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Abstract
Pre-tension rectangular membrane is a promising structure in space engineering due to lightweight, high area-to-weight ratio
and excellent folding capability. However, its dynamic characteristic of ground experiment can be largely affected by air,
meaning the vibration behavior in air is quite different from the behavior in orbit vacuum. Therefore, a grid membrane is
explored as the alternative structure, which can be less affected by air. Based on the small deformation theory, a modal
equivalent method is established to make the natural frequencies and vibration modes of the original full-area membrane and
the alternative grid membrane identical. A finite element code is utilized to verify this method, and the modals of the two
structures are basically same. Meanwhile, a fluid–structure coupling simulation is conducted. The result indicates that the air
effect on the alternative grid membrane is quite small compared with the original full-area membrane. Consequently, this grid
membrane can be used as the alternative structure of the full-area membrane, as a mean to reduce the air effects in a ground
structure experiment.

Keywords Pre-tension rectangular membrane · Grid membrane · Modal equivalent method · Air effect

1 Introduction

Pre-tension rectangular membrane is a promising structure
in space engineering due to lightweight, high area-to-weight
ratio and excellent folding capability. However, it is difficult
to conduct a ground structure vibration experiment of a
spacecraft with this kind of structure as a component,
because the dynamic characteristic of the membrane can be
largely affected by air, meaning that the vibration behavior
in air is quite different from the behavior in vacuum [1–4].
Consequently, when conducting a ground experiment to
study the natural frequency of a membrane, the air effect
should be reduced.

Generally, there are two ways to reduce this air effect: the
first one is conducting the vibration experiment in a vacuum
device. The vacuum environment in the device is nearly the
same as the environment in aerospace. Therefore, thismethod
is the most direct way to proceed with a ground experiment
to simulate the vibration of a membrane in aerospace.
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However, the size of the vacuum device cannot be large
and the cost is quite expensive. Therefore, this method can
only conduct a reduced-scale experiment. The second one is
using an alternative structure to substitute the membrane and
this structure should be less sensitive to air. Moreover, these
two structures should have the same natural frequencies and
vibrationmodes. For the convenience of expression, the orig-
inal structure is called full-area membrane. In this paper, a
grid membrane is explored as the alternative structure, which
is consisted of crossed membrane strips in longitude and lat-
itude directions. The space between the strips can guarantee
a free airflow, meaning that this structure can be less affected
by air.

The equivalent criterion of the full-area membrane and
gridmembrane should be established. In recent years, several
equivalent criteria considering different kinds of structures
have been proposed. Liu [5] considered a hoop truss structure
as a beam model, and used an energy equivalence method to
establish the equivalent criterion.Xu [6] deemed amembrane
SAR (Synthetic Aperture Radar) as a cantilever beam and
utilized the Vector Form Intrinsic Finite Element (VFIFE)
method to establish the equivalent model. There are more
researchers used the beam theory to study an inflated fabric
tube [7, 8]. In their studies, the original structure is usu-
ally complex and there may not exist a standard theory for
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analysis. By simplifying the original structure into the sub-
stituting structure, one can establish the equivalent method,
meaning that the original structure may not have to be well
studied. However, the substituting structure must be ana-
lyzed in detail. In this paper, the original structure (full-area
membrane) is quite simple compared with the substituting
structure (grid membrane). Therefore, both the two models
need to be well studied.

This paper proposes a modal equivalent method to make
the full-area membrane and the grid membrane the same nat-
ural frequencies and vibration modes, based on the small
deformation theory. The second section gives a detailed
illustration of modal equivalent method. The third sec-
tion uses a Finite Element (FE) code to verify this modal
equivalent method. The natural frequencies and vibration
modes of the two structures are nearly same. Therefore,
the modal equivalent method proposed by this paper is
valid.

2 Modal equivalent method

When using a gridmembrane to substitute the full-areamem-
brane, the modal equivalent method should be established.
This paper focuses on the small deformation theory. The
stress field of the structure is assumed as homogeneous and
constant, meaning that the stress field is not a function of x
and y (x and y represent the coordinates).

The main content of the equivalent theory is as follows:
firstly, the dynamic equilibrium equation of an infinites-
imal element should be established. Secondly, based on
the Galerkin method, the dynamic equations of the grid
membrane and full-area membrane can be built. Finally, by
comparing the coefficients in the dynamic equations of the
two different structures, the modal equivalent criterion can
be obtained.

2.1 Dynamic equation of an infinitesimal element

The infinitesimal element under tensile forces and shear
forces is shown in Fig. 1. The parameters shown in Fig. 1
are all defined based on the global coordinate system. When
the normal stresses of the membrane are considerably large,
the bending moment can be neglected as its value is rela-
tively small. While the bending moment must be considered
in a wrinkle analysis, since one of the normal stress will be
quite small [9]. The resultant force of the internal forces in
the deflection direction is as follows:

Fz_inner � ∂Nx

∂x
sin θdxdy + Nx

∂θ

∂x
cos θdxdy

+
∂Ny

∂y
sin ϕdxdy + Ny

∂ϕ

∂y
cosϕdxdy

+
∂Nyx

∂y
sin θdxdy + Nyx

∂θ

∂y
cos θdxdy

+
∂Nxy

∂x
sin ϕdxdy + Nxy

∂ϕ

∂x
cosϕdxdy (1)

whereNx andNy denote the tensile forces in unit length;Nyx

and Nxy denote the shear forces in unit length; θ is the angle
between Nx and x-axis; and ϕ is the angle between Ny and
y-axis.

The inertia force in the deflectiondirection is considered as
the external force. Based on the above hypothesis, its expres-
sion is written as follows:

Fz_inertia � ρh

(
dxdy

cos θ cosϕ

)
∂2z

∂t2
(2)

where ρ is the density of the membrane and h is the thickness
of the membrane.

According to the D’Alembert’s principle, and combining
Eqs. (1) and (2), the dynamic equation that considers tensile
forces, shear forces and inertia force is written as follows:

Fig. 1 The microelement with
inner forces: a Tensile forces; b
Shear forces
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∂2z

∂t2
� cos θ cosϕ

ρh

[(
Nx

∂θ

∂x
+ Nyx

∂θ

∂y

)
cos θ

+

(
Ny

∂ϕ

∂y
+ Nxy

∂ϕ

∂x

)
cosϕ +

(
∂Nx

∂x
+

∂Nyx

∂y

)
sin θ

+

(
∂Ny

∂y
+

∂Nxy

∂x

)
sin ϕ

]
(3)

Then, consider some geometry relationships as follows:

tan θ � ∂z

∂x
, tan ϕ � ∂z

∂y

Differentiating both sides of the above equations by x or
y [10], one can yield that

∂θ

∂x
� cos2θ

∂2z

∂x2
,

∂θ

∂y
� cos2θ

∂2z

∂x∂y

∂ϕ

∂x
� cos2ϕ

∂2z

∂x∂y
,

∂ϕ

∂y
� cos2ϕ

∂2z

∂y2

When the vibration deformation is small, θ and ϕ can be
deemed as zero. Therefore

sin θ � 0, cos θ � 1, sin ϕ � 0, cosϕ � 1

Moreover, when the deformation is small, the stress field
of the membrane can be treated as constant and equals to
the pre-stress state. Usually, the predominant item in the pre-
stressed field is normal stress and the shear stress is relatively
small and negligible. Then, one can yield that

Nx�Nx0, Ny�Ny0, Nxy�Nyx � 0

Consequently, based on the small deformation theory, the
dynamic equation of the infinitesimal element can be trans-
formed as follows:

∂2z

∂t2
� 1

ρh

(
Nx0

∂2z

∂x2
+ Ny0

∂2z

∂y2

)

The separation variable method and the modal superposi-
tion method are utilized to solve the above partial differential
equation. The deflection parameter z can be assumed as fol-
lows:

z(x, y, t) �
[∑
m,n

Zmn(x, y)

]
Tmn(t)

whereZmn(x,y) represents the (m,n)th vibrationmode;Tmn(t)
represents the (m,n)th time-history vibration component.
According to the Galerkin method, and considering the
orthogonality between two different modes, the dynamic
equation of the (m,n)th modal can be transformed as follows:

∫∫
©

S

[
Zmn

d2Tmn

dt2
− 1

ρh

(
Nx0

∂2Zmn

∂x2
+ Ny0

∂2Zmn

∂y2

)
Tmn

]
Zmn

dS � 0 (4)

where S represents the integral region of the membrane.
Equation (4) can be simply written as follows:

d2Tmn

dt2
+ ω2

mnTmn � 0 (5)

where

Amn �
∫∫
©

S
Z2
mndS (6)

ω2
mn � − 1

ρhAmn

∫∫
©

S

(
Nx0

∂2Zmn

∂x2
+ Ny0

∂2Zmn

∂y2

)
ZmndS

(7)

From the dynamic equation above, one can get that ωmn

is the natural frequency.

2.2 Frequency of full-areamembrane

The original full-area membrane is shown in Fig. 2. The
length of the membrane is a1; the width is b1; the thick-
ness is h1; the density is ρ1. The subscript ‘1’ represents the
parameters of the original full-area membrane.

The four edges of the membrane are simply supported.
Therefore, the (m,n)th vibration mode can be assumed as
follows:

Zmn_1(x, y)� sin

(
mπx

a1

)
sin

(
nπy

b1

)
(8)

a1

b1

y

x

Fig. 2 Full-area membrane
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Substituting Eq. (8) into Eqs. (6) and (7), one can get that

Amn_1 �
∫∫
©

S
Z2
mn_1dS�a1b1

4
(9)

ω2
mn_1 � 1

ρ1h1

[
Nx0_1

(
mπ

a1

)2

+ Ny0_1

(
nπ

b1

)2
]

(10)

2.3 Frequency of grid membrane

The alternative grid membrane is shown as Fig. 3. The length
of the grid membrane is a2; the width is b2; the thickness is
h2; the density is ρ2; the width of the x-direction strip is
dx_2; the width of the y-direction strip is dy_2. The strips are
uniformly distributed. The number of the x-direction strip is
nx_2; the number of the y-direction strip is ny_2. The sub-
script ‘2’ represents the parameters of the alternative grid
membrane.

The global geometry of the alternative grid membrane
should be identical to the original full-areamembrane. There-
fore

a1 � a2, b1 � b2

The edges of the gridmembrane are also simply supported.
The (m,n)th vibration mode can still be assumed as follows:

Zmn_2(x, y)� sin

(
mπx

a2

)
sin

(
nπy

b2

)
(11)

Substituting Eq. (11) into Eqs. (6) and (7), one can yield
that

Amn_2 �
∫∫
©

Sx_2
Z2
mn_2dS +

∫∫
©

Sy_2
Z2
mn_2dS

b2

dy_2

y

a2

x

dx_2

Fig. 3 Grid membrane

y

x

xi_2_1 xi_2_2

yi_2_1

yi_2_2

dy2

dx2

Fig. 4 Diagram of an x-direction strip and a y-direction strip

�
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)
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(
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)
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]
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(
mπx
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)
dx

∫ b2

0
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(
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)
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]

� a2
2
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(
nπy
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)
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+
b2
2
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(
mπx

a2

)
dx (12)

ω2
mn_2 � − Nx0_2

ρ2h2Amn_2

∫∫
©

Sx_2

∂2Zmn

∂x2
ZmndS

− Ny0_2

ρ2h2Amn_2

∫∫
©

Sy_2

∂2Zmn

∂y2
ZmndS

� 1

ρ2h2Amn_2

[
a2Nx0_2

2

(
mπ

a2

)2 nx_2∑
i�1

∫ yi_2_2

yi_2_1
sin2

(
nπy

b2

)
dy

+
b2Ny0_2

2

(
nπ

b2
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i�1

∫ xi_2_2

xi_2_1
sin2

(
mπx

a2

)
dx

]
(13)

where Sx_2 represents the integral region of the x-direction
strips. Sy_2 represents the integral region of the y-direction
strips. xi_2_1 and xi_2_2 are the x-coordinates of the two lateral
sides of the ith y-direction strip. y i_2_1 and y i_2_2 are the x-
coordinates of the two lateral sides of the ith y-direction strip.
The diagram of an x-direction strip and a y-direction strip is
shown in Fig. 4.

As the strips are uniformly distributed, the lateral side
coordinates of the strips can be expressed as follows:

xi_2_1 �
(

i

ny_2
− 1

2ny_2

)
a2 − dy_2

2
,

xi_2_2 �
(

i

ny_2
− 1

2ny_2

)
a2 +

dy_2
2
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Table 1 Material properties of
the structures

h (m) ρ (kg/m3) Ex (GPa) Ey (GPa) G (GPa) μ

Full-area 0.0001 1600 4 6 2 0.3

Grid 0.0002 1300 2 2 0.74 0.35

yi_2_1 �
(

i

nx_2
− 1

2nx_2

)
b2 − dx_2

2
,

yi_2_2 �
(

i

nx_2
− 1

2nx_2

)
b2 +

dx_2
2

Therefore

xi_2_1 + xi_2_2 �
(

2i

ny_2
− 1

ny_2

)
a2, xi_2_2 − xi_2_1 � dy_2

yi_2_1 + yi_2_2 �
(

2i

nx_2
− 1

nx_2

)
b2, yi_2_2 − yi_2_1 � dx_2

Equation (12) and Eq. (13) can be further simplified as
follows, and the specific process is shown in the Appendix
A.

Amn_2�a2nx_2
4

dx_2 +
b2ny_2

4
dy_2

ω2
mn_2 � 1

ρ2h2Amn_2

[
Nx0_2

(
mπ

a2

)2 a2nx_2
4

dx_2

+Ny0_2

(
nπ

b2

)2 b2ny_2
4

dy_2

]

When a2nx_2dx_2=b2ny_2, one can yield that

Amn_2

� a2nx_2
4

dx_2 +
b2ny_2

4
dy_2�a2nx_2

2
dx_2�b2ny_2

2
dy_2

ω2
mn_2 � 1

ρ2h2

[
Nx0_2

(
mπ

a2

)2

+ Ny0_2

(
nπ

b2

)2
]
a2nx_2
4Amn_2

dx_2

� 1

2ρ2h2

[
Nx0_2

(
mπ

a2

)2

+ Ny0_2

(
nπ

b2

)2
]

(14)

2.4 Modal equivalent criterion

Comparing Eqs. (10) and (14), which are the frequency
expressions of the original full-area membrane and the alter-
native grid membrane, one can yield the equivalent criterion
as follows:

Nx0_2

ρ2h2
�2

Nx0_1

ρ1h1
,
Ny0_2

ρ2h2
�2

Ny0_1

ρ1h1

Meanwhile, the following requirements must be satisfied:

(1) The strips must be uniformly distributed;
(2) a2nx_2dx_2=b2ny_2dy_2;
(3) n

nx_2
/∈ Z and m

ny_2
/∈ Z.

3 Simulation and theory verification

WORKBENCH is utilized as the FE code to verify the above
modal equivalent method. The geometry and material prop-
erties of the original full-area membrane and the alternative
grid membrane are shown in Table 1.

The length of the structures is a1 �a2 �1 m and the
width is b1 �b2 �0.8m. The strips of the grid membrane are
uniformly distributed. In order tomake the first fivemodals of
the two structures equivalent, the number of the x-direction
strip is set as nx_2 �3, and the number of the y-direction
strip is set as ny_2 �7. The width of the x-direction strip is
set as dx_2 �0.02 m. Therefore, according to the equivalent
criterion, the width of the y-direction strip should be

dy_2 � a2nx_2
b2ny_2

dx_2 � 0.0108m

The initial tensile forces in unit length of the full-area
membrane are set asNx0_1 �200 N/m andNy0_1 �300 N/m.
According to the equivalent criterion, the initial tensile forces
in unit length of the grid membrane are set as follows:

Nx0_2�2ρ2h2
ρ1h1

Nx0_1 � 650N/m

Ny0_2�2ρ2h2
ρ1h1

Ny0_1 � 975N/m

Therefore, the initial pre-tension of the two structures can
be calculated as follows:

Fx0_1�Nx0_1b1 � 160N, Fy0_1�Ny0_1a1 � 300N

Fx0_2�Nx0_2dx_2nx_2 � 39N,

Fy0_2�Ny0_2dy_2ny_2 � 73.71N

In the simulation, the force and displacement boundary
conditions of the two structures are set as Figs. 5 and 6.
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(x=0)
(z=0)
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y

Fig. 5 Boundary conditions of the full-area membrane
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Fig. 6 Boundary conditions of the grid membrane

3.1 Vacuum circumstance

In this example, the air effect is not considered, and the nat-
ural frequencies and vibration modes are obtained based on
the eigenvalue decomposition method. The first five vibra-
tion modes of the full-area membrane are shown in Fig. 7,
and the first five vibration modes of the grid membrane are
shown in Fig. 8. The related frequencies are shown in Table 2.
The frequencies of the original full-area membrane are basi-
cally equal to the alternative grid membrane, and the relative
deviations are quite small. Moreover, the vibration modes
are basically same.

3.2 Air circumstance

The natural frequency considering air effect cannot be cal-
culated by the eigenvalue decomposition method directly.
However, it can be obtained from the time-history vibration
data. Based on the Transient Structural module and the CFX

Fig. 7 The first five vibration modes of the full-area membrane. a 1st
mode; b 2nd mode; c 3rd mode; d 4th mode; e 5th mode

Fig. 8 The first five modes of the grid membrane. a 1st mode; b 2nd
mode; c 3rd mode; d 4th mode; e 5th mode

module in WORKBENCH, the Fluid Solid Interaction (FSI)
analysis is utilized to calculate the time-history vibration data
of the structure in air. The Stochastic Subspace Identification
(SSI) method is used to identify the natural frequencies and
vibration modes [11]. The calculation process is shown in
Fig. 9.

The analysis time length is 1.2 s, and the step time is
0.001 s. In the simulation, an excitation point should be
picked to provide vibration motivation on the structure. The
time-history displacement in z-direction of the excitation
point is set as follows:

zexcitation(t) �
100∑
i�1

0.75(i−1) sin[2iπ(t − 0.2)] × 10−8

t ∈ [0.2, 1.2]

123



Aerospace Systems (2018) 1:129–137 135

Table 2 Frequencies of the
structures in vacuum
environment (Hz)

1st 2nd 3rd 4th 5th

Full-area membrane 32.32 44.53 56.95 59.56 64.66

Grid membrane 32.84 45.17 55.21 58.92 64.86

Relative deviation 1.61% 1.44% 3.06% 1.07% 0.31%

Transient
Structural CFX

Deforma�on

Pressure

SSI method

Time-history 
vibra�on data

Natural 
frequencies

Vibra�on 
modes

Fig. 9 FSI calculation and modal identification process
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Fig. 10 The time-history displacement curve of the excitation point

Therefore, this excitation contains the vibration frequen-
cies from 1 to 100 Hz. The total amplitude is less than
2.5 × 10−8 mm, so this vibration is within the scope of
the small deformation theory. During the simulation period
t ∈ [0, 0.2), the pre-tension is loaded onto the structure.
The time-history displacement curve of the excitation point
is shown in Fig. 10.

Node 1 with coordinate (0.07 m, 0.67 m) of the original
full-areamembrane is chosen as the excitation point (red dot),
and the observation points (black dots) are picked as shown
in Fig. 11. Node 2 with coordinate (0.07 m, 0.67 m) of the
alternative grid membrane is chosen as the excitation point
(red dot), and the observation points (black dots) are picked
as shown in Fig. 12.

(0, 0.8) (1, 0.8)

(1, 0)(0, 0)

(0.21, 0.67) (0.5, 0.67) (0.79, 0.67)

(0.21, 0.4)

(0.21, 0.13)

(0.5, 0.4)

(0.5, 0.13)

(0.79, 0.4)

(0.79, 0.13)

(0.07, 0.67)

Fig. 11 The excitation point and observation points of the full-area
membrane

(0, 0.8) (1, 0.8)

(1, 0)(0, 0)

(0.21, 0.67) (0.5, 0.67) (0.79, 0.67)

(0.21, 0.4)

(0.21, 0.13)

(0.5, 0.4)

(0.5, 0.13)

(0.79, 0.4)

(0.79, 0.13)

(0.07, 0.67)

Fig. 12 The excitation point and observation points of the grid mem-
brane

The time-history data from 0.2 to 1.2 s is selected to
identify the vibration modal of the structures. Since the
nonlinearity of this FSI calculation process is strong, the
identified modals are not quite standard, and the fifth modal
of the full-area is missing. However, the identified modals
are basically valid. Therefore, only the first four modals are
considered in the following analysis. The identified modes
are shown in Figs. 13 and 14, and the related frequencies are
shown in Table 3.

According to Table 3, air has an obvious influence on the
full-area membrane: the frequencies in air are far different
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Fig. 13 Identified modes of full-area membrane in air. a 1st mode; b
2nd mode; c 3rd mode; d 4th mode

Fig. 14 Identified modes of grid membrane in air. a 1st mode; b 2nd
mode; c 3rd mode; d 4th mode

Table 3 Frequencies of the structures in vacuum and air

Full-area membrane Grid membrane

In vacuum
(Hz)

In air (Hz) In vacuum
(Hz)

In air (Hz)

1st 32.32 15.19 32.84 32.42

2nd 44.53 24.82 45.17 44.69

3rd 56.95 33.46 55.21 54.07

4th 59.56 37.17 58.92 58.08

from the frequencies in vacuum; however, the frequencies
in air and vacuum of the grid membrane are basically same,
and the relative deviations are about 2%. Therefore, the grid
membrane can be applied as the alternative structure when
conducting a ground structure experiment.

4 Conclusion

To eliminate the air effect on the membrane in a ground
vibration experiment, a grid membrane is explored as the
alternative structure. Based on the small deformation theory,
amodal equivalentmethodof a full-areamembrane and a grid

membrane has been established to make the vibration modal
of the gridmembrane consistentwith the full-areamembrane.
To verify this equivalent method, an FE code is used to calcu-
late the modals of the two structures in vacuum environment.
Themodal of the alternative gridmembrane is basically iden-
tical to the original full-area membrane. Moreover, an FSI
simulation is conducted, and the result indicates the air effect
on the alternative grid membrane is quite small compared
with the original full-areamembrane. Consequently, this grid
membrane can be applied as the alternative structure when
conducting a ground structure experiment. In addition, the
proposed modal equivalent method is valid when consider-
ing small deformation.
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Appendix A

To simplify Eqs. (12) and (13), firstly, the integration term
can be transformed as follows:

nx_2∑
i�1

∫ yi_2_2

yi_2_1
sin2

(
nπy

b2

)
dy � 1

2

nx_2∑
i�1
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when nx_2 is odd, we can get that
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when nx_2 is even, we can get that
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Therefore
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Therefore, when sin nπ
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get that
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Consequently, when n
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Similarly, when m
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Consequently, when n
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/∈ Z, m
ny_2

/∈ Z, we can get that
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Meanwhile, the frequency expression can be simplified as
follows:
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