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Abstract
This article deals with the problem of degraded tracking performance of a high non-linear target in a radar system, well 
known by the divergence phenomenon. In our study, we aim to improve the target state estimation to imitate the tracking 
scenario as well as avoid the last cited undesirable phenomenon, generated during the non-linear measurements filtering, 
once using extended KALMAN filter. To overcome this issue, we have implemented a new approach based on the adaptive 
Monte Carlo (AMC) algorithm to replace the traditional method as is known by the extended KALMAN filter (EKF). The 
obtained experimental results showed a challenging remediation. Where, the AMC converges towards the accurate state 
estimation. Thus, more efficient than extended KALMAN filter. The experimental results prove that the designed system 
meets the objectives set for AMC referring to an experimental database obtained by a radar system, using MATLAB software 
development framework.
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Abbreviations
EKF  Extended KALMAN filter
AMC  Adaptive Monte Carlo
SR  Systematic resampling
PF  Particle filter
R  Covariance matrix of measurement noise
Q  Covariance matrix of process noise
E  Entropy function
SIS  Sequential importance sampling
NP  Number of nonlinear measurements (particles)
PDF  The probability density function

1 Introduction

The most common radar systems tracking issues are related 
to the Doppler filtering, target size, the number of targets 
detected in each scan then the well-known issue of high 

non-linearity. The last one pose a filtering issue, harming 
the real-time tracking process.

On the other hand, the target reflected signals nature are 
non-stationary, non-Gaussian, inter-interfered due to the 
transmission channel nature as well as the target motion 
[1, 2]. Furthermore, the high non-linearity of each target 
poses a stochastic filtering problem according to SWIRL-
ING models.

In the same axis, we found in the literature several 
nonlinear filtering techniques [3–10], such as the analytic 
KALMAN filter (KF), extended KALMAN filter (EKF) and 
the unscented KALMAN filter (UKF).Then, the numerical 
method based on the particle filter (PF).

Where, the KF was proposed by KALMAN and BUCY 
in 1964 as a solution to solve such problems when the target 
is linear, while the EKF is supposed as a relative solution 
for the non-linearity. Both filters use various recursive algo-
rithms, but they are considered as limited methods today in 
the case of high nonlinearity.

In several target tracking scenarios [11–14], once the 
measurements from the ground or space base, considering a 
receiver antenna may have a long delay. Then the filter esti-
mator leads to an incorrect variance distributions prediction, 
this divergence [6, 8, 13] is due to different kind combina-
tions of non-Gaussian and nonlinear update measurements 
with different accuracies. Here comes the importance of 
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recursive filters to merge the distribution measurements (dis-
tance and angle) and estimate real-time target state vectors.

• Problem statement

The main problem occurs when the target is highly non-
linear and depends on nonlinear update measurements. In 
this case, the conventional analytical filter based on KF as 
an EKF; it linearizes the nonlinear measurements around 
the current predicted state using Taylor series and ignores 
the higher order terms in some calculations costs. Even the 
EKF process becomes insufficient to complete the full lin-
earization process since the non-linearity turns to be higher. 
Consequently, the divergence appearance phenomenon will 
make unsatisfactory gain/signal–noise ratio (SNR) to main-
tain the progression then achieve the posterior estimation 
law.

In this paper, we focus on high nonlinear target tracking 
problems. To solve the performance degradation well known 
by the divergence phenomenon as appeared once using 
EKF, we identified the source of divergence. To overpass 
this issue, we implement an adaptive Monte Carlo (AMC) 
algorithm based on the particle filter methods.

2  Related works

For non-linear target tracking and state estimation in a radar 
system, various methods have been investigated.

The majority of each approach has focused on nonlinear 
target tracking scenarios through nonlinear dynamic meas-
urements. There are many nonlinear filtering techniques in 
[15] such as the analytical filter based on KF, EKF and the 
particle filter (PF).

In [16], a discrete–continuous energy minimization is 
proposed for multi target tracking to solve the tracking issue 
with range rate measurement.

Many other works, based on KF likewise Interacting Mul-
tiple Models-KALMAN filter (IMM-KF) has been suggested 
[17] to solve the tracking issue with range rate measure-
ment. As well, in [18], authors have suggested a maneuver-
ing target position and velocity tracking method, based on 
non-linear model.

Whereas, in [19] the posterior Cramer-Rao bound 
(PCRB) and interacting multiple model (IMM) methods 
for target tracking in the presence of specular multipath are 
proposed by Marcel Hernandez and Alfonso Farina. A mul-
timodel has been developed based on EKF to avoid non-
cooperative target tracking issue in the presence of specular 
multipath.

From the other hand, to avoid the degradation perfor-
mance issues by the glint noise, in [20] [Jungen Zhang; 

Hongbing Ji; Qikun Xue] have offered an improved particle 
filter called MARKOV Chain MONTE CARLO (MCMC) 
integrated EKF (MCMC–EKF).

The divergence phenomena were mentioned in [21–28] in 
which, several nonlinear filtering techniques are investigated 
like EKF and the UKF to address this problem.

In [24], Zhicheng Huo, Fengjun Qi; Guangxu Ren; Min-
gqian Wang presented a new approach to analyze the reason 
of divergence phenomenon for EKF based on the balloon 
height problem method. Unfortunately, the majority of these 
methods don’t have effective solutions except in [25, 26, 28] 
the modified Particle filter Gain, Skewed KALMAN even 
the state transformation extended KALMAN filter (ST-
EKF), to some extent they are considered as a relatively 
effective solution.

To avoid the divergence phenomenon engendered by the 
EKF in high nonlinear target tracking. Our main contribu-
tion is

• the development of a new approach based on particle 
filter that we called adaptive Monte Carlo (AMC) algo-
rithm, to make tracking in high nonlinearity more effi-
cient.

This paper is organized as follows; related works in 
Sect. 2. Section 3, presents the methods which have been 
used in tracking scenarios, experimental results are dis-
cussed in Sects. 4 and 5, finally, the conclusion and the 
future works are given in Sect. 6.

3  Methods

In this section, we theoretically compare two different target-
tracking scenarios in radar system using two different meth-
ods. Firstly the well-known EKF and after that our newly 
proposed specific filter called AMC.

3.1  Extended KALMAN algorithm

The EKF is characterized by its nonlinearity treatment. This 
propriety explicates its wide use due to good estimation per-
formance and implementation simplicity in many cases.

However, it has been shown from the literature that EKF 
converges to an incorrect solution in several object-tracking 
applications; once we use dynamic models or when meas-
urement models are being highly non-linear state vector 
functions.

In discrete-time, the implemented equations propagate 
and update the estimated states. Measurements are based on 
diverse approximations [1, 3–5, 9, 12, 13] described by the 
subsequent EKF algorithm:
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3.2  E K F limitation: the divergence phenomenon 
dilemma

The EKF process is the state estimation projection X̂k on the 
orthogonal basic measurement space constructed from the 
innovation data Yk − Y(k∕k−1) . Similarly, as already shown 
in the above algorithm; it makes possible to optimize the 
maximum likelihood criterion.

We denote from the previous equations that the covari-
ance matrix sequence Pk∕k,Pk∕k−1 and EKF gain Yk repre-
sent an independent observation Yk . As a result, we could 

pre-calculate it, which reduces the real time calculation cost, 
where fk and hk are non-linear functions. The optimal filter 
must linearize them around the predicted state X̂k−1 and the 
current state X̂k . Taylor series are used to obtain the first and 
the second order state and observation equations.

When the dynamic target is nonlinear which leads to 
a nonlinear update measurements, the EKF performs the 
linearization process. Here we underline that EKF is only 
efficiently used in weak non-linearity cases to get suitable 
results. Taylor series can perform this process using the h 
function which considerably reduces the nonlinearity around 
the current predicted state X(k∕k−1) as well as ignores the 
higher order terms in calculating cost. The EKF lineariza-
tion process becomes inadequate, especially when there are 
excessive nonlinear measurements and the computation time 
increases. As a consequence, it diverges during the remain-
ing tracking period. Therefore, the divergence phenomenon 
comes into view along with the KALMAN gain Kk (SNR) 
which is not enough to maintain the posterior law X̂(k∕k) esti-
mation process.

To get rid of this trouble, we consider a new numerical 
approach based on AMC, to ensure that the filter converges 
to the target effective state.

3.3  New approach based on AMC algorithm

3.3.1  Theoretical comparison

Our new AMC method is developed for state estimation, 
especially when we are faced with high non-linear and fur-
ther non-Gaussian dynamic models. The last cited method 
allows us to approximate the full distribution probability 
using Np random samples. Not only the mean and the covar-
iance compared to the analytic filter based on EKF.

AMC algorithm uses the sequential resampling process 
to avoid the filter divergence scenario, particularly when 
using high non-linear models and non-Gaussian distribu-
tions. Further, the process needs sufficient probability under 
the observed region. Accordingly, it is necessary to provide 
a probabilistic interpretation through the following proba-
bilistic interpolation:
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where the empirical mean function is defined as follows:

Xi represents the set of independent and identical random 
variables from 1 to Np. If the number of samples Np tends 
toward infinity, the filter converges to E(X). Hence, we 
obtain an error:

Otherwise, the conventional filter could diverge in low 
distribution particle number. Where, appears clearly our 
contribution (AMC Algorithm) by calculating the effective 
sample size

Then, the entropy function

and the optimal entropy function

of Np particles. Moreover, E and Eopt should be calculated 
and compared; if E < Eopt the sub-algorithm systematic resa-
mpling (SR) remedy the particle divergence.

3.3.2  The general adaptive Monte Carlo (AMC) algorithm

The following algorithm represents AMC with systematic 
resampling:

(1)I(f ) = EP
[

f (X)∕Y
]

=

Np

∫
1

f (X) ⋅ P(X∕Y),

(2)INp(f ) =
1

Np
⋅

Np
∑

i=1

f
(

Xi
)

.

(3)� = INp(f ) − I (f ) ≈ 0.

(4)T̃eff =
1

∑Np

i=1
Wi2

k

.

(5)E = −

Np
∑

i=1

Wi
k
⋅ log2 W

i
k

(6)Eopt = log2 Np

The AMC method uses an approach that generates inde-
pendent samples according to q (X/Y) law (law of arbitrary 
sample distribution) to obtain the desired posterior density p 
(X/Y). This method, called sequential importance sampling 
(SIS) enhanced by a sub-algorithm to avoid filter divergence 
recently designed by systematic resampling (SR) [5–7, 10, 26, 
27]. It offers much better performance from Gain / SNR point 
of view than the EKF.
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4  Experimental results

In this section, MATLAB software is used to simulate two 
different data under different scenarios as mentioned in the 
theoretical part. Although, it has a certain practical interest 
in showing the contribution of AMC method compared to 
the E.K.F conventional method.

A different number of nonlinear measurements (NP) are 
generated to compare EKF performance (Algorithm A) to 
AMC (Algorithm B). We expect that AMC heals the diver-
gence problem, offers an important Gain / SNR ratio, simple 
and efficient compared to EKF.

4.1  Simulation model

To estimate a non-linear state X of a target, we must use 
a non-linear and a non-stationary state-space model. Dif-
ferent scenarios have been simulated using EKF and AMC 
approach during a time interval. In this framework, we pre-
sent the following non-stationary state-space model:

The following Table 1 show the variables (Time and num-
ber of measurements) that will be used for both simulation 
scenarios.

4.2  Simulation using Extended KALMAN filter

First, we investigate the case of highly nonlinear target using 
the (Eq. 7) model written in the previous part. The EKF is 
used for both scenarios mentioned in Table 1.

4.2.1  Simulation of scenario A

NP = 2500 nonlinear measurements (particles) along 50 s.

(7)

X(k + 1) =0.5 × X +

[

25 ×
X(k)

[

(1 + X)2
]

]

+ 8 cos (1.2k) + Process noise,

Y(k) =
X(k)2

20
+measurement noise.

4.2.2  Simulation of scenario B

We simulate with NP = 5000 particles and T = 100 s.
As shown in Fig. 1, we note that the green curve indi-

cates that the particles which represent the target effective 
state have the same tendency with the black curve, which 
indicates the EKF response estimator; it converges to tar-
get effective state in a short time interval between 10 and 
30 s. Although this may seem sufficient with an average of 
nonlinear measurements NP = 2500. Contrarily to Fig. 2, 
we notice more particle losses for the green curve between 
[10–30 s], [45–58 s] and [85–93 s, the filter diverges in 
many sequences when the tracking period becomes 100 s 
and the number of nonlinear measurements NP is up to 
5000.

4.3  AMC Filter performance comparison

Using the same model above (Eq. 7), in this part we look 
to improve the target state X estimation and avoid the filter 
divergence during the processing period [50–100 s] using 
AMC algorithm. In the same context, we have assigned 
different NP particles of the AMC algorithm as a nonlinear 
measurements as mentioned in Table 1.

Table 1  The two algorithms simulation variables

Variables Definition Values

tf The simulation time interval in 
seconds

Scenario A 50 s
Scenario B 100 s

NP The number of particles generated in 
tf  (Nonlinear measurements)

Scenario A 2500
Scenario B 5000
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0

40
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Particle losses
True state
EKF estimate
95%confi.Region

Fig. 1  Highly nonlinear target state estimation using NP = 2500 and 
T = 50 s
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-40

0

40
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E

Fig. 2  Highly nonlinear target state estimation using NS = 5000 in 
T = 100 s
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4.3.1  Simulation of scenario A

We simulate using NP = 2500 nonlinear measurements (par-
ticles) along T = 50 s.

4.3.2  Simulation of scenario B

We increase the number of nonlinear measurements to 
NP = 5000 and the time of estimation to T = 100 s.

4.3.3  Interpretation

According to Fig. 6, we notice that the probability density 
function shows a larger number of peaks and the obtained 
amplitude are up to 4000. Thus, providing more informa-
tion about the target to be tracked through the ambiguity 
estimation process function. Contrarily, Fig. 4 shows a lower 
number of peaks with an amplitude less than 2000. On the 
other hand, the MAP estimation curve in Fig. 5 corresponds 
to the target state estimated over 100 s, which correlates with 
the particulate filter response. It gives a greater affinity for 
better estimation, especially when the number of nonlinear 
measurements (NP) increases to 5000.

5  Results discussion

5.1  Comparative study

The obtained results of scenario A and scenario B from 
both algorithms are compared and classified in the Table 2 
hereunder.

5.2  Discussion

To strengthen the theoretical comparison in the previous 
section, we consider the obtained results in [22]. It is easily 
noticeable that under different circumstances we choose dif-
ferent filtering algorithms; either EKF or particle filter (PF).

In weak non-linearity tracking problem, the EKF is the 
best choice as found in relevant papers like in [13, 22, 23], 
while, having much less computational complexity com-
pared to PF algorithm.

However, in our hypothesis, we are working on the 
highly nonlinear target tracking problem case with non-
stationary white noise. It is clear from the results that the 
EKF’s average ratio mean square error (RMSE) is much 
higher than the RMSE of AMC algorithm. Our new AMC 
method is more effective and gives minus divergence risk 
than EKF.

Therefore, it is important to develop a metric to gauge 
the non-linearity estimation problem.

In addition to RMSE, we have added the gain calcula-
tion/signal noise ratio (SNR), normalized root mean square 
error (NRMSE) and the probability density function (PDF) 
as a new metrics for more accurate results interpretation.

According to Table 2 results, the theoretical results are 
verified. The AMC algorithm is more efficient in case of 
high non-linear targets; when the number of nonlinear 
measurements NP = 2500 and NP = 5000 it gives us an 
important gain as the SNR is 13.9095 dB compared to 
EKF gain. The AMC have a low NRMSE between 0.1699 
and 0.2018 which is sufficient to predict the effective tar-
get state and smooth his real trajectory. Contrarily, the 
EKF shows bad results; RMSE is up to 1.5842 when T2 
becomes more than 100 s, low gain Kk/SNR is equal to 
− 3.99 dB as long as we raise the number of non-linear 
measurements.

Moreover, we conclude from Fig. 1 the EKF divergence 
after several measurement updates between 30 and 50 s due 
to the dynamic target which leads to a nonlinear update 
measurements. In Fig. 2, the EKF diverges in overtime con-
trarily to Figs. 3 and 5 the AMC shows that it converges to 
effective target state even if we increase the simulation time 
and/or the number of nonlinear measurements NP.

In Figs. 4 and 6, the density of probability function (PDF) 
is considered as a new metric to calculate the amplitude of 
each peak during the estimation period (Fig. 5). Indeed, an 
important number of peaks showed in Fig. 6 present the 
ambiguity function for effective target state estimation as 
evident remediation given by AMC approach.

In the light of this investigation, it is possible to conclude 
that our contribution has been verified. The new proposed 
AMC (algorithm B) estimates the state of higher number of 
non-linear targets more accurately than the EKF during a 
long period without performance degradation using a large 
number of nonlinear measurements (particles) up to 5000.

Table 2  Comparative results Algorithm A:EKF Algorithm B:AMC

RMSE NRMSE SNR (dB) RMSE NRMSE SNR (dB)

NP = 2500
T1(s) = 50

3.4512 0.4246 8.3730 2.3397 0.3856 9.3397

T2 (s) = 100
NP = 5000

15.4509 1.5842 -3.991 1.9866 0.2018 13.909
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6  Conclusion and future works

In conclusion, in this paper, we presented a new approach 
to improve the non-linear target tracking as well as to 
avoid the filter divergence performances degradation.

We overcame the constraints related to the high target 
nonlinearity modelling and avoid the filter divergence phe-
nomenon. The experimental results validate what we men-
tioned in the theoretical part. The AMC approach is more 
efficient in complex cases which cannot be observed experi-
mentally and even when simulated by EKF diverges to inap-
propriate results.

AMC has a fast calculation time and converges rapidly to 
its related effective states. Thus, it can be used in real-time 
tracking and in the presence of non-stationary white noise.

As well avoid the divergence phenomenon using the opti-
mal entropy calculation likewise the sub-algorithm called 
systematic resampling (SR). It gives the necessary gain for 
the optimal filtering over a long period.

Then, finally we have undoubtedly increased the radar 
system performances using this new approach and we avoid 
the performance filter degradation. Even though having 
these persuasive results the method could be ameliorated by 
multiplying the number of targets. In our future research, we 
aim to implement this method aiming to enhance the multi 
targets tracking which compels us to add a data association 
filter to avoid the signal interference phenomenon.
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