics, Ḡ A(s) is a diagonal
transfer functionmatrix, and thematrixCB has full row rank.
Equation (42) is true if either:

Basic assumptions (either has to hold):

1. System is SISO, then Ḡ A = GA.
2. CB matrix and actuator transfer function matrix GA are

square, only have elements on the diagonal, and they have
the same dimension, such that Ḡ A = GA.

3. Actuator transfer function matrix GA only has elements
on the diagonal and all the elements are the same, i.e.,
the actuators operate independently and have the same
dynamics. Then, Ḡ A is a diagonal transfer function
matrix with elements equal to the elements in GA but
the matrix have a different dimension.

For the following, we consider without loss of generality a
system with relative degree 1, which is common in baseline
flight control laws. In addition it improves the readabil-
ity. Substituting sY (s) with srY (s) for the following results
recover the general case. Note that for better readability the
arguments (s) and (t) are omitted.

In the following, it is shown that the different synchro-
nization techniques only vary in their influence on the state
dependent term CAX of the closed-loop dynamics, summa-
rized in Table 1. The influence on the direct disturbance term
CBdD and pseudo-control term V is exactly the same for all
synchronization techniques.

It is additionally shown that for methods 3 and 4 as pro-
posed in [6,11,27] and [30], for MIMO systems, additional
restrictive assumptions, e.g., same filtering of all measure-
ments, are necessary to obtain the relations given in Table 1.
The respective assumptionswill be detailed in the related sec-
tions. A re-arrangement of the synchronization is proposed,
such that the design closed-loop transfer function can be
recovered for MIMO systems, relaxing the above-mentioned
assumptions. This re-arrangement allows different filtering
in the measurement feedback channels.

Fig. 9 Vanilla INDI control law

Fig. 10 INDI with complementary filter

4.1 Vanilla INDI

The vanilla INDI with perfect knowledge of the state deriva-
tive is depicted in Fig. 9. The closed-loop transfer function
is given by:

sY = (
I − Ḡ A

)
CAX + Ḡ AV + (

I − Ḡ A
)
CBdD, (43)

as shown in Appendix A.1. It is seen that ẏ follows ν with the
actuator dynamics, plus the state dynamics and disturbances
filtered through a high-pass filter given by I − Ḡ A, i.e., if the
actuator dynamics are much faster than the state dynamics
and disturbances, the influence is filtered out.

4.2 INDI with complementary filter and ẏmdl

If ẏ is estimated with a complementary filter as derived in
Sect. 3.3, and depicted in Fig. 10, assuming that there are no
model uncertainties or noise, then ẏmdl = ẏ holds, and the
closed-loop transfer function is given by:

sY = (
I − Ḡ A

)
CAX + Ḡ AV + (

I − Ḡ AH Fcy
)
CBdD

(44)

as shown inAppendixA.2,which shows that the complemen-
tary filter recovers the input–output dynamics of the vanilla
INDI. It is seen that the disturbance is high-pass filtered by(
I − Ḡ AH Fcy

)
, such that disturbances below the cut-off of

the combined actuator and filter dynamics are rejected.
Note, ẏmdl = ẏ might seem like a crude assumption but is
made to highlight the synchronization effects i.e., ẏmdl gives
an un-delayed estimate of ẏ. For example ẏmdl = C(Ax̂ +
Bu) would be such an estimate, if x̂ is obtained as an un-
delayed estimate, for example from a model or using again
a complementary filter as depicted in Fig. 16.
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Fig. 11 INDI with derivative filter

Fig. 12 INDI with derivative filter and synchronization as used in [6,
11,27]

Note that ẏmdl will not be ẏ if there are model uncertain-
ties (e.g., in A, B or C) or measurement noise. The cut-off
frequency of the filter H in the complementary filter has to
be chosen as a compromise, in general as high as possible
but low enough such that the noise is not amplified by the
derivative.

4.3 INDI with derivative filter and no
synchronization

If ẏ is estimated with a filter from a sensor measurement as
depicted in Fig. 11, then the closed-loop transfer function is
given by:

sY = (
I − Ḡ A + Ḡ AH Fcy

)−1 (
I − Ḡ A

)
CAX

+ (
I − Ḡ A + Ḡ AH Fcy

)−1
Ḡ AV

+ (
I − Ḡ A + Ḡ AH Fcy

)−1 (
I − Ḡ A

)
CBdD,

(45)

as shown in Appendix A.3. It can be seen that this filter-
ing technique does not correspond to the dynamics of the
vanilla INDI, i.e., INDI with perfect state derivative knowl-
edge. It is shown in Section 5 by simulation that having no
synchronization can very easily lead to unstable closed-loop
dynamics.

4.4 INDI with derivative filter and synchronization

If ẏ is estimated, as proposed in [6,11,27], and depicted in
Fig. 12, i.e., with a filter from a sensor measurement and
synchronized with the same filters H̄ and F̄cy (with possi-
bly different dimensions as indicated by the bar), as used for
the derivative and sensor filtering in the control signal feed-
back path, then, as shown in Appendix A.4, the closed-loop
transfer function is given by:

Fig. 13 Re-formulation of INDI with derivative filter and synchroniza-
tion

sY = (
I − Ḡ AH Fcy

)
CAX+Ḡ AV+(

I − Ḡ AH Fcy
)
CBdD,

(46)

assuming that:

CB
(
I − GAH̄ F̄cy

)−1
GA(CB)† = (

I − Ḡ AH Fcy
)−1

Ḡ A,

(47)

which hold if either of these additional assumptions are sat-
isfied, respectively:

Respective additions to the basic assumptions:

1. No additional assumption if system is SISO.
2. H̄ and F̄cy are square, only have elements on the diagonal

and both have the same dimension as H and Fcy , such
that H̄ F̄cy = HFcy .

3. H and Fcy only has elements on the diagonal and all the
elements of the respective matrix are the same, i.e., each
measurement channel is filtered separately and equally.
Then, H̄ F̄cy is a diagonal transfer function matrix with
elements equal to the elements in HFcy but the matrix
has a different dimension.

It can be seen that this filtering technique results in a closed-
loop transfer behavior which is similar to the result of the
vanilla INDI, i.e., ẏ follows ν with the actuator dynam-
ics, plus the state dynamics filtered through a high-pass
filter. While for vanilla INDI this high-pass filter is given
by

(
I − Ḡ A

)
, here the high pass results in (I − Ḡ AH Fcy),

which allows signals with lower frequencies to pass through
compared to (I − Ḡ A), which means that more dynamics
from the model dependent part CAX will pass through in
the closed-loop dynamics. The direct influence of the distur-
bances are also high-pass filtered by (I − Ḡ AH Fcy), which
is similar to the complementary filter discussed in Sect. 4.2.

In Appendix A.4, it is shown that if the block diagram in
Fig. 13 is implemented instead, then the same closed-loop
behavior as given in Eq. (46) is obtained, even without the
additional assumptions given above.

It is additionally seen that the synchronization in Fig. 13
corresponds to the INDI with complementary filter depicted
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Fig. 14 Hybrid INDI with complementary filter and synchronization
as proposed in Kumtepe et al. [30]

in Fig. 10 with ẏmdl = Bu, i.e., only the high-frequency part
of ẏ is considered in the estimate ẏmdl . This re-formulation
can be attractive if different filters in Fcy are used in the
separate control channels of y, e.g., that notch filters with
different notch frequencies are used for the individual axes
of the aircraft. Having the filter synchronization in the u feed-
back path does not allow for consistent separate filtering in
the different axes.

4.5 Hybrid INDI

If ẏ is estimated, as proposed in Kumtepe et al. [30], with
a complementary filter and synchronized as depicted in Fig.
14 (with the On-board plant model (OBPM) being ẏmdl =
CAx f +CBu, then the closed-loop transfer function is given
by:

sY = [
I − Ḡ AH Fcy

]
CAX − Ḡ A [I − H ]CAFcx X

+Ḡ AV + [
I − Ḡ AH Fcy

]
CBdD, (48)

as shown in Appendix A.5, under the assumption that

CB
[
I − GAH̄ F̄cy − GA(I − H̄)

]−1
GA(CB)†

= [
I − Ḡ AH Fcy − Ḡ A(I − H)

]−1
, (49)

which holds if the basic assumptions and the additional
assumptionsmentioned inSect. 4.4 are satisfied, respectively.
If for example Fcy and Fcx are diagonal with the same ele-
ments on the diagonal, then:

sY = (I − Ḡ AFcy)CAX + Ḡ AV
+ [

I − Ḡ AH Fcy
]
CBdD. (50)

In this case, it can be seen that this filtering technique pro-
duces a high-pass filter on the stateswhich is (I−Ḡ AFcy) and
hencewith a cut-off frequencywhich is in between the cut-off
frequencies of the high-pass filter in vanilla INDI (Sect. 4.1),

Fig. 15 Re-formulation of hybrid INDI with complementary filter

(I − Ḡ A), and the INDI with derivative filter and synchro-
nization (Sect. 4.4), (I − Ḡ AH Fcy). If the state dynamics are
slow enough ẏ, hence follows ν with the actuator dynamics
Ḡ A. The direct influence of the disturbances are high-pass
filtered by (I − Ḡ AH Fcy), which is similar to the comple-
mentary filter discussed in Sect. 4.2 and the derivative filter
with synchronization discussed in Sect. 4.4.

The assumptions above can again be relaxed if the syn-
chronization on the feedback is moved to the complementary
filter and the filter chain Fcy(s) is split into sensor filters S(s)
and notch/roll-off filters F(s) as shown in Fig. 15. Different
filtering F(s) in the control law can now be applied in the
feedback paths.With thismodification the only assumption is
the sensor filters Sx (s) and Sy(s) are diagonal and identical in
each channel in order to obtain the relation given by Eq. (50).

4.6 Un-delayed estimate of model-based output
derivative ẏmdl

InSection4.2, the analysiswas basedon anun-delayedmodel
estimate, ẏmdl , of ẏ. This can for this example be obtained by
a cascaded complementary filter for ẋ and then x as depicted
in Fig. 16. Since ẏ = C(Ax + Bu), this provides the nec-
essary estimate for the use in Section 4.2. Furthermore, this
complementary filter can provide the estimate ˆ̇x for theANDI
control law.

5 Simulation

5.1 Roll dynamics example

This subsection compares the different presented synchro-
nization approaches for the simplified roll motion dynamics
of an aircraft, given by

ṗ = L p p + Lξ ξ, (51)

with roll damping L p = −2.7 1/s, effectiveness Lξ = −14
1/s2, control input ξ , which is the aileron deflection andmea-
sured output p, which is the roll rate. The actuator dynamics
are given by
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Fig. 16 State complementary
filter for un-delayed model
estimate of ẋ and x

Fig. 17 ANDI roll control

GA = ωA

(s + ωA)
, (52)

with ωA = 50 rad/s. The sensor dynamics are given by

S(s) = ωS

s + ωS
, (53)

with bandwidth ωS = 100 rad/s. The delay is given by

Dy(s) = e−T s, (54)

with T = 0.03s. For this example, the filter F(s) = 1. Fcy(s)
is given by Eq. (39). The filter H is given by

H(s) = ωH

s + ωH
, (55)

with bandwidth ωH = 30 rad/s.
Figure 18 shows the desired roll acceleration signal ṗdes ,
which shall be tracked, and the closed-loop roll acceleration
ṗ, for the vanilla INDI law depicted in Fig. 9, and the INDI
with derivative filter and no synchronization depicted in Fig.
11. The pseudo-control is in both cases ν = ṗdes . Figure
18 shows that in case, the derivative of p is obtained by
a differentiation filter without a synchronization technique,
the resulting response might be oscillatory. With increasing
phase loss of the filter Fcy(s), the closed-loop system will
become unstable as happened in this case.
Figure 19 compares the responses of vanilla INDI (Fig. 9),
INDI with derivative filter and synchronization (Fig. 12),
hybrid INDI with complementary filter and synchronization

Fig. 18 Comparison of vanilla INDI and INDI with derivative filter
without synchronization

(Fig. 14), and INDI with the cascaded complementary fil-
ter (Figs. 10 and 16). For all cases, the pseudo-control is
again ν = ṗdes . It is seen that INDI with derivative filter
and synchronization improves the response compared to the
INDI with derivative filter and without a synchronization, by
removing the oscillations. The hybrid INDI with the com-
plementary filter and synchronization improves the response
further (the resulting response is closer to the response
obtained by vanilla INDI) compared to the pure derivative
filter with synchronization. Compared to that, the INDI with
the proposed cascaded complementary filter improves the
response further by recovering the vanilla INDI response.

123



Aerospace Systems (2023) 6:285–304 297

Fig. 19 Comparison of vanilla INDI and INDI with different synchro-
nization variants

Fig. 20 Verification of the behavior of ANDI /E-INDI with cascaded
synchronization

However, if the sensor dynamics are fast and the measure-
ment delay very low, the differences in the responsesmight be
minor. In this case, the hybrid INDI or INDI with differentia-
tion filter and synchronizationmight be the preferred solution
because of its lower complexity. If the sensor dynamics are
slow or the measurement delay non-negligible, the cascaded
complementary filter might be preferred.
Figure 20 compares theE-INDI control lawgivenbyEq. (17),
with the ANDI control law, given by Eq. (9), and depicted in
Figs. 2 and 17. Both the E-INDI and ANDI are implemented
with K0 = k0 = 0, i.e., without roll rate error feedback.
Figure 20 reveals that E-INDI recovers the phase of the ref-
erence signal. This is because of the feed forward of ÿre f in
E-INDI. ANDI also uses this feed forward and additionally
themodel dependent term Fx ẋ , which corresponds to L p ˆ̇p in
the considered example. The closed-loop response of ANDI

Fig. 21 Comparison of control signal with noise on the measurement
of y

results in exact tracking of the reference signal ṗre f , at the
cost of additional necessary model information.
In Fig. 21, the control input ξ are depicted for the different
controller structures for the case that noise with a standard
deviation of 0.1deg is added to the measured roll rate p. It
can be seen that the resulting jitter on ξ is for all variants in a
similar magnitude range, although it seems slightly less for
ANDI.

5.2 Linearized lateral motion example

This subsection compares the different presented synchro-
nization approaches for the linearized lateral dynamics of an
aircraft given by

⎡
⎢⎢⎣

ṙ
β̇

ṗ
�̇

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

Nr Nβ Np 0
−1 + Yr Yβ 0 g

V0
Lr Lβ L p 0
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

r
β

p
�

⎤
⎥⎥⎦ +

⎡
⎢⎢⎣

Nξ Nζ

Yξ Yζ

Lξ Lζ

0 0

⎤
⎥⎥⎦

[
ξ

ζ

]

=

⎡
⎢⎢⎣

−0.520 3.488 −0.628 0
−0.987 −0.199 0 0.130
0.472 −14.408 −6.624 0
0 0 1 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

r
β

p
�

⎤
⎥⎥⎦

+

⎡
⎢⎢⎣

0.539 −2.005
−0.012 0.040
−10.700 2.899

0 0

⎤
⎥⎥⎦

[
ξ

ζ

]
, (56)

with y = [r , p]T and x = [r , β, p,�]T . All states are
filtered by the sensor dynamics S(s) given by Eq. (53)
with ωS = 100 rad/s and are delayed with Eq. (54) with
T = 0.03s. Only the rates p and r are additionally filtered
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Table 2 Values of notch filters ζN ωN (rad/s) gmin

p 0.7 2 π · 2 0.1

r 0.7 2 π · 5 0.3

Fig. 22 Comparison of vanilla INDI and INDI with different synchro-
nization variants ( ṗ command to ṗ response)

by a notch filter given by

F(s) = s2 + 2gminζNωN + ω2
N

s2 + 2ζNωN + ω2
N

, (57)

with parameters summarized in Table 2 for p and r , respec-
tively. The filter H is given by Eq. (55) with bandwidth
ωH = 30 rad/s. For the different INDI synchronization
structures ν represents ṙ and ṗ. For the E-INDI and ANDI
structures ν represents r̈ and p̈. Fu = CB is given by

Fu =
[
Nξ Nζ

Lξ Lζ

]
, (58)

and Fx = CA by

Fx =
[
Nr Nβ Np 0
Lr Lβ L p 0

]
. (59)

The actuator dynamics are given by

GA = (s I + �)−1�, (60)

with � = IωA and ωA = 50rad/s. Figures 22 to 25 com-
pare the response of ideal vanilla INDI (i.e., with perfect
knowledge of ẏ as depicted in Fig. 9) with the different syn-
chronization techniques depicted in Figs. 12, 14 and 10, with
the notch filters placed on the dominant feedback channel
of the input. Figures 22 and 23 thereby show the ṗ and ṙ

Fig. 23 Comparison of vanilla INDI and INDI with different synchro-
nization variants ( ṗ command to ṙ response)

Fig. 24 Comparison of vanilla INDI and INDI with different synchro-
nization variants (ṙ command to ṗ response)

responses for the given command in ṗdes . It can be seen
that with the proposed cascaded complementary filter the
response is equivalent to the vanilla INDI response. The other
techniques slightly deteriorate the response, especially with
regard to the decoupling of the axes. If a pure roll command
is given the response in the r channel is desired to be as
low as possible, but the excursion is much higher in the con-
ventional synchronization schemes as shown in Fig. 23. The
same holds for the responses to a yaw step command, which
are depicted in Figs. 24 and 25.

The simulations done until now show that the cascaded
filter has improvement over the synchronization on u, but
the synchronization on u still works reasonably well. The
synchronization approach does not require any additional
model information; hence, it might be the preferred choice.
The above simulations were made with a weakly coupled
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Fig. 25 Comparison of vanilla INDI and INDI with different synchro-
nization variants (ṙ command to ṙ response)

Fig. 26 Comparison of INDI with synchronization on u with the re-
formulated synchronization on the feedback ( ṗ command to ṗ response)

CB matrix; hence, the assumptions given in Eqs. (47) and
(49) almost hold. For conventional fixed wing aircraft, this
is usually the case, but, for advanced configurations this is
not necessarily the case. For example in a V-tail aircraft
the control inputs are heavily coupled in the r and p chan-
nel. In this case, having the synchronization on u can have
adverse effects as shown in the following. As derived in
Sects. 4.4 and 4.5, re-formulations of the synchronization
as complementary filters allows for separate filtering in the
different channels. The following simulations are performed
with the exact same lateral system only changing the CB
matrix to be strongly coupled as given in Eq. (61). In Fig.
26 the synchronization from Fig. 12 is compared with the
re-formulated filter from Fig. 13. It is seen that the syn-
chronization technique on u is even unstable in this case,
where the performance of the re-formulated complemen-

Fig. 27 Verification of the behavior of ANDI /E-INDI with cascaded
synchronization ( ṗ command to ṗ response)

Fig. 28 Verification of the behavior of ANDI /E-INDI with cascaded
synchronization ( ṗ command to ṙ response)

tary filter approach is not affected by the couplings. Figure
26 also shows the same behavior for the Hybrid approach
with synchronization in u as depicted in Fig. 14, and should
be compared to the re-formulated Hybrid INDI depicted in
Fig. 15.

CBcoupled =
[

1.8 −2
−10.7 8

]
. (61)

At last, we compare the ANDI and E-INDI approaches used
with the proposed cascaded complimentary filter in Figs.
27, 28, 29 and 30. It can be seen that the response for the
ANDI technique with cascaded complementary filter per-
fectly tracks the reference dynamics and perfectly decouples
the roll and yaw channel.
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Fig. 29 Verification of the behavior of ANDI /E-INDI with cascaded
synchronization (ṙ command to ṗ response)

Fig. 30 Verification of the behavior of ANDI /E-INDI with cascaded
synchronization (ṙ command to ṙ response)

6 Conclusion

In this paper, we investigated different ways to compensate
and synchronize for filtering and delays of the measurements
in several types of incremental control laws. It was shown
how to synthesize complementary filters, taking into account
the filtering and delays. It was shown that the use of comple-
mentary filters in contrast to synchronization on the feedback
of u can be especially useful in MIMO systems, if separate
filtering is necessary in the different measurements. It was
shown that in case of strongly coupled input effectiveness, the
synchronization on the actuator feedback may become even
unstable, where the equivalent complementary filter formu-
lation recovers the design closed-loop behavior. A method
for deriving the initialization of the complementary filters
was presented, which allows for transient-free engagement

in non-steady state conditions. At last, it was shown that a
cascaded complementary filter can be used to obtain an un-
delayed model-based derivative estimate. Future work will
be focused on comparing the performance and robustness in
practical applications.
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Appendix A Derivation of closed-loop trans-
fer functions

Note that in the following the arguments (s) and (t) are omit-
ted for better readability.

A.1 Vanilla INDI closed-loop transfer function

Given the system in Eq. (41) and the vanilla INDI control law
with block diagram depicted in Fig. 9, then the closed-loop
transfer function can be derived as follows.
The transfer function from �u to u in the Laplace domain
can be deduced from the block diagram to be

U = (I − GA)−1GA�U . (A1)

Substituting this relation into

sY = C(AX + BU + Bd D), (A2)
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and replacing �U by

�U = (CB)† (V − sY ) (A3)

results in

sY = CAX + CB(I − GA)−1GA(CB)† (V − sY )

+CBdD.

(A4)

Using the assumption in Eq. (42) and rearranging the above
results in

(
I + (

I − Ḡ A
)−1

Ḡ A

)
sY

= CAX + (
I − Ḡ A

)−1
Ḡ AV + CBdD. (A5)

Multiplying with
(
I − Ḡ A

)
from the left, results in

sY = (
I − Ḡ A

)
CAX + Ḡ AV + (

I − Ḡ A
)
CBdD. (A6)

A.2 INDI with complementary filter from Section 3.3

Given the system (41) and the INDI control law with block
diagram depicted in Fig. 10, then the closed-loop transfer
function can be derived as follows, if ẏmdl is calculated by

ẏmdl(t) = C(Ax(t) + Bu(t)). (A7)

The transfer function from�u to u in the Laplace domain can
be deduced from the block diagram to be (A1). Substituting
this relation into (A2) and replacing �U by

�U = (CB)†
(V − [

I − HFcy
]
(CAX + CBU )

−sH FcyY
)

(A8)

results in

sY = CAX + CBdD+
CB(I − GA)−1GA(CB)†

(V − [
I − HFcy

]
(CAX + CBU ) − sH FcyY ).

(A9)

Adding and subtracting CBdD in the term from Ẏmdl and
using the structure of sY from (A2) gives:

sY = CAX + CBdD

+CB(I − GA)−1GA(CB)†(V − sY

+ [
I − HFcy

]
CBdD). (A10)

Applying the assumption given in Eq. (42), arranging for sY
and multiplying by (I − Ḡ A) from the left gives:

sY = (
I − Ḡ A

)
CAX + (

I − Ḡ A
)
CBdD

+Ḡ A
(V + [

I − HFcy
]
CBdD

)
. (A11)

Finally,

sY = (
I − Ḡ A

)
CAX + Ḡ AV + (

I − Ḡ AH Fcy
)
CBdD

(A12)

is obtained.

A.3 INDI with derivative filter and no
synchronization

Given the system (41) and the INDI control law with block
diagram depicted in Fig. 11, the closed-loop transfer function
can be derived as follows. The transfer function from �u
to u in the Laplace domain can be deduced from the block
diagram to be (A1). Substituting this relation into (A2) and
replacing �U by

�U = (CB)†
(V − sH FcyY

)
(A13)

results in

sY = CAX + CBdD

+CB(I − GA)−1GA(CB)†
(V − sH FcyY

)
.

(A14)

Using the assumption in Eq. (42) and rearranging the above
results in
(
I + (

I − Ḡ A
)−1

Ḡ AH Fcy
)
sY

= CAX + CBdD + (
I − Ḡ A

)−1
Ḡ AV.

(A15)

Finally,

sY = (
I − Ḡ A + Ḡ AH Fcy

)−1 (
I − Ḡ A

)
CAX

+ (
I − Ḡ A + Ḡ AH Fcy

)−1
Ḡ AV

+ (
I − Ḡ A + Ḡ AH Fcy

)−1 (
I − Ḡ A

)
CBdD

(A16)

is obtained.

A.4 INDI with derivative filter and synchronization

Given the system (41) and the INDI control law with block
diagram depicted in Fig. 12, the closed-loop transfer function
can be derived as follows.
The transfer function from �u to u in the Laplace domain
can be deduced from the block diagram to be

U = (
I − GAH̄ F̄cy

)−1
GA�U . (A17)
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Substituting this relation into (A2) and replacing �U by

�U = (CB)†
(V − sH FcyY

)
(A18)

results in

sY = CAX + CB
(
I − GAH̄ F̄cy

)−1
GA(CB)†(V − sH FcyY

) + CBdD.
(A19)

Under the assumption given by Eq. (47), we obtain

(
I + (

I − Ḡ AH Fcy
)−1

Ḡ AH Fcy
)
sY

= CAX + (
I − Ḡ AH Fcy

)−1
Ḡ AV + CBdD.

(A20)

Finally,multiplyingwith
(
I − Ḡ AH Fcy

)
from the left results

in

sY = (
I − Ḡ AH Fcy

)
CAX + Ḡ AV

+ (
I − Ḡ AH Fcy

)
CBdD.

(A21)

If the synchronization is implemented according to the
block diagram in Fig. 13, then the closed-loop transfer func-
tion can be calculated as follows:

U = (I − GA)−1GA(CB)†(V − sH FcyY − (
I − HFcy

)
CBU

)
. (A22)

Applying the assumption given in Eq. (42), and adding/
subtracting the terms CAX and CBdD results in

sY = CAX + CBdD + (
I − Ḡ A

)−1
Ḡ A(V − sH FcyY − (

I − HFcy
)

(CBU + CAX + CBdD)

+ (
I − HFcy

)
(CAX + CBdD)

)
.

(A23)

Using the structure of sY from Eq. (A2) gives:

sY = CAX + (
I − Ḡ A

)−1
Ḡ A

(V − sY

+ (
I − HFcy

)
(CAX + CBdD)

) + CBdD.

(A24)

Isolating for sY and multiplying by
(
I − Ḡ A

)
from the left

results in

sY = (
I − Ḡ A

)
CAX

+Ḡ A
(V + (

I − HFcy
)
(CAX + CBdD)

)

+ (
I − Ḡ A

)
CBdD. (A25)

Finally, the closed-loop relation can be obtained:

sY = (
I − Ḡ AH Fcy

)
CAX + Ḡ AV

+ (
I − Ḡ AH Fcy

)
CBdD. (A26)

Note that in contrast to the original implementation in
Fig. 12, with the proposed modification in Fig. 13 it is not
required to assume that H̄ F̄cy are square, only have elements
on the diagonal and u and y have the same dimension, or
that HFcy only has elements on the diagonal and all the
elements are the same. This means that u and y can have
different dimensions and different filtering can be applied to
the different measurement signals.

A.5 Hybrid INDI with complementary filter using
synchronization

Given the system (41) and the INDI control law with block
diagram depicted in Fig. 14, the closed-loop transfer function
can be derived as follows, if ẏmdl is calculated by

ẏmdl(t) = C(Ax f (t) + Bu(t)), (A27)

where x f is x filtered by Fcx (s).
The transfer function from �u to u in the Laplace domain
can be deduced from the block diagram to be

U = [
I − GAH̄ F̄cy − GA(I − H̄)

]−1
GA�U . (A28)

Substituting the transfer function in Eq. (A28) into Eq. (A2)
and replacing �U by

�U = (CB)†
(V − [I − H ]CAFcx X

− [I − H ]CBU − sH FcyY
)

(A29)

results in

sY = CAX + CBdD

+ CB
[
I − GAH̄ F̄cy − GA(I − H̄)

]−1
GA(CB)†(V − [I − H ]CAFcx X

− [I − H ]CBU − sH FcyY
)
.

(A30)

Using the assumption given in Eq. (49), adding and sub-
tracting [I − H ]CBd and [I − H ]CAX and rearranging the
above results in

sY = CAX + CBd D + [
I − Ḡ AH Fcy − Ḡ A(I − H)

]−1
Ḡ A(V − [I − H ]CAFcx X + [I − H ]CAX

− [
I − H + HFcy

]
sY + [I − H ]CBd D

)
.

(A31)
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Isolating for sY and multiplying by
[
I − Ḡ AH Fcy − Ḡ A(I −

H)
]
from the left results in

sY = [
I − Ḡ AH Fcy − Ḡ A(I − H)

]
(CAX + CBdD)

+ Ḡ A (V − [I − H ]CAFcx X + [I − H ]CAX

+ [I − H ]CBdD)

= [
I − Ḡ AH Fcy

]
CAX − Ḡ A [I − H ]CAFcx X

+ Ḡ AV + [
I − Ḡ AH Fcy

]
CBdD.

(A32)

Assuming that Fcy and Fcx are diagonal with the same ele-
ments on the diagonal, then

sY = (I − Ḡ AFcy)CAX + Ḡ AV + [
I − Ḡ AH Fcy

]
CBdD.

(A33)

is obtained.
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