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Abstract
In this paper, a high-fidelity satellite orbit propagator, namely the Satellite Precise Orbit Propagator (SPOP), is developed 
for the Earth orbiting satellites. The SPOP numerically integrates the perturbed two-body differential equations of motion 
in the Earth Mean Equator and Equinox of 2000 (EME2000/J2000) reference frame using Cowell’s formulation and explicit 
Runge–Kutta class of integrator with the fixed time step size. Various perturbing forces are included in the numerical propa-
gator such as a simple two-body problem up to J

6
 terms for the academic purpose, full force gravitational field model using 

the spherical harmonics for the high precision orbit propagation in view of the commercial use, atmospheric drag, third-body 
gravity, solar radiation pressure, Earth radiation pressure due to albedo, and relativistic effect correction. In addition, SPOP 
also has the feature to predict the satellite ephemeris and orbit products using the NORAD compatible two-line element 
(TLE) through SGP4/SDP4 analytical propagator.

Keywords SPOP · Explicit RK methods · Orbit products

1 Introduction

The interest for developing satellite orbit propagators has 
arisen after the launching of Sputnik 1 in 1957 due to pri-
mary requirements of predicting future locations of the sat-
ellite. Three different types of orbit propagators have been 
developed since then, namely: analytical, numerical, and 
semi-analytical. Figure 1 describes the year-wise develop-
ment of orbit propagators existing in the literature either 
developed analytically, numerically or semi-analytically. 
Currently, the most popular numerical propagator is the 
High Precision Orbit Propagator (HPOP), the commercial 
propagator of Systems Tool Kit (STK) developed by Ana-
lytic Graphic Inc. (AGI), whereas the common analytical 
propagator is Simplified General Perturbation version 4 
(SGP4) and Simplified Deep Space Perturbation version 
4 (SDP4) for the two-body equations of motion. The ana-
lytical methods are known as general perturbations meth-
ods, whereas numerical methods are known as special 

perturbations methods. The analytical methods were the first 
used and applied methods in the orbit propagation [1]. Their 
main advantage is computational efficiency; however, their 
accuracy is limited due to truncation. On the other hand, 
the special perturbations methods are characterized by high 
accuracy, especially for short-term propagation. However, 
their drawbacks are the limited accuracy for long-term 
propagation due to round-off error and high computational 
requirements. The semi-analytical methods were introduced 
as a solution to this dilemma between precision and com-
putational cost and between the round-off and truncation 
errors [2].

A numerical orbit propagator consists of three main com-
ponents: differential equations, Environment model, and 
numerical integrator. The importance of accurate propaga-
tion methods is obvious in the satellite operations. There are 
two approaches for computing orbits numerically: Encke’s 
and Cowell’s method. In modern days, it is common in astro-
dynamics to use Cowell’s formulation to set up the equations 
of motion for numerical integration as it is the simplest and 
most straightforward of all the perturbation methods. An 
overwhelming advantage is the fact that the solution con-
tains all secular and periodic variations introduced by the 
perturbing forces [3, 4].

Perturbations are recognised as deviations from a normal, 
idealized, or undisturbed motion. The perturbative forces 
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acting on the spacecraft (S/C) are either conservative or non-
conservative. The total energy for conservation force (e.g., 
central-body, third-body gravitational, tides effects, etc.) 
systems is constant, whereas non-conservative force (e.g., 
solar radiation pressure, drag, thrust, etc.) systems may lose 
or gain the energy. The major perturbations that affect the 
motion of an Earth orbiting satellite (refer Fig. 2) include 
Earth gravitation, atmospheric drag, lunar and solar gravita-
tion, and solar radiation pressure (SRP). Depending on the 

orbital altitude and physical size of the satellite, the effect of 
these perturbations may be more or less important.

The numerical propagation requires several areas such 
as coordinate systems, time, force models, and integration 
techniques. The coordinate frame is very relevant in highly 
accurate programs. In general, numerical techniques use 
fixed, variable, or regularized methods to move the satel-
lite forward through time. The selection of one over another 
is generally based on the orbit type, but often on what is 

Fig. 1  Development of orbit propagators [2]

Fig. 2  Forces acting on an Earth 
orbiting satellite
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available. The fixed step methods are chosen mostly due to 
their popularity and easy implementations [4, 5].

The very high cost of the commercial propagator of 
AGI motivated us to develop our own high accurate propa-
gator equivalent to HPOP which not only can handle the 
two-body problem orbit prediction but also the restricted-
three body problem in the near future scope. The rest of the 
paper is organized as follows; in Sect. 2, the mathematical 
model is described. The numerical computation of the per-
turbed equations of motion is depicted in Sect. 3. Section 4 
describes the SPOP architecture, while Sect. 5 illustrates 
results and discussion including the potential applications of 
the SPOP. A concluding discussion is presented in Sect. 6.

2  Mathematical model

The perturbed two-body equations of motion of the satellite 
in the inertial reference frame can be expressed as

where r⃗ is the satellite’s geocentric position vector at an 
instant t , ̈⃗r is combined acceleration of the satellite, r is the 
magnitude of r⃗ , � is the Earth’s gravitational parameter, and 
a⃗p is the perturbed acceleration acting on the satellite due to 
gravitational, a⃗g , non-gravitational, a⃗ng , and empirical forces, 
a⃗emp , and can be expressed as [5]

The gravitational force a⃗g is the sum of the gravitational 
forces acting on the satellite

where a⃗cbGravity , a⃗3rd - bodyGravity , a⃗relativity , a⃗solidTides , a⃗oceanTides , 
and a⃗rotDeformation represent acceleration forces due to central 
body (Earth) gravity, third-body gravity, relativity, solid 
tides, ocean tides, and rotational deformation, respectively.

The non-gravitational force a⃗ng is the sum of the non-
gravitational forces acting on the surfaces of the satellite:

where a⃗drag,a⃗srp,a⃗erp , and a⃗thermalRadiation represent acceleration 
forces due to the Earth atmospheric drag, solar radiation 
pressure, Earth radiation pressure, and thermal radiation, 
respectively. Since the surface forces depend on the shape 
and orientation of the satellite, the non-gravitational force 
models are satellite dependent. The acceleration, a⃗emp due to 
empirical forces are the un-modelled forces which act on the 

(1)̈⃗r = −
𝜇

r3
r⃗ + a⃗p,

(2)a⃗p = a⃗g + a⃗ng + a⃗emp.

(3)
a⃗g = a⃗cbGravity + a⃗3rd - bodyGravity + a⃗relativity + a⃗solidTides

+ a⃗oceanTides + a⃗rotDeformation,

(4)a⃗ng = a⃗drag + a⃗srp + a⃗erp + a⃗thermalRadiation,

satellite due to either a functionally incorrect or incomplete 
description of the various forces acting on the satellite or 
inaccurate values for the constant parameters which appear 
in the force model [6].

The Earth gravity acceleration, being the conservative 
force, is computed using the spherical harmonic potential. The 
general equation for the gravitational attraction at any satellite 
point, P(r,�, �) uses a spherical harmonic potential equation 
of the form [4, 7]

where r is geocentric distance of the satellite, � is geocentric 
latitude, � is the longitude, Plm is associated Legendre poly-
nomial of degree l and order m , Clm , Slm are the gravitational 
coefficients for the Earth, and R⊕ is the Earth’s radius.

We define

Then the gravity potential Eq. (5) may be written as

The terms Vlm and Wlm satisfy the following recurrence 
relations

and

where (x, y, z) are the satellite position components in 
the Earth body-fixed reference frame. Equation (9) holds 
for l = m + 1 too, if Vm−1,m and Wm−1,m are set to zero. 
Furthermore,

(5)

U =
𝜇

r

∞∑
l=0

l∑
m=0

(
R⊕

r

)l

Plm(sin (𝜙))
[
Clm cos (m𝜆) + Slm sin (m𝜆)

]
,

(6)
Vlm =

�
R⊕

r

�l+1

Plm(sin𝜙) cos (m𝜆)

Wlm =

�
R⊕

r

�l+1

Plm(sin𝜙) sin (m𝜆)

⎫
⎪⎪⎬⎪⎪⎭

.

(7)U =
𝜇

R⊕

∞∑
l=0

l∑
m=0

[
ClmVlm + SlmWlm

]
.

(8)
Vmm = (2m − 1)

[
xR⊕

r2
Vm−1,m−1 −

yR⊕

r2
Wm−1,m−1

]
,

Wmm = (2m − 1)

[
xR⊕

r2
Wm−1,m−1 +

yR⊕

r2
Vm−1,m−1

]
,

(9)

Vlm =

(
2l − 1

l − m

) zR⊕

r2
Vl−1,m −

(
l + m − 1

l − m

)(R⊕

r

)2

Vl−2,m,

Wlm =

(
2l − 1

l − m

) zR⊕

r2
Wl−1,m −

(
l + m − 1

l − m

)(R⊕

r

)2

Wl−2,m,

(10)V00 =
R⊕

r
and W00 = 0.
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To compute all Vlm and Wlm 
(
0 ≤ m ≤ l ≤ lmax

)
 , we first 

obtain the zonal terms using Eq. (9) with m = 0 . The corre-
sponding values Wl0 are all identical to zero. Equation (8) gives 
the first tesseral terms V11 and W11 from V00 which allows all 
Vl1 

(
1 ≤ l ≤ lmax

)
 to be determined. The recursions described 

through the Eqs. (8)–(10) are stable [7]. The Earth gravity 
acceleration,acbGravity , is obtained by taking the gradient of the 
potential function U , may be directly computed from the Vlm 
and Wlm as

where acbGravityI , acbGravityJ , and acbGravityK are the components 
of the Earth gravity acceleration in the x , y , and z-direction, 
respectively. In Eq. (11), the partial accelerations ẍlm , ÿlm , 
and z̈lm are given by

The determination of gravitational coefficients is obtained 
experimentally by reduction and data analysis of artificial 
satellites and also from gravimetric methods. In this paper, 
gravitational coefficients values are taken from the Earth 
Gravity model 1996 (EGM-96).

The satellite acceleration due to drag is the drag force 
divided by the satellite mass, and is given by [6]

where � is the density of the atmosphere which usually 
depends on the atmospheric density model,Cd is the drag 
coefficient ( Cd ∈ [1.5, 3.0]),A is the satellite’s cross-sec-
tional area,m is the satellite, and v⃗rel is the velocity relative 
to the rotating atmosphere and is expressed as

(11)

acbGravityI =
∑
l,m

ẍlm , acbGravityJ =
∑
l,m

ÿlm, acbGravityK =
∑
l,m

z̈lm,

(12)ẍlm =

⎧
⎪⎪⎨⎪⎪⎩

−
𝜇

R2
⊕

Cl0Vl−1,1, m = 0

𝜇

2R2
⊕

��
−ClmVl+1,m+1 − SlmWl+1,m+1

�
+

(l − m + 2)!

(l − m)!

�
ClmVl+1,m−1 + SlmWl+1,m−1

��
, m > 0

(13)ÿlm =

⎧
⎪⎪⎨⎪⎪⎩

−
𝜇

R2
⊕

Cl0Wl+1,1, m = 0

𝜇

2R2
⊕

��
−ClmWl+1,m+1 + SlmVl+1,m+1

�
+

(l − m + 2)!

(l − m)!

�
−ClmWl+1,m−1 + SlmVl+1,m−1

��
, m > 0

(14)z̈lm =
𝜇

R2
⊕

{
(l − m + 1)

(
−ClmVl+1,m − SlmWl+1,m

)}
.

(15)a⃗drag = −
1

2
𝜌
CdA

m
v2
rel

v⃗rel

|v⃗rel|
,

(16)v⃗rel = v⃗ECI − �⃗�⊕ × r⃗ECI.

In Eq. (16), v⃗ECI is the satellite’s inertial velocity in 
Earth Centred Inertial (ECI) frame,r⃗ECI is satellite’s posi-
tion vector in ECI frame, and �⃗�⊕ is the angular velocity 
of the Earth. The atmospheric density model can be clas-
sified into two categories: static and dynamic (time vary-
ing) models (refer Fig. 3). The static models rely mainly 
on the altitude above the surface of the Earth to estimate 
the atmospheric density. Nevertheless, other factors such 
as the solar activity are considered in dynamical models. 
Among different models, variations of Jacchia and MSIS 
models are widely used.

The acceleration of a satellite by a point mass M is 
given by [7]

where �M is the gravitational parameter of the point mass 
M , and s⃗ is the geocentric position vector of the point mass. 
The value of a⃗3rd - BodyGravity refers to an inertial or Newtonian 
coordinate system in which the Earth is not at rest, but is 
itself subject to an acceleration

due to point mass M . Equation (17) and Eq. (18) have to be 
subtracted to get the second derivative

of the satellite’s geocentric position vector. For the Earth 
orbiting spacecraft, the dominating third-body gravity forces 
are the Sun and Moon.

The satellite acceleration due to SRP is the solar radia-
tion pressure force divided by the satellite mass and is 
computed as [7]

(17)a⃗3rd - BodyGravity = 𝜇M

(
s⃗ − r⃗

|s⃗ − r⃗|3
)
,

(18)a⃗3rd - bodyGravity = 𝜇M

(
s⃗

|s⃗|3
)
,

(19)a⃗3rd - bodyGravity = 𝜇M

(
s⃗ − r⃗

|s⃗ − r⃗|3 −
s⃗

|s⃗|3
)
,
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In Eq.  (20) r⃗sat−sun represents the position vector 
between S/C and the Sun, Cr denotes reflectivity coeffi-
cient ( Cr ∈ [0, 2] ), Asun represents the exposed S/C area 
to the Sun, pSR is the SRP at one astronomical unit, and � 
is the shadow function which is defined as

In SRP modelling, the shadow factor can be com-
puted using either Earth’s cylindrical shadow or the coni-
cal shadow model. The conical shadow model is further 
described using either spherical or oblate shape of the 
Earth [8–11].

In addition to the direct SRP, the radiation emitted by 
the Earth leads to a small pressure on the satellite. Solar 
radiation that reflects off the Earth back onto a satellite 
is known as an albedo. The amount of reflected radiation 
is about 30% of the incoming solar radiation. Its effect 
on some satellites can be measurable. Unlike SRP, the 
albedo is usually separated into specific wavelengths. 
Acceleration due to central body radiation pressure due to 
its albedo is computed as

where

(20)a⃗srp = −𝜉pSR

(
CrAsun

m

)
r⃗sat−sun

|r⃗sat−sun|
.

(21)

⎧⎪⎨⎪⎩

� = 0 → S/C in Full Shadow

� ∈ (0, 1) → S/C in Partial Shadow

� = 1 → S/C in Sunlit

.

(22)a⃗erp = −p

(
CrAsun

m

)
r⃗sun−earth

|r⃗sun−earth|
,

and Ce is the reflection coefficient for the Earth’s albedo.
The general relativistic perturbation on the near-Earth satel-

lite can be modelled as [7]

where

In Eqs. (24) and (25), r⃗ and v⃗ are the geocentric position 
and velocity vectors of S/C, r is the distance of S/C, c is the 
speed of light, 𝜇⊙ is the gravitational parameter of the Sun, 
R⃗ES and ̇⃗RES are the position and velocity vectors of the Earth 
with respect to the Sun, J⃗ is the Earth angular momentum per 
unit mass, L is the Lense-Thirring parameter, � and � are the 
parameterized post-Newtonian parameters.

3  Numerical computation

The governing equations of motion (1) are solved using 
Cowell’s method and single step explicit RK class integra-
tors. In Cowell’s formulation, the second-order differential 

(23)
p = peCe

(
R⊕

|r⃗sat|
)2

pe =
Ls

4𝜋c|r⃗sun−earth|
, Ls = 3.823e26 Watt,

(24)

a⃗rel =
𝜇

cr3

{[
(2𝛽 + 2𝛾)

𝜇

r
− 𝛾

(
v⃗ ⋅ v⃗

)]
r⃗ + (2 + 2𝛾)

(
r⃗ ⋅ v⃗

)
v⃗

}
+ 2

(
Ω⃗ × v⃗

)

+ L(1 + 𝛾)
𝜇

c2r3

[
3

r2

(
r⃗ × v⃗

)(
r⃗ ⋅ J⃗

)
+

(
v⃗ × J⃗

)]
,

(25)Ω⃗ ≈

(
1 + 𝛾

2

)
̇⃗
RES ×

[
−𝜇⊙

c2R3
ES

]
R⃗ES.

Fig. 3  The Earth atmospheric density models
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Eq. (1) of perturbed two-body motion is re-written as a 
first-order Ordinary Differential Equation (ODE) system

To solve the coupled systems of first-order differential 
Eq. (26), the following Cowell’s algorithm is used.

Cowell’s algorithm: Cowell’s algorithm can be illus-
trated as:

 i. Let r⃗ = r⃗0, v⃗ = v⃗0 at t = t0.
 ii. Compute the time step size Δt by dividing final time 

tf  by n steps, nsteps.
 iii. Integrate the velocity and acceleration vectors from 

0 to nsteps to get r⃗ and v⃗ by incrementing time t  via 
t = t + Δt.

 iv. Get final position and velocity vectors,r⃗f , v⃗f  , at the 
final time tf .

The numerical integrators for solving the Eq. (26) can 
be categorized as either single-step methods or multi-step 
methods. For single-step methods, the state at a specific 
time x⃗

(
tk
)
 is used to compute the state at some future time 

x⃗
(
tk + h

)
 through a linear combination of weighted evalu-

ations of the ordinary differential equation at intermediate 
times tk ≤ t ≤ tk + h . Multi-step methods differ in that the 
state at some future time is estimated using the current 
state value as well as state values at several previous times. 
Implicit methods have also been considered for solution 
of the perturbed two-body problem. The family of explicit 
RK methods is generally further classified by considering 
two parameters. The first is the number of “stages”, which 
refers to the number of function evaluations required at 
each time step, and the second is the order p , which refers 
to the local truncation error at each step h and matches 
a local Taylor series expansion with an error of O(h)p+1 . 
Butcher developed a classification of RK methods, known 
as the Butcher Tableau, where the methods were arranged 
based on the number of stages and their order. In a gener-
alized form, an s-stage RK method may be written as [12]

(26)

y⃗ =

�
r⃗

̇⃗r

�

and

̇⃗y =

⎡⎢⎢⎣

̇⃗r

−
𝜇

r3
r⃗ + a⃗p

⎤
⎥⎥⎦

⎫
⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭

. where the integration state vector y⃗n at time tn is of length q , 
f
(
t, y⃗

)
 is the ODE describing the dynamic model and returns 

a q-vector, h is the step size, and the aij , ci , and bj coeffi-
cients are specific to a given RK scheme. The coefficients are 
expressed in terms of the Butcher table as shown in Table 1.

When aij = 0, for j ≥ i, this yields an explicit RK method 
in which each of the ki terms may be determined sequen-
tially. When this is not the case, i.e. the RK scheme is 
implicit, a nonlinear solver must be used to generate ki . The 
most common methods of RK-based orbit propagation use 
explicit schemes, which are easier to implement and benefit 
from decades of development [5].

4  SPOP architecture

SPOP provides high precision orbit prediction and subse-
quently orbit products generation for the Earth Orbiting sat-
ellite (EOS). Figure 4 shows the schematic computational 
process diagram of SPOP for the EOS. SPOP has features 
to handle the satellite initial input parameter given either in 
terms of state vector (SV) in True-Of-Date (TOD), Earth’s 
Mean Equator and Mean Equinox of 2000 (EME2000), 
International Celestial Reference Frame (ICRF), True Equa-
tor and Mean Equinox (TEME), Earth Centre Earth Fixed 
(ECEF) reference frames, or the orbital elements given in 
terms of Osculating orbital elements, Mixed Spherical, 
Spherical, Delaunay or Equinoctial orbital elements. The 

(27)

ki = f

�
tn + hci, y⃗n + h

s�
j=1

aijkj

�
,j = 1, ..., s

y⃗n+1 = y⃗n + h

s�
j=1

bjkj

⎫
⎪⎪⎬⎪⎪⎭

,

Table 1  Butcher table for explicit RK methods [12]
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SPOP predicts satellite ephemeris (state vector) in TOD, 
EME2000, ICRF, TEME, and ECEF frames as well as the 
osculating elements in TOD, EME2000, ICRF, and TEME 
frames.

In the SPOP, the transformation from Earth centre 
inertial to the Earth centre Earth fixed (ECEF) and vice-
versa is based on Fifth Fundamental Catalog (FK5) theory, 
i.e., IAU76/80 precession-nutation theory [3, 4]. Various 

atmospheric density models such as Exponential, Harris-
Priester (HP), Jachiaa class (Jacchia-Roberts JR71, Jacchia 
1977 J77), and MSIS class (MSIS-86, MSIS-90, NRLM-
SIS-00) models are incorporated to compute the Earth’s 
atmospheric density. The users can select various types of 
RK class of integrators with the fixed time step size which 
includes fourth-order classical RK method (RK4), fourth-
order RK Gill method, RK-Fehlberg methods: RKF-5(4) 

Fig. 4  SPOP computational schematic procedure for the EOS
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with 6 stages, RKF-5(6) with 8 stages, RKF-7(8) with 13 
stages, RKF-8(9) with 17 stages; Dormand-Prince methods: 
DP-5(4) with 6 stages, and DP-7(8) with 13 stages [7]. The 
Sun and Moon state vectors are computed using either low-
precision analytical formula [3, 7] or high precision com-
putation through JPL Developmental Ephemerides (DE) 
using Chebyshev polynomials [4, 7, 12] or directly using 
JPL SPICE NAIF Toolkit [13].

In astrodynamics, the orbit products generation can be 
achieved either dealing separately once the satellite ephem-
eris is generated through the selected numerical integrator 
module or can be embedded inside the integrator module. In 
the SPOP, orbital products generation modules are embed-
ded inside RK class integrator module as depicted in Fig. 5.

5  Results and discussion

The outputs generated by the SPOP are verified with 
the commercial package HPOP/STK of AGI by consid-
ering two Indian Remote Sensing (IRS) LEO satellites: 
MICROSAT-1 (~ 350 km altitude), and RESOURCESAT-2 
(~ 800 km altitude). The same input parameters, force 
models, and orbit integrator were chosen in both SPOP and 
HPOP/STK. The position and velocity comparisons for 
both spacecraft are depicted in Figs. 6 and 7, respectively. 
From Figs. 6 and 7, it can be seen that the obtained results 
from SPOP for both satellites closely match with HPOP/
STK. There is 180 m in position difference and 21.4 cm/s 

Fig. 5  Orbit products generation flowchart in the SPOP
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in velocity difference for MICROSAT-2 after 1 day of 
propagation whereas the position difference of 2.7 m and 
0.3 cm/s in velocity difference after 1 day of propagation 
for RESOURCESAT-2 with respect to HPOP/STK.

The SPOP is currently being used in the ISRO operational 
activities such as solar eclipse predictions for the IRS satel-
lites, ground station (G/S) precise look angles generation for 
IRS satellites tracking, ephemeris generation for Antenna 
angles calibration package of ISRO Launch Vehicle sup-
porting G/S, program angles generation for PSLV Stage 
4 (PS4) second orbit tracking G/S to confirm passivation 
effects during the ISRO launches, The Sun and Moon Look 
angles prediction for a G/S to measure its antenna pointing 
accuracy and gain to system temperature ratio (G/T). The 
first two applications of the SPOP are discussed here.

 I. The solar eclipse event occurred on 21/June/2020 
for all active IRS LEO satellites was predicted using 
the SPOP and event for all satellites matched closely 
with HPOP/STK having a maximum difference not 
more than 30 s in solar eclipse entry and exit time. 
Table 2 depicts the solar eclipse entry, exit, peak time 
and solar intensity computed for MICROSAT-1 and 
RESOURCESAT-2 satellites using the SPOP. Solar 

intensity variations due to the Moon shadow for 
MICROSAT-1 (M01) and RESOURCESAT-2 (RS2) 
are given in Figs. 8 and 9, respectively.

 II. Precise X-band program angles (azimuth and eleva-
tion angles) were generated every day using the SPOP 
for a week during Oct 2019 over Bangalore-4 (BL4) 
ground station (G/S) for ASTROSAT-1 (AS1), and 
AS1 was tracked in X-band (for the payload dump) 
by BL4, and number of samples were compared with 
BL4 G/S collected data and it had good match of less 
than 0.5%. The number of samples received by BL4 
G/S in the program mode was same as in the Main 
Auto mode. Figure 10 shows accuracy comparison 
for BL4 G/S Main Auto Angle and Program Angle. 
From the figure, it is observed that IRS satellite can 
be tracked smoothly in X-band without losing data 
based on the SPOP program angles.

Fig. 6  SPOP and HPOP/STK position difference for MICROSAT-1 
and RESOURCESAT-2 for 1 day using 70 × 70 gravity model coef-
ficients of EGM-96, SRP, and MSIS-90 density model and RKF-7(8) 

integrator with fixed step size considering their declared Orbit Deter-
mination (OD) of 26/Feb/2020
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6  Conclusions

In this article, the Satellite Precise Orbit Propagator is 
illustrated to predict the orbit for the Earth orbiting sat-
ellites. The accuracy of the SPOP is demonstrated by 
choosing two Earth’s orbiting satellites having altitudes 
of 350 km and 800 km, respectively. A very satisfactory 
result is found with respect to the commercial package 

HPOP/STK of AGI. The potential applications and opera-
tional uses of the SPOP are also described. In future, it 
will be further enhanced by considering latest IAU 2010 
convention for nutation and precession computation, and 
accounting other perturbation forces such as Earth tides, 
Ocean tides, and thrust force. Furthermore, the SPOP will 
be extended to predict ephemeris and orbital products for 
the interplanetary missions like Chandrayaan-2, Mars 
Orbiter Mission, and other planets bound missions.

Fig. 7  SPOP and HPOP/STK velocity difference for MICROSAT-1 and RESOURCESAT-2 for 1 day using 70 × 70 gravity model coefficients of 
EGM-96, SRP, MSIS-90 density model, and RKF-7(8) integrator considering their declared OD of 26/Feb/2020

Table 2  Solar eclipse entry and exit times for MICROSAT-1 and RESOURCESAT-2 on 21/June/2020 using the SPOP

Entry orbit Entry time (UTC) Exit time (UTC) Exit orbit Condition Duration (min) Peak time (UTC) Solar 
intensity 
(%)

MICROSAT-1
 14,000 05:35:59 05:50:59 14,000 Penumbra 15.0 05:42:59 28.2
 14,001 07:55:59 08:13:59 14,002 Penumbra 18.0 08:04:29 7.0

RESOURCESAT-2
 47,599 06:00:22 06:15:52 47,599 Penumbra 15.5 06:07:52 4.3
 47,599 06:53:52 07:10:52 47,600 Penumbra 17.0 07:01:22 46.1
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Fig. 8  MICROSAT-1 solar intensity variations on 21/June/2020 during the solar eclipse

Fig. 9  RESOURCESAT-2 solar intensity variations on 21/June/2020 during the solar eclipse
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