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Abstract
To phased microphone array for sound source localization, algorithm with both high computational efficiency and high
precision is a persistent pursuit until now. In this paper, convolutional neural network (CNN) a kind of deep learning is
preliminarily applied as a new algorithm. The input of CNN is only cross-spectral matrix, while the output of CNN is source
distribution. With regard to computing speed in applications, CNN once trained is as fast as conventional beamforming,
and is significantly faster than the most famous deconvolution algorithm DAMAS. With regard to measurement accuracy
in applications, at high frequency, CNN can reconstruct the sound localizations with up to 100% test accuracy, although
sidelobes may appear in some situations. In addition, CNN has a spatial resolution nearly as that of DAMAS and better than
that of the conventional beamforming. CNN test accuracy decreases with frequency decreasing; however, in most incorrect
samples, CNN results are not far away from the correct results. This exciting result means that CNN perfectly finds source
distribution directly from cross-spectral matrix without given propagation function and microphone positions in advance, and
thus, CNN deserves to be further explored as a new algorithm.

Keywords Microphone arrays · Beamforming · Deep learning · CNN

1 Introduction

In recent years with the development of society, the aware-
ness of the impact of noise on health has increased signifi-
cantly, environmental comfort has been becoming more and
more important, and consequently, acoustic source local-
ization has been increasingly critical in noise diagnosis.
Nowadays, phased microphone array has become a standard
technique for acoustic source localization. In the post-
processing, the main two categories of traditional algorithms
are beamforming and deconvolution algorithms.

Beamforming algorithms construct a dirty map of source
distributions from array microphone pressure signals [1].
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Conventional beamforming is simple and robust; however,
its main disadvantages include poor spatial resolution par-
ticularly at low frequencies and poor dynamic range due
to side-lobe effects [2]. For algorithms with better perfor-
mances, many researchers have proposed some advance
beamforming algorithms, such as orthogonal beamforming
[3], robust adaptive beamforming [4], and functional beam-
forming [5]. Concerning spatial resolution, these advance
beamforming algorithms have obvious superiority compared
to conventional beamforming; however, they are not as good
as deconvolution algorithms.

Deconvolution algorithms reconstruct a clean map of
source distributions from a dirtymap via iterative deconvolu-
tion, and thus can significantly improve the spatial resolution.
The most famous deconvolution algorithms are DAMAS
[6,7], NNLS [8], and CLEAN-SC [9]. However, deconvolu-
tion algorithms require a relatively high computational effort
compared to conventional beamforming due to the inevitable
iterations used in the deconvolution algorithms. Spectral pro-
cedure [10] and compression computational grid [11–13] are
used to improve the efficiency of deconvolution algorithms.

There are still two big challenges for phased microphone
array. One is that algorithm with both high computational
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Fig. 1 Sketch of setup with a phased microphone array and a two-
dimensional region of interest. Origin of the coordinate system is placed
in the centre of the microphone array

efficiency and high precision is a persistent pursuit, to
improve the ability of real-time display and online analysis.
The other one is that when phased microphone array used in
complex flow environment with unknown propagation func-
tion, phased microphone array with traditional algorithms
loses its accuracy, due to uncertainty in the propagation func-
tion used in traditional algorithms when.

At this time, deep learning—deep neural networks—is the
most attractive data-mining tool without any doubt. Deep
learning is a specific kind of machine learning [14]. Machine
learning is able to learn from data and find the relationship
between input and output data. Deep learning discovers intri-
cate structure in large data sets using the back propagation
algorithm to indicate how a machine should change its inter-
nal parameters that are used to compute the representation in
each layer form the representation in the previous layer [15].
Deep learning has recently achieved spectacular success in
many domains such as speech recognition [16], visual object
recognition [17], astronomy [18], as well as the game of Go
[19].

In traditional disciplines, deep learning has also attracted
widespread attention and expected to be able to further
solve the traditional problems. For example, deep learning
has been used to turbulence modelling in fluid mechanics
[20,21]. In these traditional disciplines, deep learning is still
strongly challenging the deep-rooted consensus that inno-
vations are inspired from expert-in-the-loop intuition and
physically interpretablemodels, by providing competing pre-
dictions and without clear physical interpretation.

Inspired by the success of deep learning, in this paper,
convolutional neural network (CNN) [14] a kind of deep
learning is applied to phased microphone array for sound
source localization as a new algorithm. CNN uses the math-
ematical operation convolution in at least one of their layers.

Convolution leverages three important ideas that can help
improve a machine learning: sparse interactions, parameter
sharing, and equivariant representations [14].

This attempt mainly looks forward to making full use of
three features of deep learning to overcome the big challenges
of phased microphone array introduced above. The first one
is the excellent data-learning capabilities. The second one
is its computational speed once trained. The last one is its
potential applications with unknown propagation function
and microphone positions.

The rest of this paper is organized as follows. Algorithms
are presented in Sect. 2.An application is examined inSect. 3.
A discussion is presented in Sect. 4. Finally, conclusions are
given in Sect. 5.

2 Algorithms

Figure 1 illustrates a setup with a phased microphone array
that contains M microphones and has a diameter of D, as
well as a two-dimensional region of interest. Stationary noise
sources are located in an x–y plane at a distance of z0 from the
centre of the microphone array. The length of the scanning
plane is L = 2z0tan(α/2), where α is the opening angle.
The region of interest is divided into S = N × N equidistant
points.

In each test case, data from the microphone array are
simultaneously acquired. Cross-spectral matrix (CSM) is
then calculated using these simultaneously acquired data
from the microphone array. The acquired data of each micro-
phone are divided into I frames. Each frame is then converted
into frequency bins by Fast Fourier Transform (FFT). For a
given angular frequency ω, CSM is averaged over I blocks:

C(ω) = p(ω)p(ω)H = 1

I

I∑

i=1

pi (ω)pi (ω)H , (1)

where p(ω) = [p1(ω), p2(ω), . . . , pM (ω)]T , and (·)H
denotes complex conjugate transpose. For the sake of brevity,
ω is omitted in the following. The problem of phased micro-
phone arrays for source localization can be expressed as

f (C) = x, (2)

where x is the source distribution of power descriptors and

x = [|q1|2, . . . , |qs |2, . . . , |qS|2]T , (3)

where qs is source amplitude in terms of the pressure pro-
duced at source point s.

Figure 2 shows algorithms dealing with Eq. 2 for phased
microphone array, includingbeamforming algorithms, decon-
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Fig. 2 Algorithms for phased microphone array. C CSM, b beamform-
ing, x source distribution

volution algorithms, and deep learning. Beamforming algo-
rithms obtain beamforming from CSM, and deconvolution
algorithms obtain source distribution from beamforming,
while deep learning proposed in this paper obtain source dis-
tribution directly from CSM.

2.1 Beamforming algorithm

The conventional beamforming

b(r) = e(r)HCe(r)
||e(r)||4 , (4)

where the vector e(r) ∈ C
M×1 is the steering vector at r and

e(r) = [e1(r), . . . , em(r), . . . , em(r)]T . (5)

The notation of steering vector under monopole point source
assumption and in a medium with a uniform flow is [7]

em(r) = ||r − rm ||
||r|| exp{− j2π f /c0||r − rm ||}, (6)

where ||r|| is the distance from a beamformer focus position
to the centre of the array, ||r − rm || is the distance from the
beamformer focus position to the mth microphone (see in
Fig. 1), f is frequency, and c0 is speed of sound.

2.2 Deconvolution algorithms

The sound pressure contribution at microphones can be writ-
ten as

p =
S∑

s=1

e(rs)qs . (7)

For incoherent acoustic sources, CSM thus becomes

C =
S∑

s=1

|qs |2e(rs)e(rs)H . (8)

The conventional DAS beamforming output can then bewrit-
ten as

b(r) =
S∑

s=1

|qs |2 · e(r)
H [e(rs)e(rs)H ]e(r)

||e(r)||4

=
S∑

s=1

|qs |2 · |e(r)H e(rs)|2
||e(r)||4 . (9)

For a single unit-power point source, Eq. (9) is known as
point-spread function (PSF) of the array and is defined as

PSF(r|rs) = e(r)H [e(rs)e(rs)H ]e(r)
||e(r)||4 = |e(r)H e(rs)|2

||e(r)||4 ,

(10)

and then, Eq. (9) can then be written as

b(r) =
S∑

s=1

|qs |2 · PSF(r|rs). (11)

By computing PSF(r|rs) for all combinations of (r|rs) in
discrete grid and arranging each resulting PSF map colum-
nwise in a matrix A, Eq. (11) could reformulate in matrix
notation as

Ax = b, (12)

where b contains the beamformer map. Equation (12) is a
system of linear equations. Notice thatA ∈ R

S×S , x ∈ R
S×1,

b ∈ R
S×1.

The deconvolution task is to find a source distribution x
for a give dirty map b and know matrix A. The constraint is
that each component of the vector x is larger or equal to zero.
In most of the applications, the matrix A is singular, and b
is in the range of A, and this means that there are very large
number of solutions of x that fulfil Eq. 12.

TheDAMAS algorithm [7] is an iterative algebraic decon-
volution method. In this algorithm, the source distribution is
calculated by the solution of Eq. 12 using a Gauss–Seidel-
type relaxation. In each step, the constraint is applied that the
source strength remains positive.

2.3 Deep learning

CNN, a kind of deep learning, is used in this paper to phased
microphone array for sound source localization as a newalgo-
rithm. This attempt mainly looks forward to making full use
of prominent features of deep learning to overcome the big
challenges of phasedmicrophone array.These prominent fea-
turesmainly include its excellent data-learning capabilities of
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and its computational speed once trained. Keras framework
[22] with a Tensorflow backend is used here.

In this paper, the input and output tensors of CNN are
C ∈ C

M×M and x ∈ R
S×1, respectively. This makes CNN

as two distinct differences with beamforming algorithms and
deconvolution algorithms. The first difference is that CNN
does not need in advance the propagation equation, which
is a prerequisite in beamforming algorithms and deconvo-
lution algorithms. The second difference is that CNN even
does not need in advance the positions of microphones in
phased microphone array, which is also a prerequisite in
beamforming algorithms and deconvolution algorithms. The
first difference makes that CNN has a significant advantage
that CNN can be used in lots applications, where propa-
gation equation is unknown. The second difference makes
that CNN has another advantage that CNN can avoid the
errors caused by the position deviations of microphones in
installation. Of course, the prerequisite for these advantages
is that CNN can find x directly from C with high accu-
racy.

In this subsection, CNN settings including network archi-
tecture, training data, and training strategy are introduced.
In the next section, applications are carried out to check the
ability of CNN.

2.3.1 Networks’ architecture

A CNN model with seven layers is proposed, as depicted in
Fig. 3. The parameters and structures of this CNN model
are listed in Table 1. This CNN model consists of four
two-dimensional convolutional layers (Conv2D), two two-
dimensional pooling layers (MaxPooling2D), a flatten layer
(Flatten), and a regular densely connected neural networks
layer (Dense). The convolutional layers performdiscrete con-
volution operations on their input. In each convolutional
layer, zero-padding is valid, such that the output has the
same length as the original input; meanwhile, a bias vector is
created and added to the outputs. The output of each convo-
lutional layer is passed to a rectified linear unit (ReLU) filter.
The pooling layer performs amax operation over sub-regions
of the extracted feature maps resulting in down sampling by
a factor of two. The flatten layer just flattens the input and
does not affect the batch size. The regular densely connected
neural network layer gives S-dimensional output space using
a matrix multiplication and bias addition.

The number of trainable parameters mainly depends on
microphone number M and grid number S. For example, in
the applications in the next section, CNN has approximately
7.23 × 105 trainable parameters with microphone number
M = 30 and grid number S = 100.

2.3.2 Training data

The data used to train the network are collected through sim-
ulation. In this process, different sound source distributions
x̂ are assigned in advance, and then, corresponding C are
calculated according to Eq. 8.

During the training process, 80%, 10%, and 10% of all
data generated are selected as the training data, validation
data, and test data, respectively. To avoid the network simply
memorizing the training data rather than learning general fea-
tures for accurate prediction with new data, validation data
should not appear in training data. We deleted the samples
in validation data that already exist in training data. In addi-
tion, we deleted the samples in test data that already exist in
training data or in validation data.

2.3.3 Training strategy

The loss function used to train the weights of the networks is
set as the mean squares of the errors between assigned and
predicted values for a sample, such as

Loss = 1

S

S∑

i=1

(x̂i − xi )
2 = 1

S

S∑

i=1

(
|q̂i |2 − |qi |2

)2
, (13)

where x̂i and xi are assigned and predicted source powers at
i th grid, respectively, and q̂i andqi are assigned and predicted
source pressure at i th grid, respectively.

In the training, the Adam stochastic optimization algo-
rithm is used to update the network parameters with learning
rate of 0.001 and mini-batch size of 32 samples. The num-
ber of epochs to train the model is specified as 20, which
appeared to be more than enough for convergence. The net-
work training takes around some hours on a MacBook Pro
with a processor of 2.9 GHz Inter Core i5.

The accuracy is defined as

Accuracy = Ncorrect

Nvalidation
× 100%, (14)

where Nvalidation is number of samples in validation data and
Ncorrect is number of identified correctly. Theoretical crite-
rion for a sample is identified correctly is that x = x̂ for this
sample. However, this theoretical criterion is too strict.

In the next section for sampling training data, the given
sound distributions are set as equal power sound sources ran-
domly distributed in the grid. In this paper, a simple criterion
for a sample is identified correctly and is used. For a sam-
ple with Ns assigned sound sources, a sequence of predicted
sources is first arranged by their power magnitude from large
to small. Subsequently, the locations of the top Ns sources
in this sequence constitute a set {y1, . . . , yNs }. This sample
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Fig. 3 Architecture of the CNN model

Table 1 Parameters and structures of the CNN model

Layer no. Layer type Kernel number Kernel size Stride Activation Padding Output size

1 Conv2D 64 3 × 3 1 × 1 ReLU Yes M × M × 64

2 Conv2D 64 3 × 3 1 × 1 ReLU Yes M × M × 64

3 MaxPooling2D – 2 × 2 2 × 2 – No
M

2
× M

2
× 64

4 Conv2D 128 3 × 3 1 × 1 ReLU Yes
M

2
× M

2
× 128

5 Conv2D 128 3 × 3 1 × 1 ReLU Yes
M

2
× M

2
× 128

6 MaxPooling2D – 2 × 2 2 × 2 – No
M

4
× M

4
× 128

7 Flatten – – – – –

(
M

4
× M

4
× 128

)
× 1

8 Dense 1 S ×
(
M

4
× M

4
× 128

)
– – – S × 1

S grid number, M microphone number

Fig. 4 Phased microphone
array, 30-channel irregular
microphones, and diameter of
0.35 m

is identified correctly only if

{y1, . . . , yN ′
s
} = {ŷ1, . . . , ŷNs }, (15)

where {ŷ1, . . . , ŷNs } is the set of locations of assigned
sources.

3 Applications

In this section, synthetic applications are carried out to check
the ability of CNN for sound source localization.

Aplanar array that contains 30 simulatedmicrophones and
has a diameter D of 0.35m, as shown in Fig. 4, is used in these
applications. In the geometrical setup, the observation plane
is parallel to the array plane, and the region of interest is right
in front of the array. The distance between array plane and

observation plane z0 is 2.0 m. The opening angle α = 45◦.
The computational grid is 10 × 10 with 100 grid points.

In this section, conventional beamforming and DAMAS
are used as traditional beamforming algorithm and decon-
volution algorithm, respectively. For these two traditional
algorithms, diagonal removal is applied on the CSM used
for conventional beamforming, while no diagonal removal is
applied on the PSF used for DAMAS. DAMAS is run with
1000 iterations, which appeared to be more than enough for
convergence.

CNN, the new algorithm in this paper and has described in
the previous section, has approximately 7.23×105 trainable
parameters according to microphone number M = 30 and
grid number S = 100. For sampling training data, the given
sound distributions are set as up to six equal power sound
sources randomly distributed in the grid.

3.1 Effect of number of training data

In the training process, CNN are fed with training data. CNN
test accuracy is affected by the number of training data. With
too little training data, CNN cannot fully learn the laws hid-
den in the data, and then, its prediction accuracy will be
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Table 2 Accuracy of CNN with number of training data, f = 5 kHz

Number of training data (k) Accuracy (%)

5 68.4 ± 4.5

10 80.8 ± 2.5

20 88.0 ± 1.7

50 93.7 ± 0.9

90 95.6 ± 0.5

100 100.0 ± 0.0

Table 3 Accuracy of CNN with frequency, 100 k training data

f (kHz) Accuracy (%) R/�x

5 100.0±0.0 3.27

4 90.0±1.5 4.08

3 70.8±3.8 5.44

greatly discounted. With too much training data, the train-
ing process needs huge time and thus is harmful to industrial
applications of CNN, although CNN can fully learn the laws
hidden in the data. For sound source localization, the effect
of number of training data on CNN is investigated in this
subsection.

CNN test accuracy with number of training data is listed
in Table 2. To exclude the effect of frequency, the frequency
keeps constant and is 5 kHz. The CNN test accuracy is only
68.4%with the number of training data of 5 k.With the num-
ber of training data increasing, CNN test accuracy increases.
When the numbers of training data are 10 k, 20 k, 50 k, and
90 k, the CNN test accuracies are 80.0%, 88.0%, 93.7%, and
95.6%, respectively. The CNN test accuracy is up to 100%
when the number of training data reaches 100 k. In addition,
the uncertainty decreases when the number of training data
increases.

3.2 Effect of frequency

For sound source localization, frequency is one of the most
important factors.When frequency decreases, the spatial res-
olution of the conventional beamforming increases following
the relationship R = 1.22zc/(cos(α/2)3Df ), where c is
sound velocity. DAMAS as a convolution algorithm, its spa-
tial resolution is also increases with frequency decreasing,
although it is significant improved compared to the conven-
tional beamforming. In this section, the effect of frequency
on CNN is investigated.

CNN test accuracy with frequency is listed in Table 3. To
exclude the effect of number of training data, the number of
training data is 100 k in these trainings. In this table, R/�x ,
where �x is the space between the grid nodes, is also listed
to show the development of the spatial resolution with fre-

quency. As has discussed in the previous subsection, CNN
test accuracy at f = 5 kHz is up to 100%. CNN test accuracy
decreases, as the frequency decreases. CNN test accuracies
are only 90.0% and 70.8% at f =4 kHz and 3 kHz, respec-
tively.

Four samples in test data at f = 5 kHz are shown in
Figs. 5, 6, 7 and 8. Reconstruction maps of the conventional
beamforming,DAMAS, andCNNare shown in these figures.
With regard to computing speed in applications, CNN is as
fast as conventional beamforming, and is significantly faster
than DAMAS. In Fig. 5, three equal power sound sources
exist in the scanning plane. The distance between these points
are larger than 3.27�x . As a consequence, these three sound
sources could be distinguished in the conventional beam-
forming map, as shown in Fig. 5a. DAMAS reconstructs
these three sound sources successfully with better spatial
resolution, as shown in Fig. 5b. CNN can also reconstruct
successfully these three sound sources with the same better
spatial resolution as DAMAS, as shown in Fig. 5c. In Fig. 6,
five equal power sound sources exist in the scanning plane.
The distance between points is larger than 3.27�x except the
two sound sources placed at grid points (6, 10) and (9, 10). As
a consequence, most of these sound sources could be distin-
guished in the conventional beamforming map, as shown in
Fig. 6a. DAMAS reconstructs these sound sources success-
fully with better spatial resolution, as shown in Fig. 6b. CNN
reconstructs successfully these sound sources with the same
better spatial resolution as DAMAS, as shown in Fig. 6c;
however, the same sidelobes appear. In Fig. 7, six equal power
sound sources exist in the scanning plane. The aggregation
degree of these sound sources is larger than that in Fig. 6.
Two sound sources are placed at adjacent grid points. As a
consequence, the conventional beamforming cannot distin-
guish these two adjacent sound sources, as shown in Fig. 7a.
DAMAS reconstructs these sound sources successfully with
better spatial resolution even for these two adjacent sound
sources, as shown in Fig. 7b. CNN reconstructs successfully
these sound sources with the same better spatial resolution
as DAMAS, as shown in Fig. 7c. However, sidelobes appear,
and the number of sidelobes is more than that in Fig. 6c. In
addition, the reconstruction power of the sound source placed
at grid point (5, 9) is obvious smaller than others. In Fig. 8,
six equal power sound sources exist in the scanning plane.
The aggregation degree of these sound sources are larger
than that in Fig. 7. Two sound sources are placed at adjacent
grid points, and there is only one grid point between these
two adjacent sources to another one. As a consequence, the
conventional beamforming cannot distinguish these adjacent
sound sources, as shown in Fig. 8a. DAMAS reconstructs
these sound sources successfully with better spatial resolu-
tion even for these two adjacent sound sources, as shown in
Fig. 8b. CNN reconstructs successfully these sound sources
with the same better spatial resolution as DAMAS, as shown
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Fig. 5 Sample at f = 5 kHz. Black cross symbols, positions of synthetic point sources

Fig. 6 Sample at f = 5 kHz. Black cross symbols, positions of synthetic point sources

Fig. 7 Sample at f = 5 kHz. Black cross symbols, positions of synthetic point sources

in Fig. 7c. However, sidelobes appear, and the number of
sidelobes is more than that in 7c.

Figures 9, 10, 11 and 12 show the reconstruction results at
f = 3 kHz for the given sound distributions in Figs. 5, 6, 7
and 8, respectively. With the frequency decreases from 5 to 3
kHz, the spatial resolutions of the conventional beamforming
and DAMAS deteriorate. Focusing on CNN, more sidelobes
appears; meanwhile, power deviations appear significantly
which induce CNN gives incorrect results in Fig. 12.

The performances of CNN in this section especially at
f = 5 kHz clearly indicate that CNN can used for sound

source localization, and is an alternative full of expectations
for phased microphone array.

3.3 Incorrect samples

To further investigate the CNN performance, more incorrect
samples at f = 3 kHz are shown in Fig. 13.

A CNN result is judged as incorrect if in this CNN result,
the power at one of the assigned source points is smaller than
that at a non-source grid point, according to the criterion of
a sample is identified correctly (i.e., Eq. 15). This usually
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Fig. 8 Sample at f = 5 kHz. Black cross symbols, positions of synthetic point sources

Fig. 9 Sample at f = 3 kHz, with the same source positions in Fig. 5. Black cross symbols, positions of synthetic point sources

Fig. 10 Sample at f = 3 kHz, with the same source positions in Fig. 6. Black cross symbols, positions of synthetic point sources

happens due to most of the power at the assigned source
points moves to the adjacent grid point. Examples can be
found in Fig. 13. In Fig. 13a, most of the power at the grid
point (4, 10) moves to the adjacent grid point (3, 10). In
Fig. 13b, most of the power at the grid point (8, 7) moves to
the adjacent grid point (8, 8). In Fig. 13c, most of the power
at the grid point (5, 5) moves to the adjacent grid points (6, 5)
and (6, 4). In Fig. 13d, most of the power at the grid point (5,
4) moves to the adjacent grid point (5, 5). In Fig. 13e, most
of the power at the grid point (5, 4) moves to the adjacent

grid point (4, 4). In Fig. 13f, most of the power at the grid
point (7, 6) moves to the adjacent grid point (7, 7).

In these incorrect samples, CNN results are not far away
from the correct results, due to that only same powers at
assigned source points move to adjacent grid points.

4 Discussion

In this paper, CNN a kind of deep learning as an alterna-
tive algorithm is preliminarily applied to phased microphone
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Fig. 11 Sample at f = 3 kHz, with the same source positions in Fig. 7. Black cross symbols, positions of synthetic point sources

Fig. 12 Sample at f = 3 kHz, with the same source positions in Fig. 8. Black cross symbols, positions of synthetic point sources

Fig. 13 Incorrect samples, f = 3 kHz. Black cross symbols, positions of synthetic point sources
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arrays for sound source localization. To the best knowledge
of the authors, this paper is first work so far that applies deep
learning to phased microphone array for sound source local-
ization. This attempt mainly looks forward to making full
use of prominent features of deep learning to overcome the
big challenges of phasedmicrophone array. These prominent
features mainly include its excellent data-learning capabili-
ties of and its computational speed once trained.

Preliminary investigations are carried out to check the
performance of CNN. With regard to computing speed in
applications, CNN is as fast as conventional beamforming,
and is significantly faster than DAMAS.With regard to mea-
surement accuracy in applications, at high frequency, CNN
can reconstruct the sound localizations with even 100% test
accuracy, although sidelobes may appear in some situations.
In addition, CNN has a spatial resolution nearly as that of
DAMAS and better than that of the conventional beamform-
ing. CNN test accuracy decreases with frequency decreasing;
however, in most incorrect samples, CNN results are not far
away from the correct results, due to only some powers at
assigned source points move to adjacent grid points. This
exciting result makes that CNN has encouraging prospects as
a new algorithm for phased microphone array, and deserves
to be further explored.

In preliminary applications, CNN almost perfectly finds
source distribution, in which the input and output tensors of
CNN areC ∈ C

M×M and x ∈ R
S×1, respectively. This input

makes that CNN has two distinct differences with beam-
forming algorithms and deconvolution algorithms. The first
difference is that CNN does not need in advance the prop-
agation equation, which is a prerequisite in beamforming
algorithms and deconvolution algorithms. The second dif-
ference is that CNN even does not need the positions of
microphones, which is also a prerequisite in beamforming
algorithms and deconvolution algorithms. The first differ-
ence leads an advantage of CNN that CNN could be used
to applications with unknown propagation equation, which
is often encountered in complex measurement environment.
The second difference leads another advantage of CNN that
CNN could avoid the errors due to installation position devi-
ation of microphones.

In preliminary applications, in this paper, training data are
obtained by simulation, and there are up to six equal sound
sources randomly distributed in 100 grids. For this sound
sources setting, there areC1

100+C2
100+C3

100+C4
100+C5

100+
C6
100 = 1.2715 × 109 possibilities. In the applications, 100

k training data are only about 0.08% of all the possibili-
ties. CNN is thus definitely not data fitting. This is one point
that the authors want to emphasize here. In this paper, train-
ing is conducted at a giving frequency. For speeding up in
applications, we suggest that taking frequency as a training
parameter in the future.

One main challenge of CNN is that large amount of train-
ing data are required. Concerning training data, there are
mainly three types. The first type is simulated data as used in
this paper. This type of training data is suitable for applica-
tions with known propagation function, such as sound field
with stationary sound sources. The second type is simulated
data from computational aeroacoustics (CAA). This type of
training data is suitable for applications with unknown prop-
agation function; however, the sound field can be simulated
by CAA with certain accuracy, such as aircraft wing sound
field. The third type is experimental data. This type of train-
ing data is suitable for applications, especially for sound
field with complex flow field, such as sound field of aero-
engine fan, where velocity gradients exist in the flow field
and significantly affect the propagation function of sound.
Experimental data can only be accumulated through a large
number of experiments with a process that takes a lot of
time and money, and thus may more “expensive” than the
first and the second types of training data. To save time and
money, a more appropriate strategy is using combined train-
ing data including all these three types could be used in the
future. Of course, this strategy should be investigated further
in advance.

Another main challenge of CNN is that large time for
network training is required. For example, in this paper, the
network training takes some hours on a normal personal com-
puter. This issue can be ameliorated usingGPUs,whose price
is getting cheaper with the development of computer hard-
ware and strong demand due to more and more applications
of deep learning in industry.

About the CNN investigation and optimization, the ques-
tions are still open and needed to investigate in the future,
such as: (i) what’s the dynamic range of CNN? (ii) How
many layers are most suitable for a give data set? (iii) How
many kernel number and size are needed? (iv) How big are
training data? (v) What is the uncertainty of CNN predic-
tions? (vi) How to improve the accuracy at low frequency?
(vii) How to use combined training data including simulated
data and experimental data?

5 Conclusions

In this paper, CNN a kind of deep learning as an alterna-
tive algorithm is preliminarily applied to phased microphone
arrays for sound source localization. To the best knowledge
of the authors, this paper is first work so far that applies
deep learning to phased microphone array for sound source
localization. Preliminary investigations are carried out to
check the performance of CNN. With regard to comput-
ing speed in applications, CNN after training is as fast as
conventional beamforming, and is significantly faster than
the most famous deconvolution algorithm DAMAS. With
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regard to measurement accuracy, at high frequency, CNN
can reconstruct the sound localizations with up to 100% test
accuracy, although sidelobes may appear in some situations.
CNN test accuracy decreases with frequency decreasing. In
addition, in most incorrect samples, CNN results are not far
away from the correct results. This exciting result means
that CNN almost perfectly finds source distribution directly
from cross-spectral matrix without given propagation func-
tion and microphone positions in advance. In addition, thus,
CNN deserves to be further explored as a new algorithm for
sound source localization.

References

1. Johnson DH, Dudgeon DE (1993) Array signal processing: con-
cepts and techniques. Prentice Hall, New Jersey

2. Michel U (2006) History of acoustic beamforming, BeBeC-2006-
01, 1–17

3. Sarradj E (2010) A fast signal subspace approach for the determi-
nation of absolute levels from phased microphone array measure-
ments. J Sound Vib 329:1553–1569

4. Huang X, Long B, Vinogradov I, Peers E (2012) Adaptive beam-
forming for array signal processing in aeroacoustic measurements.
J Acoust Soc Am 131:2152–2161

5. Dougherty RP (2014) Functional beamforming. In: 5th Berlin
beamforming conference 2014, BeBeC-2014-01

6. Brooks TF, Humphreys WM (2004) A deconvolution approach
for the mapping of acoustic sources (DAMAS) determined from
phased microphone arrays, AIAA-2004-2954

7. Brooks TF, Humphreys WM (2006) A deconvolution approach
for the mapping of acoustic sources (DAMAS) determined from
phased microphone arrays. J Sound Vib 294:856–879

8. Lawson CL, Hanson RJ (1995) Solving least square problems
(Chapter 23). SIAM,

9. Sijtsma P (2007) CLEAN based on spatial source coherence. Int J
Aeroacoust 6:357–374

10. Dougherty RP (2005) Extension of DAMAS and benefits and lim-
itations of deconvolution in beamforming. AIAA 2005–2961

11. MaW,LiuX (2017) Improving the efficiency ofDAMAS for sound
source localization via wavelet compression computational grid. J
Sound Vib 395:341–353

12. Ma W, Liu X (2017) DAMAS with compression computational
grid for acoustic source mapping. J Sound Vib 410:473–484

13. Ma W, Liu X (2018) Compression computational grid based on
functional beamforming for acoustic source localization. Appl
Acoust 134:75–87

14. Goodfellow I, Bengio Y, Courville A (2017) Deep learning. www.
deeplearningbook.org

15. LeCun Y, Bengio Y, Hinton G (2015) Deep learning. Nature
521:436–444

16. Dahl GE, Yu D, Deng L, Acero A (2012) Context-dependent
pre-trained deep neural networks for large-vocabulary speech
recognition. IEEE Trans Audio Speech Lang Process 20:30–42

17. Krizhevsky A, Hinton SIG (2012) Imagenet classification with
deep convolutional neural networks. In: Communications of the
ACM 60

18. Hezaveh YD, Levasseur LP, Marshall PJ (2017) Fast automated
analysis of strong gravitational lenses with convolutional neural
networks. Nature 548:555–557

19. Silver D, Schrittwieser J, Simonyan K, Antonoglou I, Huang A,
Guez Arthur T, Hubert Baker L, Lai M, Bolton A, Chen Y, Lilli-
crap T, Hui F, Sifre L, van den Driessche G, Graepel T, Hassabis
D (2017) Mastering the game of go without human knowledge.
Nature 550:354–359

20. Ling J, Kurzawski A, Templeton J (2016) Reynolds averaged tur-
bulence modelling using deep neural networks with embedded
invariance. J Fluid Mech 807:155–166

21. Kutz JN (2017) Deep learning in fluid dynamics. J Fluid Mech
814:1–4

22. Chollet F (2015) Keras, GitHub Repository

123

www.deeplearningbook.org
www.deeplearningbook.org

	Phased microphone array for sound source localization with deep learning
	Abstract
	1 Introduction
	2 Algorithms
	2.1 Beamforming algorithm
	2.2 Deconvolution algorithms
	2.3 Deep learning
	2.3.1 Networks' architecture
	2.3.2 Training data
	2.3.3 Training strategy


	3 Applications
	3.1 Effect of number of training data
	3.2 Effect of frequency
	3.3 Incorrect samples

	4 Discussion
	5 Conclusions
	References




