
Aerospace Systems (2022) 5:531–544
https://doi.org/10.1007/s42401-022-00166-6

ORIG INAL PAPER

Design of 3-D trajectory sequences for multiple asteroid flyby missions

Giuseppe Cataldi1 · Salvo Marcuccio1

Received: 14 August 2022 / Revised: 1 October 2022 / Accepted: 3 October 2022 / Published online: 14 October 2022
© The Author(s) 2022

Abstract
Prospecting is a necessary pre-requisite of future asteroid mining ventures. It is generally assumed that inspection for the
purpose of identifying the asteroid composition can be effectively accomplished from a distance through remote sensing. To
be carried out in a timely and economically viable way, prospecting is best performed by devising trajectories such that a
single spacecraft manages to fly by as many asteroid as possible, yet seeking to minimize a cost function that we assume to
be coincident with propellant consumption. In this paper, we present a method to identify trajectory sequences to multiple
asteroids. We restrict our analysis to Near-Earth Asteroids (NEAs), i.e.„ those with perihelion at less than 1.3 AU from the
Sun, focusing on Apollo class NEAs only. The volume of space where encounter seeking takes place is a torus-shaped 3-D
region in the proximity of the ecliptic. Under the assumption of using impulsive maneuvers to connect ballistic coast arcs,
we show that a deterministic building blocks approach is successful in finding a significant number of multi-flyby mission
profiles with the desired characteristics. Using this scheme, it is possible to envisage realistic asteroid prospecting missions
using a single launch to deploy a number of small spacecraft, with tens—or possibly hundreds—of asteroids visited in a few
years.

Keywords Asteroid mining · Asteroid prospecting · Asteroid flyby · Interplanetary trajectory design · Multiple asteroid visits

1 Introduction

The problem to find a sequence of trajectories to visit a given
set of space objects with known orbital data, while keeping a
target function (e.g., propellant expenditure) at a minimum,
is usually treated as a Multi-Target Optimization Problem
(MTOP). This class of optimization problems is of interest
for space missions of various nature, such as active debris
removal (ADR), on-orbit servicing, and exploration.Thepos-
sibility of a multi-target mission to main-belt asteroids was
first mentioned in [1], proving that it is possible to reach at
least five or six asteroids during a 3-year tour. Different sce-
narios for low-cost missions to four main-belt asteroids were
also proposed by [2,3], considering a combination of impul-
sive maneuvers and multiple gravity-assists at Venus, Earth
and Mars. Izzo et al. [4] and Di Carlo et al. [5] focus their
attention on a low-thrust propulsion ADR mission: the for-
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mer splits the problem in three optimization sub-problems:
combinatorial, global and local, while the latter selects the
target by considering the minimum orbit intersection dis-
tance. Barbee et al. [6] proposes a series method able to find a
good visiting sequence—up to 42 pieces of debris—with low
computational cost. Both [7,8] formulate an interesting strat-
egy for ADR missions, introducing a “drift orbit” to control
the right ascension of the ascending node drift velocity, and
splitting the problem in two levels, i.e., target sequence and
transfer orbits, with an integrated branch-and-bound algo-
rithm (B&B). This strategy is improved in [9], where the
transfer problem is solved for every pair of targets, the best
sequence is calculated by a simulated annealing algorithm
and then the transfer orbits are optimized again. Chen et
al. [10] instead introduces the Particle Swarm Optimization
method (PSO) for a multi-objective optimization regarding
asteroid rendezvous missions. Conway et al. [11], Wall and
Conway [12] and Yu et al. [13] exploit a combination of
Hybrid Optimal Control based on genetic algorithms and
others methods for asteroid exploration and ADR missions.
Bang and Ahn [14] defines a two-phase framework for ADR
missions, that initially solves all the possible Lambert prob-
lems and then develops a variant of the traveling salesman
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problem to find the best combination. Another strategy is the
automatic planning and scheduling algorithm introduced by
[15] and namedPhysarumAlgorithm (PA), after the unicellu-
lar organism Physarum Polycephalum. This method is very
reminiscent of B&B algorithms, since it is inspired by the
“intelligent” behavior shown by Physarum Polycephalum,
but the bounding phase is heuristic in this case. Finally,
[16,17] analyze a multiple rendezvous mission to near-Earth
asteroids with a solar sail propulsion system.

TheMTOPmethods and results are very dependent on the
related mission concept and assumptions. Indeed, a “stan-
dard” form of both problem and resolution does not exist in
literature. Most previous studies focus on sequence elements
rather than on a mission-level performance figure of merit
(such as, e.g., propellant consumption), utilizing heuristic
or hybrid algorithms with widely different assumptions and,
sometimes, with little or no discussion about trajectory deter-
mination. Heuristic methods may also suffer from early
convergence, thus not ensuring that the optimal global solu-
tion will be actually identified.

In a previous work by our team [18], a 2-D algorithm
for multi-target exploration missions at NEAs is formulated,
attempting to create a deterministic directmethod for asteroid
target sequence selection as a function of the mission param-
eters (e.g., propellant consumption, spacecraft-Sun distance,
etc.). A MATLAB® software package was implemented and
successfully tested that provides a useful tool for preliminary
analysis of multi-target missions. The reader is referred to
[18] for a detailed discussion of the fundamentals and moti-
vations underlying the structure of the algorithm. The present
work builds on the method illustrated in [18] to develop a
substantially enhanced version of the procedure, with exten-
sion of the algorithm to full 3-D trajectories andwith detailed
modeling of specific phases of the trajectories, such as escape
from a parking orbit and asteroid fly-by.

The method here presented does not aim at solving a
MTOP, nor does it perform a proper mathematical optimiza-
tion, other than by selecting among discrete sets of alternative
possibilities at various phases in the procedure. This direct
procedure, however, allows the mission planner to quickly
identify practical, viable trajectories allowing for multiple
asteroid flyby’s under realistic constraints. In this paper we
introduce the algorithm, present several series of tests and
discuss the relevant results.

2 Main assumptions

The algorithm is designed as a tool to find an efficient aster-
oid visit sequence for a spacecraft equippedwith a propulsion
system. The goal of the algorithmwe seek to build is to deter-
mine a trajectory that encounters the largest possible number
of asteroidswith the lowest possible propellant consumption.

It is understood and accepted that the resulting trajectories
are, generally speaking, not the optimal ones in a strictmathe-
matical sense; they are however selected so to meet the needs
of the mission planner during preliminary mission design.
For this purpose, our earlier 2-Dwork [18] defined a “mission
area” constrained by a minimum and a maximum distance
from the Sun (dmin and dmax) where the spacecraft’s trajec-
tory takes place during a period of time defined by a starting
and a final date (t0 and tend). That choice was motivated by
the fact that most of the asteroids pass through the ecliptic
plane at a distance from the Sun between 1 and 1.2 AU, in the
so-called high-density transit zone (HDTZ). The spacecraft
was bound to move in a 2-D trajectory on the ecliptic plane,
trying to intercept the asteroids during their transit. There-
fore each asteroid could only be passed by at the nodes of its
orbit, thus providing limited opportunities of visiting it.

However, most Apollo asteroids have low orbit incli-
nations (< 10 deg), so that they stay relatively close to
the ecliptic plane during large portions of their orbit. It is
therefore reasonable to extend the mission area to a three-
dimensional volumeof space in the vicinity of the plane of the
ecliptic. In this work the mission area is thus assumed to be a
torus that provides the spacecraft a track on the ecliptic plane
from which to depart, or towards which to aim for approach,
to reach asteroids. In particular, as described later in Sect. 3,
the Sun-centered torus area can be defined by means of Sun-
spacecraft’s maximum and minimum distances, respectively
dmin and dmax (Eq. 5). This feature allows to manage the
size of solar system’s belt to be explored and to consider
the planning of various simultaneous prospecting missions
in different areas.

Since we are interested in a multi-target mission, orbital
maneuvers will be needed to guide the spacecraft in chas-
ing the asteroids. To minimize the delay between successive
asteroid visits, we assume to use impulsive maneuvers only,
such as can be provided by a restartable liquid rocket engine.
The quantity of propellant needed can be defined in terms of
the total velocity change�vtot. Since the spacecraft will have
to perform multiple maneuvers, it is also reasonable to set a
maximum consumption per maneuver �vmax, so to preserve
enough propellant for the final phases of the mission.

The asteroid orbital elements {a, e, i,�, ω} with respect
to the heliocentric-ecliptic reference frame are assumed
known and constant over time. In this scenario, perturba-
tions due to close encounters with planets are neglected. This
issue must be taken into account when using the method
for the preliminary design of long duration missions; in
such case, a parallel check of the selected asteroid trajec-
tories should be performed. The Earth’s orbital elements
{a⊕, e⊕, i⊕,�⊕, ω⊕} are also known and constant. The ini-
tial position of the spacecraft, fromwhich the search for target
asteroids begins, is assumed at the Earth.
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Table 1 Commented list of
algorithm starting assumptions

Assumption Description

Apollo asteroids Most populous NEA class

Orbit very close to Earth

Torus mission area Selection of solar system’s belt

The spacecraft is not constrained on ecliptic plane

Asteroid high-density zone is similar to a torus

Impulsive maneuvers Simple problem formulation

Rapid maneuvering

Constant orbital elements Simple problem formulation

Possible close encounters with planets are not accounted for

No Earth gravity assists Simple problem formulation

Possible future addition

Table 2 Asteroid 4179 Toutatis estimated data

Asteroid designation 4179 Toutatis

NEA class Apollo

Estimated mean diameter D ∼ 2.45 km

Estimated mean density ρ ∼ 2.1 g/cm3 = 2.1 × 1012 kg/km3

Asteroid mass M = 4
3π

(
D
2

)3
ρ � 1.617 × 1013 kg

Asteroid gravitational parameterμ = GM � 1.078 × 10−6 km3/s2

The algorithm provides the possibility to take into account
the escape phase from any initial parking orbit around
the Earth. This feature has been introduced for those mis-
sions where it is impossible to escape from the Earth by
means of the launcher vehicle only. The escape maneuver is
assumed impulsive and requires the user to input the parking
orbit elements

{
apar, epar, ipar,�par, ωpar

}
with respect to a

geocentric-equatorial reference frame. Earth gravity assists,
which might indeed be feasible given the near-Earth orbits,
are not taken into consideration at this stage.

In summary, the main inputs to the algorithm are as fol-
lows:

• Mission time interval: [t0, tend];
• Mission area boundaries: [dmin, dmax];
• Maximum single maneuver consumption: �vmax;
• Total mission consumption: �vtot;
• Spacecraft parking orbit elements (optional):{

apar, epar, ipar,�par, ωpar
}
.

The assumptions discussed so far are summarized in
Table 1.

2.1 Asteroid flyby analysis

As knowledge of size andmass of asteroids is very scarce, the
gravitational effect on spacecraft trajectory during the flyby

phase is mostly impossible to calculate. It is therefore inter-
esting to assesswhether such effect can actually be neglected.
To this end, we take into consideration asteroid 4179 Toutatis
as a representative example (Table 2).

We seek to demonstrate that, for a typical flyby, the grav-
itational effect of asteroid Toutatis (here assumed to be of
spherical shape) on the spacecraft trajectory is negligible.
Given the estimated size-frequency distribution of observed
NEA’s reported in Fig. 1, a similar result will hold for most
of Apollo asteroids.

Regardless of the fact that flyby occurs upstream or down-
stream of the asteroid velocity vector, let vS and vAST be
respectively the spacecraft and the asteroid velocities in the
heliocentric reference frame (Fig. 2). The spacecraft velocity
with respect to the asteroid is, therefore,

v∞ = vS − vAST.

The quantity v∞ is the velocity at the border of asteroid’s
sphere of influence (SOI). Using the superscripts (1) and (2)
respectively for entry and exit conditions from the SOI, the
module of velocity variation resulting on the spacecraft is:

�vfb = v(2)
S − v(1)

S = v(2)∞ − v(1)∞ ⇒ �vfb = |�vfb|
=

∣∣∣v(2)∞ − v(1)∞
∣∣∣ .

Asmass of the spacecraft does not change during the flyby,
mechanical energy is conserved. Therefore, themodule of the
velocity vector relative to the asteroid at the boundary of the
sphere of influence is the same both for the incoming leg of
the trajectory and for the outgoing leg, with the flyby maneu-
ver resulting in a change of the velocity vector direction only.
Let’s indicate δ for the flyby turning angle (see Fig. 2); for
the conservation of specific mechanical energy we have:

∣∣∣v(1)∞
∣∣∣ =

∣∣∣v(2)∞
∣∣∣ = v∞ ⇒ �vfb = 2v∞ sin

(
δ

2

)
(1)
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Fig. 1 Estimated size
distribution of presently known
NEAs [19]

vAST

v(1)
S

v(1)
∞v(2)

∞
v(2)
S

Δvfb

δ

Fig. 2 Asteroid flyby vector diagram

Taking advantage of the properties of a hyperbolic trajec-
tory, it is possible to determine eccentricity and semi-major
axis of the flyby trajectory:

1

efb
= sin

(
δ

2

)
; afb = − μ

v2∞
(2)

The maximum �vfb is obtained with the largest value of
turning angle δ, that is when the pericenter distance of the
hyperbolic trajectory is equal to the asteroid radius:

rp = afb (1 − efb) = − μ

v2∞

[
1 − 1

sin
(

δ
2

)
]

= D

2
. (3)

Finally, obtaining the sine term from Eq. 2 and replacing
it in Eq. 1, we have

�vfb = 2v∞
1 + kv2∞

with k = D

2μ
� 1.136 × 106 s2/km2

(4)

Equation 4 gives the spacecraft velocity variation as a
function of the hyperbolic excess velocity at the border of
SOI. To estimate a upper boundary to such change of veloc-
ity, let’s consider the following function:

f (v∞) = �vfb = 2v∞
1 + kv2∞

with v∞ ∈ [0;+∞] .

The denominator of f is always positive, so the function
is positive in the domain considered. The derivative of f is

f ′(v∞) = 2
1 − kv2∞(
1 + kv2∞

)2 .

The function derivative is positive for 0 < v∞ ≤ 1/
√
k,

hence there is a global maximum for:

(v∞)max = 1√
k

� 9.382 × 10−4 km/s ⇒ (�vfb)max

= (v∞)max � 9.382 × 10−4 km/s.

Using Eqs. 2 and 3:

(δ)max = 30 deg; (afb)max = −D

2
; (efb)max = 2.

Furthermore, as the hyperbolic excess velocity increases
we get:

(�vfb)∞ = lim
v∞→∞ f (v∞) = 0
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Fig. 3 Plot of the flyby-induced
�v with respect to the
spacecraft approaching relative
velocity v∞. The graph
illustrates the order of
magnitude of the gravitational
effect of the asteroid flyby

and, therefore,

(δ)∞ = 0; (afb)∞ = −∞; (efb)∞ = +∞.

The function f is represented in Fig. 3. As the relative veloc-
ity of the spacecraft increases, the gravitational influence of
the asteroid vanishes and the trajectory tends to a straight
line. Therefore, it is possible to neglect the flyby phase when
the initial spacecraft relative velocity v∞ is much larger than
about 10−2 km/s, as will happen in all practical cases. The
flyby phase at the asteroids will, therefore, not be considered
in further analysis, with no detriment to the quality of the
trajectory determination.

3 Preliminary phase

Since asteroidswill be reachable onlywithin the torus-shaped
mission area (Fig. 4), it is necessary to calculate when they
enter or leave this domain. To this end, let us consider a
parametric definition of the torus surface:

⎧
⎪⎨
⎪⎩

x(θ, φ) = (R1 + R2 cos θ) cosφ

y(θ, φ) = (R1 + R2 cos θ) sin φ

z(θ, φ) = R2 sin θ

with θ ∈ [0, 2π) , φ ∈ [0, 2π) ,

where R1 > 0 is the distance between the torus center and
the tube center, while R2 > 0 is the tube radius.

The torus geometric parameters are related to the max-
imum and minimum input distances through the following
equations:

{
dmin = R1 − R2

dmax = R1 + R2
⇒

{
R1 = (dmax + dmin) /2

R2 = (dmax − dmin) /2
(5)

With reference toFig. 4, let rA = [xA, yA, zA]be a generic
asteroid position vector and rA =

√
x2A + y2A + z2A its mod-

ulus. The asteroid is on the surface of the torus when the

O

z

(x, y)

R1R2

rA
dA zA

ρA A

Fig. 4 Torus cross section passing through the asteroid position with
main geometrical parameters indicated

asteroid-tube center distance dA is

dA =
√

(ρA − R1)2 + z2A =
√
r2A + R2

1 − 2R1ρA = R2

with ρ2
A = x2A + y2A the Sun-asteroid distance projected on

the ecliptic plane. The asteroid is inside the torus when:

ftor(rA) = (rA)2 + R2
1 − 2R1ρA − R2 < 0. (6)

An asteroid is defined as potentially observable, when

∃ t ∈ [t0, tend] : ftor(rA(t)) < 0. (7)

Therefore, the asteroid will be selected only if it is already
inside themission area at the time t0, or if it is initially external
to the torus but its entry is expected at time t < tend; on the
contrary, it will instead be discarded if is initially outside the
torus but it will enter at time t > tend, or if it will never enter.

Since the torus is not a simply connected domain, it is
reasonable to assume that more than one orbital arc exists
for which the asteroid is within the torus (usually there are
two at maximum). Thus, there are time intervals in which
the asteroid is within the mission area, alternating with inter-
vals in which it is out. Determining the transit times ttor and
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related positions rtor = r(ttor) on the torus surface involves
the solution of a non-linear problem:

ftor(rtor) = 0 with

{
f ′
tor(rtor) < 0 incoming

f ′
tor(rtor) > 0 outgoing,

(8)

where the first equation expresses the condition that the aster-
oid is on the torus surface and the inequalities provide the
necessary conditions on the time rate of change of distance
from the torus surface.

The most direct strategy for deciding if an asteroid meets
the condition expressed by Eq. 7 is to find the time of the
first transit t (I)tor . For this purpose, one needs to determine

all the solutions of Problem 8,
{
r(1)
tor , r

(2)
tor , . . .

}
, and then

to solve Direct Kepler Problems (DKPs) for each of them
with initial conditions at t = t0, so to find the related times{
t (1)tor , t

(2)
tor , . . .

}
; the smallest solution is the next asteroid tran-

sit time t (I)tor . Summing up, we have

• Mission area transit positions

ftor(rtor,k) = 0 ⇒
{
r(1)
tor,k, r

(2)
tor,k, . . .

}
for k = 1 : Ntot

• Mission area transit times

DKP =
{
Initial conditions : t0, r0,k
Final conditions : r(n)

tor,k

⇒ t (n)
tor,k for

{
k = 1 : Ntot

n = 1, 2, . . .

• Next transit time

t (I)tor,k = min
{
t (1)tor,k, t

(2)
tor,k, . . .

}
for k = 1 : Ntot

This solution is related to an incoming transit if the aster-
oid is initially out, or to an outgoing transit if the asteroid
is inside. So the first asteroid selection can be performed:

• Potentially observable asteroids selection

ftor(r0,k) < 0 ∨
(
ftor(r0,k) > 0 ∧ t (I)tor,k < tend

)

⇒ Asteroid selected

for k = 1 : Ntot.

After this first selection, the number of asteroids taken into
consideration in the following phases will be:

• Potentially observable asteroids number: N ≤ Ntot

4 Search phase

4.1 Initial assumptions

Once the asteroids within the reach of the mission have been
identified, attention is focused onto the target search phase.
The goal is to derive a strategy to be used at any time during
the mission to determine the next destination to visit and
the relevant transfer orbit. The strategy must depend only
on the current state of the spacecraft—i.e. mission time t ,
spacecraft position rS(t) and velocity vS(t)—and so a local
selection of asteroids is made. Consequently, the mission
profile will be shaped step-by-step with each new choice.
The spacecraft final trajectory will be a segmented curve
composed by transfer orbit arcs from an asteroid to the next
one. For a n-asteroids sequencewith indexes {k1, k2, . . . , kn}
encountered at times {t1, t2, . . . , tn}, we have:

• Step-by-step trajectory

rS(t1) = rk1(t1); rS(t2) = rk2 (t2); · · · rS(tn) = rkn (tn).

The search begins with the spacecraft positioned at the Earth:

• Initial spacecraft state

rS(t0) = r0,⊕; vS(t0) = v0,⊕.

Propellant consumption for the escape maneuver will be
determined later either by considering escape from the park-
ing orbit (see Sect. 5) or by leaving it to the launcher to
provide the necessary impulse:

• First maneuver consumption

�v1 =
{
0 with launcher

�vesc with escape phase.

As discussed in Sect. 2, flybys must take place within the
mission area and the selected targets must be reached with a
propellant consumption lower than the pre-definedmaximum
(�v < �vmax). There may be situations in which multi-
ple asteroids fulfill this requirement; in such case, selecting
the target accessible with the lowest �v is not necessarily a
wise choice, as this does not necessarily lead to maximize
the number of asteroids encountered during the mission.
Instead, the preferred trajectory will be determined using
a tree-structured strategy ([18]). During each search every
selected asteroid is first taken into account and then new tar-
get searches are performed starting from each one of them.
In this way we obtain a complex branching of possible paths
that the spacecraft can travel. The branching will be stopped
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at those nodes where either the propellant is exhausted, or
the end of mission time has been exceeded, or simply no fur-
ther reachable targets are found. For a n-asteroids sequence
with consumption values {�v1,�v2, . . . ,�vn}, we have the
following criterion:

• Tree-structure branching stop criterion

tn > tend ∨
n∑

h=1

�vh > �vtot ∨ No reachable asteroids.

Finally, a global selection of the best mission profile is
made by selecting the sequence of branches that, starting
from the Earth, passes by the largest number of asteroids
with the lowest propellant consumption.

4.2 Asteroid transit observation area

To reduce the computational cost, the search is initially
focused only on one part of the mission area. Since the mis-
sion has a finite duration, it is preferable to intercept the
asteroids as close as possible to the spacecraft, to minimize
transfer times between two targets and thus to maximize the
number of asteroids encountered. To this end, we consider a
spherical observation area centered at the spacecraft’s posi-
tion within which the flyby must take place. The sphere must
be large enough to hold a number of possible encounters and,
at the same time, small enough to limit the transfer distance.
To determine the sphere’s radius δ, we take as a reference
a characteristic length of the system—namely, the distance
between the spacecraft and the currently closest asteroid—
and multiply it by a magnification factor c1 chosen at will:

• Observation area radius

δ(t∗) = c1 min
k

{∣∣rk(t∗) − rS(t∗)
∣∣} ,

where t∗ is the current mission time. In our case c1 = 10 is
assumed.

It is necessary to select only those asteroids that transit
within the observation area and to calculate when this hap-
pens. Let rA be a generic asteroid position; the asteroid is on
the surface of the sphere when the distance from the space-
craft dA is

dA = |rA − rS| = δ.

Therefore, it is inside the sphere when:

fsph(rA) = |rA − rS| − δ < 0. (9)

An asteroid must be intercepted when it is simultaneously
inside the observation area (sphere) and the mission area
(torus):

∃ t ∈ [
t∗, t∗ + T

] : fsph(rA(t)) < 0 ∧ ftor(rA(t)) < 0.

(10)

In the above formula, an interval of time equal to the asteroid
period T has been set to include all the positions along a
single orbit. Let S and T be respectively the sphere and torus
three-dimensional domains; their intersection is defined as
D = S ∩ T . An asteroid will be selected only if it is already
insideD at the time t∗, or if it is initially external but its entry
is expected at time t < t∗ + T ; it will instead be discarded
if is initially outside D but it will enter at time t > t∗ + T ,
or if it will never enter.

Determining the transit times tD and positions rD(tD) on
D involves the solution of a non-linear problem:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

fsph(rD) = 0 if ftor(rD) < 0 with

{
f ′
sph(rD) < 0 incoming

f ′
sph(rD) > 0 outgoing

ftor(rD) = 0 if fsph(rD) < 0 with

{
f ′
tor(rD) < 0 incoming

f ′
tor(rD) > 0 outgoing.

(11)

To determine if an asteroid respects the condition in Eq. 10 it
is necessary to find the time of the first transit t (I)D . Then,

all the solutions of Problem 11,
{
r(1)
D , r(2)

D , . . .
}
, must be

determined. For each of them a DKP is solved with initial
conditions at t = t∗ to find the related times

{
t (1)D , t (2)D , . . .

}
.

The smallest solution obtained is the next asteroid transit
time t (I)D . Summing up, we have

• Observation area transit positions

{
fsph(rD,k) = 0 if ftor(rD,k) < 0

ftor(rD,k) = 0 if fsph(rD,k) < 0

⇒
{
r(1)
D,k, r

(2)
D,k, . . .

}
for k = 1 : N .

• Observation area transit times

DKP =
{
Initial conditions : t∗, r∗

k

Final conditions : r(n)

D,k

⇒ t (n)

D,k for

{
k = 1 : N
n = 1, 2, · · ·

• Next transit time

t (I)D,k = min
{
t (1)D,k, t

(2)
D,k, . . .

}
for k = 1 : N .
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The obtained solution is related to an incoming asteroid if
it is initially out of D, or, on the contrary, to an outgoing
asteroid if it is inside. Finally, the transiting asteroid can be
selected:

• Transiting asteroids selection

(
ftor(r∗k ) < 0 ∧ fsph(r

∗
k ) < 0

) ∨[(
ftor(r∗k ) > 0 ∨ fsph(r

∗
k ) > 0

) ∧ t(1)D,k <
(
t∗ + Tk

)]

⇒ Asteroid selected

for k = 1 : N .

After this step, the number of asteroids considered could
decrease again:

• Transiting asteroids number: N1 ≤ N .

4.3 Flyby position

In this phase the previously calculated transit times{
t (1)D,k, t

(2)
D,k, . . .

}
are used to set the temporal domain I in

which the asteroids are reachable. Among them, an optimal
time for flyby is selected, if possible. Finally, all the data
concerning transfer orbits and maneuvers are calculated.

The transit time intervals are found by re-ordering the

transit times in the form
{
t (I)D,k, t

(II)
D,k, . . .

}
, and by considering

the current asteroid position r∗. In particular, two different
cases must be distinguished: (1) when the asteroid is initially
inside the domain D, and (2) when it is initially outside:

• Transit time intervals statement

Ik =

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

[
t∗, t (I)D,k

]
,
[
t (II)D,k, t

(III)
D,k

]
, . . . ,

[
t (end)D,k , t∗ + Tk

]

if
(
ftor(r∗

k) < 0 ∧ fsph(r∗
k) < 0

)
[
t (I)D,k, t

(II)
D,k

]
,
[
t (III)D,k , t

(IV)
D,k

]
, . . . ,

[
t (end-1)D,k , t (end)D,k

]

if
(
ftor(r∗

k) > 0 ∨ fsph(r∗
k) > 0

)

for k = 1 : N1

To minimize the transfer times, the search for optimal
flyby conditions starts with the first of the aforementioned
time intervals and moves on to the following ones if needed.
To determine a transfer trajectory between two positions
in a given time interval, a Lambert Problem (LP) must be
solved. Let us consider the spacecraft position at current
time r∗

S = rS(t∗) and the asteroid position at a generic flyby
time r f = r(t f ). The goal is to determine t f ∈ I to find
transfer trajectories from r∗

S to r f in a time interval equal to
(�t)tr = t f − t∗. Therefore, following [18], the following
problem is solved:

• Asteroid flyby position search

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

min
t f ∈Ik

(�v)tr,k (t f )

0 < (�ν)tr,k < π(
tp

)
k < (�t)tr,k < (tm)k

(�v)tr,k < �vmax

⇒ t f ,k ⇒ Asteroid selected for k = 1 : N1

The problemabove and then aLP are solved for each asteroid,
but only those that admit a solution are considered for tree-
structure branching, so that the nodes in the tree-structure
include only the reachable asteroids:

• Reachable asteroids number: Nfin

New search phases will be carried out for each of them con-
sidering the spacecraft state as shown in Sect. 4.1. On the
other hand, if no asteroids can be reached according to the
defined criteria, the size of the observation area is increased
and the search phase restarts:

• Observation area increase:

δnew = c2δ with δnew < 2dmax

In our case, c2 = 2 is chosen; by considering a larger
domain, the chances of finding favorable flyby positions are
increased. The upper limit 2dmax represents the maximum
distance between two points inside the torus mission area.
If increasing the observation area radius does not allows to
find reachable asteroids, the tree-structure branching is inter-
rupted.

5 Escape phase

As anticipated in Sect. 1, if an initial parking orbit around
the Earth is considered, the optimal escape trajectory is cal-
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ĥ
Line of nodes

Escape direction

n̂

v⊕
∞

rS S
Δν

α∞

Fig. 5 Vector diagram of the generic conditions involved in the escape
phase problem

culated for each generated trajectory. The escape hyperbolic
excess velocity v⊕∞ uniquely determines the escape direction
and is determined by the initial velocity along the heliocentric
transfer orbit vintr and the Earth’s velocity v⊕:

v⊕∞ = vintr − v⊕

The escape trajectory lies on the plane identified by the posi-
tion over the parking orbit rS where the maneuver occurs,
the position of the Earth and the direction of the vector v⊕∞
(Fig. 5).

In particular, it is possible to have two escape maneu-
vers on this plane which are distinguished by the orbit travel
direction—i.e. clockwise or anti-clockwise—and the true
anomaly swept for escaping. To indicate the orbit travel direc-
tion, the angular momentum unit vector is calculated for both
cases:

ĥ = ± rS × v⊕∞∣∣rS × v⊕∞
∣∣ . (12)

From now on the discussion will be valid for both cases,
therefore no distinction will be made. First, the orbital ele-
ments of the escape hyperbola are determined. The escape
orbit semi-major axis can be determined through conserva-
tion of mechanical energy:

aesc = − μ⊕∣∣v⊕∞
∣∣2 .

The escape orbit eccentricity can be calculated by solving
a non-linear problem. Let’s consider the true anomaly �ν

swept during escape:

�ν =

⎧
⎪⎪⎨
⎪⎪⎩

arccos

(
rS·v⊕∞

|rS|
∣∣v⊕∞

∣∣

)
if

(
rS × v⊕∞

) · ĥ ≥ 0

2π − arccos

(
rS·v⊕∞

|rS|
∣∣v⊕∞

∣∣

)
if

(
rS × v⊕∞

) · ĥ < 0.

This must be equal to the difference between the hyperbolic
excess and the initial true anomaly, respectively ν∞ and νesc:

�ν = ν∞ − νesc (13)

with

ν∞ = arccos

(
− 1

eesc

)

νesc =

⎧⎪⎪⎨
⎪⎪⎩

arccos

[
1

eesc

(
aesc

(
1−e2esc

)
|rS| − 1

)]
if ν∞ ≥ �ν

− arccos

[
1

eesc

(
aesc

(
1−e2esc

)
|rS| − 1

)]
if ν∞ < �ν.

In Eq. 13, the escape eccentricity eesc is the only unknown
term:

f (eesc) = ν∞ − νesc − �ν = 0 ⇒ eesc.

The remaining orbital elements are determined using their
definition. Note that the unit vectors refer to a geocentric-
equatorial reference system:

iesc = arccos
(
k̂ · ĥ

)

�esc =
⎧
⎨
⎩
arccos

(
î · n̂

)
if n̂ · ĵ ≥ 0

2π − arccos
(
î · n̂

)
if n̂ · ĵ < 0

with n̂ = k̂ × ĥ∣∣∣k̂ × ĥ
∣∣∣

ωesc = α∞ − ν∞ with α∞

=
⎧
⎨
⎩
arccos

(
v⊕∞·n̂
v⊕∞

)
if

(
ĥ × n̂

)
· v⊕∞ ≥ 0

2π − arccos
(
v⊕∞·n̂
v⊕∞

)
if

(
ĥ × n̂

)
· v⊕∞ < 0

With the escape orbit parameters known, it is now possible to
calculate the associated propellant consumption. Let vpar and
vesc be respectively the parking and escape orbit velocities
in rS; the escape maneuver consumption is

�vesc = ∣∣vesc − vpar
∣∣ .

Therefore, the consumption for escape depends on two vari-
ables: the escape position rS and the escape orbit travel
direction (± in Eq. 12). To optimize �vesc, let’s consider
the following two functions:

�vesc (rS) =
⎧⎨
⎩

f+ (rS) if ĥ = + rS×v⊕∞∣∣rS×v⊕∞
∣∣

f− (rS) if ĥ = − rS×v⊕∞∣∣rS×v⊕∞
∣∣ .
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Table 3 Combined methods for
the formulation of Brent’s
algorithms

Problem Robustness Superlinear convergence

Root-finding problem Bisection method Successive linear interpolation

Optimization problem Golden section method Successive quadratic interpolation

The two functions are optimized independently of each other;
at the end, the best value between the two optimal ones is
chosen.

6 Numerical solvers

To solve the non-linear problems introduced in the previous
sections two solver algorithms have been implemented, one
for root-findingproblems and theother for optimizationprob-
lems, both derived from [20]. These algorithms are designed
for single-variable functions and are derivative-free. Con-
trary to most iterative numerical methods, they are designed
so to be both very convergent and very robust. Brent’s algo-
rithms are a combination of a robust and a convergentmethod
(see Table 3) that exploit the good properties of both to
guarantee superlinear convergence independently from the
starting values.

Let f (x) be the single-variable function inherent to the
problem. There are four parameters that need to be defined
as inputs to Brent’s algorithm. The tolerance tol is a com-
bination of a relative tolerance ε and an absolute tolerance
t :

tol = 2ε
∣∣x∗∣∣ + t

where x∗ is the known best approximation of solution. The
parameter ε is the machine precision—equal to 2−23 or 2−52

for a 32-bit or a 64-bit processor, respectively—while t must
be arbitrarily assumed to have the desired tolerance. In our
case, we set t = 10−8. The remaining input parameters are
the search interval edges, a and b, such that the solution is
x∗ ∈ [a; b]. To identify them, (N + 1) equidistant control
points xi (for i = 0 : N ) are taken within the f (x) domain
(edges included) and the function is evaluated for each of
them. The search interval edges are chosen using the follow-
ing criteria:

• Root-finding problem

f (xi ) f (xi+1) < 0 ⇒ a = xi , b = xi+1.

• Optimization problem

f (xi ) = min
i=0:N f (xi ) ⇒ a = xi−1, b = xi+1.

Table 4 List of constant input parameters during all the tests

Mission time interval (tend − t0) = 2 years

Mission area boundaries [dmin, dmax] = [1, 1.2] AU

Maximum maneuver consumption �vmax = 0.3 km/s

Total mission consumption �vtot = 5 km/s

As N increases, both accuracy and numerical effort grow. In
our test cases (Sect. 7) it was assumed N = 100.

7 Test results

The software has been tested in two different ways to high-
light how the trajectory depends on themission start date. The
first case includes a series of tests on 2-year missions spread
over a period ranging from 2020 to 2040, while the second
one includes 2-year missions in the period 2020 to 2025. In
both cases only the mission time interval is changed, while
the remaining input parameters are constant through the var-
ious executions; the escape maneuver is not considered. We
focus here on the results obtained in a simple, constrained
scenario. Investigation of the algorithm dependence on the
input parameters is postponed to future works. Because of
the limited computing power available and to prevent the
generation of very large tree-structures with unacceptably
long processing duration, the input values to the test case
were arbitrarily selected to correspond to a 2-year mission
with a modest quantity of propellant onboard (Table 4). The
maximum maneuver consumption was chosen to obtain a
significant, albeit small, number of encounters, i.e., 16 in our
test case.

To get an idea of the amount of data produced, the follow-
ing parameters have been recorded and compared for each
test:

• Generated nodes number: Nnodes;
• Possible trajectories number: Ntraj;
• Maximum number of flyby’s: Nast;
• Trajectories with the maximum number of flyby’s: N∗

traj.

Testing was carried out on a computer equipped with an
Intel® Core™ i7-3630QMprocessor. Software was compiled
with the GNU FORTRAN compiler (GFortran), a free open
source FORTRAN 95, FORTRAN 2003 and FORTRAN
2008 compiler. In all cases, each test run took not more than a
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Table 5 Main results of 20 tests distributed along 20 years. Time is
12:00:00 UTC for all epochs

Epoch of starting Epoch of ending Nnodes Ntraj Nast N∗
traj

2020-01-01 2022-01-01 79 36 10 1

2021-01-01 2023-01-01 46 18 9 4

2022-01-01 2024-01-01 10 5 5 1

2023-01-01 2025-01-01 1 1 1 1

2024-01-01 2026-01-01 73 33 9 10

2025-01-01 2027-01-01 6 4 3 3

2026-01-01 2028-01-01 60 26 9 9

2027-01-01 2029-01-01 65 30 10 4

2028-01-01 2030-01-01 38 22 10 10

2029-01-01 2031-01-01 67 27 11 1

2030-01-01 2032-01-01 124 55 10 11

2031-01-01 2033-01-01 37 18 9 4

2032-01-01 2034-01-01 12 4 6 1

2033-01-01 2035-01-01 5 3 2 2

2034-01-01 2036-01-01 1 1 1 1

2035-01-01 2037-01-01 101 39 10 9

2036-01-01 2038-01-01 44 20 10 9

2037-01-01 2039-01-01 3 2 2 2

2038-01-01 2040-01-01 39 18 9 4

2039-01-01 2041-01-01 1 1 1 1

2040-01-01 2042-01-01 213 113 12 5

few tens of minutes to complete. The results are reported and
discussed in the following subsections. More complex mis-
sion cases can be addressed with acceptable computational
time (tens of minutes or a few hours at most) by running
the algorithm on present commonly available multi-core per-
sonal computers.

7.1 Test case 1

In this series of tests, twenty software runs were performed
for mission epochs ranging from January 1, 2020, to January
1, 2040. The main results are shown in Table 5.

As can be seen from Fig. 6, the number of possible flybys
has no clear dependence on the mission period. However, it
can be noted that over a period of 20 years there are numerous
opportunities for prospecting missions to nine or more aster-
oids, many of them even with the same launch. In particular,
for a mission that starts on January 1, 2040, it is possible
to have five different trajectories each of which intercepts
twelve asteroids, for a total of 60 asteroids encounters in
two years. The “best” of these, i.e. the one that exhibits the
smaller total propellant consumption, is shown in Fig. 7 and
the relative dates and consumptions are listed in Table 6. Fig-
ure 7 shows the projection of the 3-D trajectory on the plane

Fig. 6 Bar plot of the maximum number of asteroid generated (blue)
and the related number of trajectories (orange) (color figure online)

Fig. 7 Plot of the projection on the plane of the ecliptic of the “best”
interplanetary trajectory of a 2-year mission starting on January 1, 2040

of the ecliptic; deviations from planarity of the actual 3-D
trajectory are not appreciable at scale of the drawing.

7.2 Test case 2

Also, in this case twenty tests were carried out, for a period
ranging from January 1, 2020, to January 1, 2025. The main
results are shown in Table 7.

The maximum number of asteroids found in a trajectory
and the number of sequences with this feature are shown in
Fig. 8 as a function of the mission period. Unlike case 1, the
frequency of negative results is higher, probably due to the
shorter time span between missions.

However, there are some cases of significant relevance
for practical application to prospecting: e.g., it appears to
be possible to perform a mission with nine spacecraft, each
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Table 6 List of asteroids encountered during the bestmission generated
in test case 1 with the relative transfer consumption

Flyby date Asteroid designation �vtr [km/s]
2040-03-15 02:13:09 (2013 ED68) 0

2040-05-28 00:30:53 (2017 OF1) 0.1025

2040-07-21 08:53:15 (2017 OH1) 0.1857

2040-09-29 20:25:56 (2013 SK20) 0.1729

2040-11-22 01:12:31 (2017 RU2) 0.1822

2041-02-11 15:55:50 (2013 BU15) 0.1135

2041-03-13 22:35:27 (2017 RP16) 0.2028

2041-04-28 07:07:31 (2018 HV) 0.2676

2041-07-29 22:18:34 (2017 ED23) 0.1685

2041-09-26 12:43:42 (2017 SS14) 0.0566

2041-11-07 05:37:19 (2018 VG6) 0.1544

2042-01-15 16:50:01 (2010 AR1) 0.2512

Total �vtr 1.8579

Propellant consumption for the first asteroid encounter is null due to the
use of the launcher for the Earth escape phase. All times are UTC

Table 7 Main results of 20 tests distributed along 5 years

Epoch of starting Epoch of ending Nnodes Ntraj Nast N∗
traj

2020-01-01 2022-01-01 79 36 10 1

2020-04-01 2022-04-01 82 38 10 10

2020-07-01 2022-07-01 32 13 11 1

2020-10-01 2022-10-01 91 41 11 6

2021-01-01 2023-01-01 46 18 9 4

2021-04-01 2023-04-01 1 1 1 1

2021-07-01 2023-07-01 188 82 15 1

2021-10-01 2023-10-01 85 36 10 2

2022-01-01 2024-01-01 10 5 5 1

2022-04-01 2024-04-01 49 21 11 3

2022-07-01 2024-07-01 1 1 1 1

2022-10-01 2024-10-01 1 1 1 1

2023-01-01 2025-01-01 1 1 1 1

2023-04-01 2025-04-01 1 1 1 1

2023-07-01 2025-07-01 289 122 12 9

2023-10-01 2025-10-01 1 1 1 1

2024-01-01 2026-01-01 73 33 9 10

2024-04-01 2026-04-01 1 1 1 1

2024-07-01 2026-07-01 9 4 5 2

2024-10-01 2026-10-01 1 1 1 1

2025-01-01 2027-01-01 6 4 3 3

Time is 12:00:00 UTC for all epochs

directed towards twelve asteroids, for a total of 108 asteroids
prospected in two years. Considering a more basic mission
architecture with the use of a single spacecraft, it is possible
to fly a trajectory passing by 15 asteroids (Fig. 9, Table 8).
Like Fig. 7, also Fig. 9 shows the projection of the trajectory

Fig. 8 Bar plot of the maximum number of asteroid generated (blue)
and the related number of trajectories (orange) (color figure online)

Fig. 9 Plot of the best interplanetary trajectory found for a 2-year mis-
sion starting on July 1, 2021

on the ecliptic plane, the out-of-plane displacement being too
small for the scale of the drawing.

8 Conclusions

As expected, the 3-D algorithm yields better results than its
2-D predecessor [18], albeit at an increased computational
cost due to the need to solve a larger number of non-linear
problems. For the same �vtot and the same mission area
size, the 3-D version returned a flyby frequency of about 6
asteroids/year against the 4 asteroids/year obtained with the
2-D version. The number of possible trajectories with the
same launch is also higher. In many cases, launch windows
were found in which it was possible to travel more than 10
different trajectories with 10 asteroids each. We conclude
that the procedure here presented provides a relatively simple
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Table 8 List of encountered asteroids during the bestmission generated
in test case 2with the corresponding propellant consumption for transfer

Flyby date Asteroid designation �vtr [km/s]
2021-07-25 20:52:24 (2008 PK3) 0

2021-10-03 20:30:36 (2014 TM) 0.2312

2021-11-11 17:55:06 (2016 VR) 0.2974

2021-11-28 05:50:34 (2014 WF201) 0.1464

2021-12-29 16:20:31 (2013 XW8) 0.2757

2022-03-05 22:49:41 (2009 FP) 0.1739

2022-04-04 10:21:54 (2014 FZ) 0.2025

2022-06-15 04:10:06 (2016 LP10) 0.1305

2022-08-17 04:43:19 (2009 PA3) 0.2198

2022-09-27 00:35:59 (2007 GU4) 0.2154

2022-12-09 16:53:27 (2010 XC) 0.2348

2023-02-15 11:41:36 (2006 BR98) 0.2602

2023-04-08 16:57:11 152770 (1999 RR28) 0.0763

2023-05-30 13:14:27 (2018 KU2) 0.1724

2023-07-06 15:29:29 (2015 HM10) 0.2741

Total �vtr 2.9106

The first consumption is zero due to the use of the launcher to provide
propulsion for the escape. All times are UTC

method to determine trajectory sequences that allow for a
substantial number of flyby’s.

Identifying asteroids that are potentially rich in raw mate-
rials requires a considerable effort. It has been estimated
([21]) that, if harvesting costs are taken into account, the
cost of prospecting must be a small fraction (10%) of the
material value in order for the mining venture to generate a
profit. Therefore, considering an ideal asteroid with a size of
100 m rich in platinum group metals for an estimated value
of US$ 5B, the prospecting mission cost should not exceed
US$ 500M; this strongly suggests that small, relatively cheap
satellites should be seriously considered for the task.

The results of this study show that a multi-asteroid
prospecting mission with a fleet of small satellites is indeed
an attractive possibility. According to [21], finding at least
one rich asteroidwith a probability of 99% requires the inves-
tigation of about 44 asteroids. In light of the results of this
work we can confidently conclude that such target can be
achieved with a reasonable number of small spacecraft, thus
keeping launch cost and duration of the prospecting opera-
tions at a minimum.
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