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Abstract
A terminal sliding mode control (TSMC) strategy is used in the velocity control of electro-hydraulic actuator (EHA) to
improve the output response performance. Based on the terminal sliding mode technique, a disturbance observer is designed
to estimate the lumped uncertainty of EHA including hydraulic parametric uncertainty and unknown external load. Different
from asymptotic convergence controller, the TSMC guarantees the system state error and observer estimation error converge
to zero in a finite time. The effectiveness of the proposed controller is verified by simulation results with comparisons the
other controllers.
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1 Introduction

Electro-hydraulic actuators (EHAs) are widely applied in
mechanical engineering as they have power density and large
load capacity, which have been used in fatigue test device [1],
wheel loader [2], exoskeleton [3], and shaking tables [4].
However, there exist lumped uncertain disturbances in the
EHA including hydraulic parametric uncertainties and the
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external load, which are unknown constant or time-varying.
These uncertainties may degrade the dynamic performance
of the EHA. Thus, many novel controllers have been devel-
oped such as parametric adaptive controllers [5–8], robust
controllers [9–12], RBFNN controller [13], geometric con-
troller [14], output regulation controller [15], backstepping
controllerwith the high-gain disturbance observer [16], adap-
tive robust controllers [17–19], and robust controller with the
extended state observer [20,21].

The aforementioned controllers used in EHAs only
achieve the asymptotic convergence of the output responses.
However, to the authors’ best knowledge, the finite-time
stability [22] of EHAs has not be addressed yet. Recently,
the finite-time stabilization control has been employed in
manipulator motion control [23] and strict-feedback control
plant [24]. Yu et al. [25] proposed a fast terminal slid-
ing mode control (TSMC) for SISO nonlinear systems and
adopted the TSMC in robotic manipulator to achieve faster
and higher precision tracking performance [26]. Chen et al.
[27] used the terminal slidingmode technique in both the con-
troller design of SISO nonlinear system and the disturbance
observer design. Sun et al. [28] investigated a finite-time
adaptive stabilization strategy for a class of high-order uncer-
tain nonlinear systems. Liu [29] proposed a finite-time H∞
controller of uncertain robotic manipulator to improve the
response and the performance of the output tracking. Then
He et al. [30,31] proposed an adaptive NN control to estimate
the unknown modelling uncertainty and environmental dis-
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turbance. In addition, Shao et al. [32,33] also adopted many
advanced control methods in quadrotors UAV to handle para-
metric uncertainty and external disturbance. Therefore, for
many motion plants with unknown uncertainties and distur-
bances, these finite-time convergence controllers can be used
in the industrial practice to obtain the fast and high-precision
performance.

Thanks to the research development of finite-time conver-
gent control, the study is supplied valuable intention. The
main contributions of the proposed approach are given by

(i) A terminal sliding mode control is tried in the velocity
feedback control of EHS to improve the fast and high-
precision tracking performance. Different from [27],
the hydraulic parametric uncertainties integrated with
unknown external load are considered as the mismatched
uncertain disturbance in the EHS model, which are
extended by a disturbance observer with terminal slid-
ing mode effect.

(ii) The effectiveness of the proposed controller is verified by
comparative simulation results with the other two con-
trollers.

2 Plant description

TheEHA is a typical double-rod actuator, which is composed
of a servo valve, a symmetrical cylinder, a fixed displacement
pumpwith a servomotor and a relief valve as shown in Fig. 1.
The pump is driven by themotor and outputs the supply pres-
sure ps. The pressure threshold of the relief valve is set as ps.
As the spool position of the servo valve xv > 0, the hydraulic
oil passes the servo valve and enters the left chamber. The
forward channel flow QL and the cylinder load pressure pL
are controlled by xv. The right chamber is connected to the
return channel and the return pressure is pr. On the other
hand, the right chamber is connected to the forward channel
where the load flow and pressure QL, pL are controlled by
the servo valve when xv < 0. The channel flow is cut off as
xv = 0 where the load pressure can be steadily maintained.

First, the servo model is given by [34]

xv = Ksvu, (1)

where Ksv and u are the gain and the control voltage of the
servo valve, respectively.

Second, the load flow QL is related to the cylinder load
pressure pL as follows [35]:

QL = Cdwxv
√

(ps − sgn(xv)pL)/ρ, (2)

where Cd is the discharge coefficient, w is the area gradient
of the servo valve spool, ρ is the density of the hydraulic oil.

Fig. 1 The control mechanism of double-rod EHA

According to the flow conservation law, the hydraulic
pressure behavior for a compressible fluid volumes, i.e., the
flow-pressure continuous model, is given by [9]

QL = Ap ẏ + Ctl pL + Vt ṗL/4βe, (3)

where ẏ is the piston velocity,Ctl is the coefficient of the total
leakage of the cylinder, βe is the effective bulk modulus, Ap

is the annulus area of the cylinder chamber, Vt is the half-
volume of cylinder.

Then the mechanical dynamic equation can be described
as [36]

mÿ = pLAp − bẏ − FL(t), (4)

wherem is the loadmass, b is the viscous damping coefficient
of the hydraulic oil, FL is the external load on the hydraulic
actuator.

From (1) to (4), if we define X = [x1, x2]T = [ẏ, Ap pL]T,
then the state space model of the electro-hydraulic velocity
control system is given by

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

ẋ1 = 1

m
(−bx1 + x2 − FL)

ẋ2 = −4βeA2
p

Vt
x1 − 4βeApCtl

Vt
x2

+ 4βeCdwKsvAp

Vt
√

ρ

√
ps − sgn(u)x2/Apu

. (5)

The external load disturbance FL(t) is unknown [37].
However, FL(t) is often assumed to be bounded in practice.
The two states x1 and x2 can be measured by the pressure
transducer and the encoder.

Generally, the hydraulic parameters Cd, ρ, w, K , b, βe,
Ctl are often perturbed by different hydraulic physical char-
acteristics [8]. Hence, these parameters can be written as
Cd = C̄d + �Cd, ρ = ρ̄ + �ρ, w = w̄ + �w, b = b̄+ �b,

123



Aerospace Systems (2021) 4:345–352 347

βe = β̄e + �βe, Ctl = C̄tl + �Ctl, where ∗̄ is the nominal
value of ∗, �∗ is the parametric uncertainty.

Then, in view of parametric uncertainties, the model in
(5) can be formulated as

{
ẋ1 = f1(x1) + g1x2 + dL1

ẋ2 = f2(x1, x2) + g2(x2, u)u + dL2
, (6)

where

f1 = − b̄x1
m

, g1 = 1

m
, dL1 = −FL − �bx1

m

f2 = −4β̄eA2
p

Vt
x1 − 4β̄eApC̄tl

Vt
x2

g2 = 4β̄eC̄dw̄KsvAp

Vt
√

ρ̄

√
ps − sgn(u)x2/Ap

dL2 = � f2(x1, x2,�βe,�Ctl)

+ �g2(x1, x2,�Cd,�w,�ρ)

. (7)

Remark 1 The two lumped uncertain disturbances dL1 and
dL2 are caused by parametric uncertainties and unknown
external load.

Assumption 1 These two disturbances dLi (i = 1, 2) are
bounded by |dLi | ≤ dLi max, where dLi max is a known value
for i = 1, 2.

3 Terminal slidingmode control

3.1 Preliminaries

Lemma 1 [26,38] If a positive definite Lyapunov function
V (x, t) ≥ 0 yields that

V̇ (x, t) + μV (x, t) + δV α(x, t) ≤ 0,∀t ≥ t0, (8)

then V (t) converges to the equilibrium point x0 in finite time
t f bounded by

t f ≤ t0 + 1

μ(1 + α)
ln

μV 1−α(t0) + δ

δ
, (9)

where μ, δ > 0, 0 < α < 1 are positive constants, t0 is the
initial time with respect to x0.

Definition 1 [25] For the low-triangle strict-feedback non-
linear system

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ẋ1 = f (x1) + g1(x1)x2
· · · · · ·
ẋi = f (x̄i ) + gi (x̄i )xi+1

· · · · · ·
ẋn = f (x̄n) + gn(x̄n)u

, (10)

where x̄i = [x1, . . . , xi ], the terminal sliding mode surface
has n orders form, which can be derived by the recursive
procedure given by

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

s1 = x1 − yd

s2 = ṡ1 + μ1s1 + δ1s
p1/q1
1

...

sn = ṡn−1 + μn−1sn−1 + δn−1s
pn−1/qn−1
n−1

, (11)

where si (i = 1, . . . , n) are the n orders terminal sliding
mode surfaces, pi < qi (i = 1, . . . , n − 1) are positive odd
integers, yd is the desirable output.

3.2 TSM disturbance observer

The sliding mode surfaces of two lumped uncertain distur-
bances dLi (i = 1, 2) are designed as follows:

si = νi − xi , i = 1, 2, (12)

where νi (i = 1, 2) are two disturbance observer variables.
To guarantee the finite time convergence to the distur-

bances, νi (i = 1, 2) are designed to satisfy the following
forms:

{
ν̇1 = −kd1s1 − D1sgn(s1) − ε1s

p0/q0
1 + f1 + g1x2

ν̇2 = −kd2s2 − D2sgn(s2) − ε2s
p1/q1
2 + f2 + g2u

,

(13)

where kdi (i = 1, 2) are the observer gains, εi , Di (i =
1, 2) > 0 are positive constants, pi < qi (i = 0, 1) are
positive odd integers.

Then the estimates of the two disturbances are written as

{
d̂L1 = −kd1s1 − D1sgn(s1) − ε1s

p0/q0
1

d̂L2 = −kd2s2 − D2sgn(s2) − ε2s
p1/q1
2

. (14)

Lemma 2 [27] Consider the disturbance observer (13) and
the velocity control system (5) under Assumption 1. If the
positive constants Di > dLi max(i = 1, 2), then disturbance
observer is convergent in finite time.

Proof To begin with, the following Lyapunov functions are
considered:

Vi = 1

2
s2i , i = 1, 2. (15)
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Then the time derivative of Vi takes the form

V̇i = si ṡi = si (ν̇i − ẋi )

= si (−kdi si − Di sgn(si ) − εi s
pi−1/qi−1
i + fi

+ gi xi+1 − fi − gi xi+1 − dLi )

≤ −kdi s
2
i − Disi sgn(si ) − εi s

pi−1+qi−1/qi−1
i

+ |si | |dLi |

. (16)

Due to Di > dLi max(i = 1, 2), and by Assumption 1,
(16) is rewritten as

V̇i ≤ −kdi s
2
i − Di |si | − εi s

pi−1+qi−1/qi−1
i + |si | |dLi |

≤ −kdi s
2
i − εi s

pi−1+qi−1/qi−1
i

≤ −kdi Vi − 2(pi−1+qi−1)/2qi−1εi V
(pi−1+qi−1)/2qi−1
i

,

(17)

for i = 1, 2. For the convenience of derivation, we assume
the virtual variable x3 = u.

According to Lemma 1, two sliding mode surfaces si (i =
1, 2) converge to the origin in a finite time. Meanwhile, from
(14), the observation errors take the form

d̃Li = d̂Li − dLi

= −kdi si − Di sgn(si ) − εi s
pi−1/qi−1
i

+ fi + gi xi+1 − ẋi

= ν̇i − ẋi = ṡi

, (18)

for i = 1, 2.
Since si (i = 1, 2) are finite-time stable at the origin,

ṡi (i = 1, 2) approach zero in finite time. Hence, the two
disturbance observer errors d̃Li (i = 1, 2) converges to zero
in finite time.

3.3 Terminal slidingmode controller design

Assumption 2 [39] It is assumed that yd(t) and its i th order
derivatives y(i)

d (t), i = 1, 2, 3 satisfy |yd(t)| ≤ Y0 < kc1

and
∣∣∣y(i)

d (t)
∣∣∣ ≤ Yi , where Yi (i = 0, 1, 2, 3) are positive

constants.

To achieve the finite-time velocity control of the EHA,
two sliding mode surfaces are designed as follows:

⎧
⎨

⎩

ξ1 = x1 − ẏd + s1

ξ2 = ξ̇1 + μ1ξ1 + δ1ξ
p1/q1
1 + g1s2 − b̄

m
s1

. (19)

Substituting the time derivative of ξ1 into ξ2, we have

ξ2 = ẋ1 − ÿd + ṡ1 + μ1ξ1 + δ1ξ
p1/q1
1 + g1s2 − b̄

m
s1

= f1 + g1x2 + dL1 − ÿd + d̃L1

+ μ1ξ1 + δ1ξ
p1/q1
1 + g1s2 − b̄

m
s1

= f1 + g1x2 + d̂L − ÿd + μ1ξ1

+ δ1ξ
p1/q1
1 + g1s2 − b̄

m
s1

.

(20)

Then the time derivative of ξ2 takes the form

ξ̇2 = − b̄

m
( f1 + g1x2 + dL1) + g1( f2 + g2u + dL2)

+ ˙̂dL1 − ...
y d + μ1ξ̇1 + δ1

d(ξ p1/q1
1 )

dt
+ g1ṡ2 − b̄

m
ṡ1

= − b̄

m
( f1 + g1x2 + d̂L1) + g1( f2 + g2u + d̂L2)

+ ˙̂dL1 − ...
y d + μ1ξ̇1 + δ1

d(ξ p1/q1
1 )

dt

.

(21)

Lemma 3 Consider the two sliding mode surfaces (19) and
the velocity control system (5). Based on the disturbance
observer (13), if the terminal slidingmode controller (TSMC)
is designed by

u = − 1

g1g2

[
− b

m
( f1 + g1x2 + d̂L1) + g1( f2 + d̂L2)

+ ˙̂dL1 − ...
y d + μ1ξ̇1 + δ1

d(s p1/q11 )

dt
+ μ2ξ2 + δ2ξ

p2/q2
2

] ,

(22)

then all closed-loop signals of the EHAare stable in the finite
time t f and the EHA velocity satisfies |x1(t) − ẏd(t)| →
0, t → t f for any given velocity command yd.

Proof Consider the following candidate Lyapunov function

V3 = 1

2
ξ22 . (23)
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Substituting (21) into the time derivative of V3, we can
obtain that

V̇3 = ξ2

[
− b̄

m
( f1 + g1x2 + d̂L1) + g1( f2 + g2u + d̂L2)

+ ˙̂dL1 − ...
y d + μ1ξ̇1 + δ1

d(ξ p1/q1
1 )

dt

] .

(24)

Then consider the controller u in (22), and we have

V̇3 ≤ −μ2ξ
2
2 − δ2ξ

p2+q2/q2
2

≤ −2μ2V3 − 2(p2+q2)/2q2δ2V
(p2+q2)/2q2
3

. (25)

According to Lemma 1, the sliding mode variable ξ2 is
finite-time stable. Furthermore, from (19), ξ2 a function of
ξ1, s1 and s2. Since the two observer sliding mode variables
si (i = 1, 2) converge to zero in a finite time by Lemma 2,
ξ1 is also convergent in a finite time. Due to ẏd is bound by
Assumption 2 and s1 → 0, t → tf , x1 is also bounded from
ξ1. Hence, ν1 is bounded from the definition of s1 in (12).
Then ν̇1 is bounded which, in turn, derives x2 converge to
zero in finite-time using (13). By (19), since ξ2 → 0, t → tf ,
ξ1 → 0 and |x1(t) − ẏd(t)| → 0 as t → tf .

The block diagram of the terminal sliding mode control
scheme is shown in this Fig. 2. Thewhole closed-loop system
includes two sliding mode surfaces si , ξi (i = 1, 2) for the
disturbance observe d̂Li (i = 1, 2) and the TSMC u. Accord-
ing to theTSMstable condition (8),u is designed to guarantee
the EHA (1) is finite-time stable. The block diagram of the
terminal sliding mode control scheme

Fig. 2 The block diagram of the terminal sliding mode control scheme

4 Simulation results

To verify the TSMC, some nominal hydraulic parameters of
the EHA are given by C̄d = 0.62, �Cd = 0.1C̄d, w̄ = 0.024
m,�w = 0.1w̄, C̄tl = 2.5×10−11 m3/(s Pa),�Ctl = 0.3C̄tl,
β̄e = 7000 bar, �βe = 0.1β̄e, ρ̄ = 850 kg/m3, �ρ = 0.15ρ̄,
b̄ = 50 Ns/m, �b = 0.2b̄, Ksv = 5 × 10−4 m/V, Tsv = 10
ms, xvmax = 5 mm, Lmax = 78 mm, ps = 40 bar, pr = 2
bar, Ap = 4.91 cm2, Vt = 8.74 × 10−5 m3. The manipulator
load mass ism = 6 kg. The disturbance observer parameters
are kd1 = kd2 = 1000, D1 = 30, D2 = 100, ε1 = 100,
ε2 = 10, p0 = p1 = 5, q0 = q1 = 7. The TSM controller
parameters μ1 = 104, μ2 = 100, δ1 = δ2 = 1, p2 = 5,
q2 = 9 are set. The cylinder velocity demands are chosen
as ẏd = 30 sin(0.5π t) mm/s and ẏd = square(±30) mm/s,
respectively. The corresponding external load of the EHA is

Fig. 3 The cylinder velocity response of three controllers in simulation
for the demand ẏd = 30 sin(0.5π t) mm/s

Fig. 4 The tracking errors of the cylinder velocity in simulation for the
demand ẏd = 30 sin(0.5π t) mm/s
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Fig. 5 The cylinder velocity response of three controllers in simulation
for the demand ẏd = square (±30) mm/s

Fig. 6 The tracking errors of the cylinder velocity in simulation for the
demand ẏd = square (±30) mm/s

assumed to be FL(t) = 100 sin(0.5π t) N and FL(t) = 100
N. To make a comparison, the other two controllers are also
applied for the EHA:

1) PI controller u = kp(ẏd − x1) + ki
∫

(ẏd − x1)dt , where
the control gains kp = 100 and ki = 10 are chosen to
guarantee the fast response of EHA.

2) the traditional backstepping controller (TBC), given by

{
ζ1 = (−k1z1 − f1 + ÿd)/g1

u = (−k2z2 − f2 − g1z1 + ζ̇1)/g2
, (26)

where z1 = x1− ẏd and z2 = x2−ζ1, ζ1 is the virtual control
variable, f1 = b̄x1/m, g1 = 1/m, f2 = −4β̄eA2

px1/Vt −

Fig. 7 The two disturbance estimations by the TSM controller in sim-
ulation for the demand ẏd = 30 sin(0.5π t) mm/s

Fig. 8 The two disturbance estimations by the TSM controller in sim-
ulation for the demand ẏd = square (±30) mm/s

4β̄eC̄tlApx2/Vt , g2 = 4β̄eC̄dw̄KsvAp
√
ps − sgn(ηu)x2/Ap

/(Vt
√

ρ̄), k1 = 2000, k2 = 1000.
The simulation results under the two types of demands are

shown in Figs. 3, 4, 5, 6, 7, 8, 9 and 10. All the three con-
trollers guarantee that the cylinder velocity can track the two
types of demands with performance. However, the tracking
performance subject to the TSMC is better than the PI and
backstepping controllers in both scenarios, as shown in Figs.
4 and 6. Meanwhile, the disturbance estimates generated by
the proposed observer are shown in Figs. 7 and 8, which are
employed in theTSMcontroller (22). By a further inspection,
these disturbance estimates are consistent with the dynamics
of the external load FL and the model functions f2, g2. The
two sliding mode surfaces and the corresponding TSM con-
troller output of two demands are shown in Figs. 9 and 10,
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Fig. 9 The two sliding mode surfaces and the TSM controller output
in simulation for the demand ẏd = 30 sin(0.5π t) mm/s

Fig. 10 The two sliding mode surfaces and the TSM controller output
in simulation for the demand ẏd = square (±30) mm/s

which guarantee the electrohydraulic system stable by the
proposed TSM controller.

5 Conclusions

In this study, a terminal sliding mode control (TSMC) strat-
egy is used in the electro-hydraulic actuator under lumped
uncertain disturbance. Based on the strict-feedback nonlin-
ear model of the electro-hydraulic velocity control loop,
the proposed controller is designed based on the sliding
mode control and the. By proposing a new disturbance TSM
observer, the lumped uncertain disturbances are estimated
and compensated in the TSMCdesign. The simulation results
with comparisons demonstrate that the proposed control

strategy achieves faster responses and better tracking per-
formance. In the future work, the experimental bench of the
manipulator driving by EHAwill verify the proposed control
scheme.
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