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Abstract

As the novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection spreads globally, physicians and
physician-scientists are confronted with an enlarging body of literature about the nature of this pandemic. Understanding the
current epidemiological models for disease spread, mortality, and recovery is more important than ever before. One of the most
relevant mathematical models relating to the spread of a pandemic is the susceptible-infectious-removed (SIR) model. Other
models worth exploring are the susceptible-exposed-infectious-removed (SEIR) and the susceptible-unquarantined-quarantined-

confirmed (SUQC) model.
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Introduction

The current outbreak of the novel severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) infection has reached
most countries around the world and has had a devastating
impact on several of them. Physicians of various specialties
have found themselves in the eye of the storm of the corona-
virus disease 2019 (COVID-19). Physicians and physician-
scientists are working around the clock to treat infected pa-
tients, educate the public about social distancing measures,
and test potential treatments and vaccines. To fully understand
the nature of the pandemic and the impact of social distancing
measures, one must understand the mathematics behind it.
One of the most relevant mathematical models relating to
the spread of a pandemic is the susceptible-infectious-
removed (SIR) model and its variants. Unfortunately, the
mathematical depth of this model can seem daunting to some
physicians and physician-scientists. In this paper, we will try
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to explain and simplify the mathematics behind some of these
epidemiological models.

Epidemiological studies that divide a population into com-
partments are called compartmental models. The most com-
monly used of these models is the SIR model. This type of
model has been used in several studies analyzing the spread of
COVID-19 [5-8]. These models help us understand how
COVID-19 spreads, predict the regional peaks of the pandem-
ic, and understand the impact of various quarantine measures.
All the epidemiological models, which we will discuss in this
paper, are based on analyzing systems of differential equa-
tions. Differential equations focus on the rate of change of a
variable, or group of variables as time passes. They are found
in almost all aspects of medicine. They help us in dose med-
ications, understand disease spread, and even dialyze patients.
When more than one variable is involved, we usually need
more than one differential equation to model a given situation.
These are referred to as a system of differential equations. Let
us begin with the most basic form of SIR models.

SIR Model

During a pandemic, some of the most important factors to
know is how fast it will spread and what measures can be
taken to slow it down. These impact public health policies
including quarantines, travel restrictions, and resource
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allocation. The SIR model divides a given population into
three groups: susceptible, infectious, and removed. As time
passes by, the number of people in each of these groups
changes. The number of susceptible people is highest at the
very beginning of a pandemic, since everyone who is not or
has not been infected is considered susceptible in most cases.
On the other hand, the number of infectious individuals is at
its lowest during the beginning of a pandemic. As time passes
by, the number of susceptible people decreases, and the num-
ber of infectious people increases. These changes can be
modeled using differential equations.

Let us assume that the independent variable (¢) stands for
time measured in days. Time is the only independent variable
in this case. In other words, all other variables evolve as a
function of time. Let us use (S) to refer to the number of
susceptible individuals at any given time (f). Another way to
indicate that S is a dependent on time is to call it S(¢).
Similarly, 7 or I(¢) represents the number of infectious individ-
uals as a function of time. R or R(f) represents the number of
removed individuals as function of time. Removed means that
they are no longer contagious either because they recovered or
because they died. The three dependent variables, S, 7, and R,
represent the three possible segments of a given population
with N, number of people. This means that the sum of all three
variables is equal to N [1-3, 8].

S+I+R=N

In Fig. 1, we can see that as time passes by, S(¢) decreases,
while /(f) and R(¢) decrease. The sum of the three variables at
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Fig. 1 SIR model. The above figure shows an example of an SIR model.
The susceptible group (yellow), infectious group (red), and removed
(green). Adapted from [4]
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Fig. 2 Transmission of disease

any given time remains constant as long as the total number of
people in the population, &, is constant. If there is a significant
change in N, the basic SIR model cannot be used, and a dif-
ferent epidemiological model would have to be used. If we
focus on the infectious group, 1(f), shown in red, we see that
once it peaks, it starts to decrease again. That is because at
some point in time, everyone who was infected will have to
move to the removed group, R(f). Everyone with an infection
has to either recover from the infection or die as a result of it at
some point.

To better understand the connection between the variables
above, we can express them as a fraction of the total popula-
tion, N. This way, we can assume that sum of the three frac-
tions is always equal to 1, as long as N remains unchanged.
Remember a total of 1.0 is the same as saying a percentage of
100%. Therefore, the equation above (S+ /+ R= N) can be
rewritten as
S I R !
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We can also express the time variable (¢), without changing

the overall equation:
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Fig. 3 Susceptibility over time. Notice how the slope of the curve
changes over time
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Fig. 4 Three graphs of the
susceptible group with varying
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Let us simplify the equation above by using a small letter to
represent each composite function above. In other words, let
us use a small s(¢) to represent the ratio of susceptible individ-
uals at any given time, instead of their actual number, i(?) to
represent the ratio of infectious individuals, and r(¢) the ratio
of removed individuals [1-3, 9].

The reason for doing is to enable us to carry out calcula-
tions with greater ease. Working with three equations whose
sum always adds up to 1 is much more elegant than working
with equations whose sum is a large number such as V. It also
allows us to extrapolate data more easily when comparing the
findings between various populations.

s(6)+i(t) +r(r) = 1

The extent to which the disease spreads at any given time
depends on several factors. The first factor is the number of
individuals who are susceptible to the disease, s(¢). One way to
reduce the number of susceptible people is by vaccination.
The second fact which affects disease spread is the number
of infectious individuals, (7). This can be reduced by isolating
infectious individuals within a population and preventing the
entry of more infectious individuals from other populations.
Finally, the spread of the infection also depends on the rate of
transmission of disease per contact. We will use the parameter,
5, to represent the chance that an infectious individual will
transmit the disease to a susceptible individual. It depends
on the likelihood that an infectious individual comes in

e Infectious
e Removed

Fig. 5 Removal from infectious group
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contact with a susceptible individual and the rate of disease
transmission per contact [1-3, 8, 9]. This is where social dis-
tancing, hand hygiene, and wearing masks have the most
impact.

What Fig. 2 says is that if an individual is susceptible at a
given time, then he or she would either stay in that group or
move into the infectious group. Since the number of suscep-
tible people can only decrease over time, the rate of change for
susceptible individuals must always be a negative number.
The magnitude of this change depends on the ratio of infected
individuals at any given time #(¢), the ratio of susceptible in-
dividuals s(7), and the likelihood of disease transmission be-
tween the two groups, 3. We will express the rate of change of
susceptible individuals s(¢), as a differential equation. The no-

tation, <, simply indicates the rate of change over time.

d
s dpr
The rate of change of the susceptible individuals over time
can be expressed as % [1-4, 8].
ds

i =6 x s(t) x i(t)

r(t)

: >

Fig. 6 Removed group over time. Notice the S-shape of the curve as the
slope changes
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The differential equation above shows the rate of change of
ds

NS
s(?), and i(#). The negative sign indicates the rate of change is
always negative since it is always decreasing.

Figure 3 models s(¢) vs time (7). The dotted lines show the
slope of the curve at a given point in time. This slope is equal
to %. Notice how the slope is always negative. We can also see
that the slope increases in magnitude at first but then starts to
flatten.

Figure 4 shows how changing the magnitude of 3 impacts
the susceptibility curve. When £ is relatively large, the infec-
tion spreads fast and the number of susceptible individuals
drops quickly. When (3 is relatively small, we see a flatter
curve as the disease spread is slowed down.

The rate at which infectious individuals moves into the
removed group, R, is called . The removed group includes
individuals who recover and those who die, since both are
removed from the infectious pool. The average number of
days it takes for an individual to recover from the disease, #,
is inversely proportional to . Factors that reduce length of
illness can include medications and environmental factors as
well (Fig. 5).

susceptible individuals, ¢, at any given time, depends on [,

i(t)

Fig. 8 The infectious curve i(¢) as a function of time (#)

The rate of change of the removed group at any given time
depends on the ratio of infectious individuals at that time and
the value of v [1-4, 8]. This helps come up without second
differential equation, focusing on the rate of change of the
removed group. Notice that the rate of change in this case is
always a positive number, since the number of recovered peo-
ple can only increase with time.

d
=y xir)

dt

Figure 6 shows us that the slope of the curve is always
positive for the removed group. Note that the slope is equal
to &,

di

Figure 7 demonstrates how changing the value of v can
affect the removed curve. When 7 is large, people recover
very quickly and more from the infectious group to the re-
moved group. This means that the disease could die out before
infecting the entire population. In other words, a large v means
less people ultimately catch the infection.

Characteristics of the Infectious Curve

We mentioned previously that the rate of change for the sus-
ceptible group is always negative and that the rate of change of
the removed group is always positive. Figure 8, below, shows
us that the infectious curve is positive at first until it reaches its
peak then becomes negative.

When the rate of change is positive, it means that more
people are getting infected than those that re-recovering.
When the rate of change is negative, it means that more people
are recovering than are getting infected, which happens after
the disease reaches its peak. The rate of change of the infec-
tious group depends on both v and 3. It also depends on the
ratio of individuals in the infectious and susceptible groups at
a given time. As 3 increases, the rate of change for i(¢)
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Fig. 9 This figure shows how the infectious curve changes with changing values of v and 3. Similar patterns can be inferred about mortality trends
which occur later in time. We can see that as 3 gets smaller, the infection curve becomes flatter. As ~ gets larger, the peak gets smaller
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Fig. 10 Basic reproductive number and herd immunity threshold.

Adapted from [8]
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increases, and as -y increases, the rate of change for i(¢) de-
creases, in accordance with the following differential equa-
tions [1-4, 8]:

— =B xi(t) x s(t)—y x i(t)

The differential equation above shows the rate of change of
the infectious group, % , on the left side. The rate increases as
[ increases and as s(¢) increases. This makes sense because
more people are likely to get infected when the size of the
susceptible population is larger or when the risk of transmis-
sion is higher. The rate of decreases when + is higher since this
suggests faster recovery.

The average number of people that each person infects is
called the basic reproductive number, Ry [8]. Assuming that
the total population is 1.0 and that each of the three subgroups
are a fraction of the total, Ry can be calculated as follows:
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Fig. 11 Sequence of events in an
SEIR model

When Ry is positive, the rate of infection increases. In Fig.
9, graph C has the highest R). When Ry is negative, the rate of
infection decreases. In Fig. 9, graph G has the lowest Ry,.
Several factors help reduce R, including social distancing,
hand hygiene, and vaccination. R, can also be used to estimate
the herd immunity threshold (HIT), which is the minimum
ratio of individuals that must become immune to a disease
so that it would die out (Fig. 10). It can be calculated as
follows [8].

HIT = 1-—
0

SEIR Model

While the SIR model is the most common, other variants of
the SIR model are also used by epidemiologists. All these
models use a unique system of differential equations. As men-
tioned before, the system of differential equations used for the
standard SIR model is as follows:

r(t)

b

s(t)

e(t)

t
Fig. 12 SEIR model evolving as a function of time

. % = —f x s(t) x i(¢) rate of change of susceptible group
o 49— 3xi(r) x s(t)—y x i(t) rate of change of infectious
group

« 9 — ~ % i(7) rate of change of removed group

Another commonly used epidemiological model is called
the susceptible-exposed-infectious-removed (SEIR) model.
The main difference between the SEIR model and the SIR
model is the addition of the exposed group to the SEIR model.
The exposed group is a step between the susceptible and the
infectious groups. It includes individuals who have been ex-
posed to the infection but are not themselves infectious yet.
Since we have four groups instead of three in this model, we
require four differential equations to describe the spread of
infection [10, 11].

« = —8xs(r) x i() rate of change of susceptible group

A

I(t)

L

t

Fig. 13 The relationship between the various compartments of an SUQC
model. Notice the slope of each graph at any given point. Adapted from
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« de— 3 xi(t) x s(t)=6 x e(t) rate of change of exposed
group

« 9= § x e(t)—y x i(r) rate of change of infectious group

« 9 — ~ % i(7) rate of change of removed group

Notice the addition of the coefficient d, which gives us the
likelihood that an exposed person becomes infected. The
strength of this model is that it is somewhat more realistic
since exposed individuals do not immediately become infec-
tious. It also helps us understand the impact of isolating ex-
posed individuals on the dynamics of disease spread (Figs. 11
and 12).

SUQC Model

Looking at a more practical example, Zhao et al. investigated
the spread of COVID-19 in different parts of China [5]. They
used a susceptible, unquarantined infected, quarantined infect-
ed, confirmed infected (SUQC) model, where S(¢) is the num-
ber of susceptible cases as a function of time, U(¥) is the num-
ber unquarantined infected cases, Q(¢) is the number of
quarantined infected cases, and C(?) is the number of con-
firmed cases as a function of time. The number of removed
individuals, R, was not included in this model [5]. Finally, the
total number of infected individuals at given time is /(f) such
that [5]

1(t) = U(t) + O(¢) + C(1)

The SUQC model is unique in that it shows the direct
impact of quarantine measures on disease spread. In this mod-
el, « is the number of individuals infected by an
unquarantined individual per day. The rate of change in the
number of susceptible individuals is given by the following
equation [5]:

ds  —axU(t) x S(1)
dt N

Again, the negative sign indicates that the number of sus-
ceptible individuals can only decrease over time. Other factors
that affect it include the magnitude of «, the total number of
susceptible individuals, and the number of unquarantined in-
dividuals, who are more likely to spread the illness.

1 is the rate at which unquarantined infected individuals
get quarantined and [ is the rate at which cases are confirmed.
This gives these additional equations [5]:
dU _ axU(r) x S(t)
dt N

d
% o x U 5 x 0

=7, x U(¢) the rate of change of unquarantined cases

the rate of change of quarantined cases
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dc
e B x Q(t) the rate of change of confirmed cases

Notice the similarities between the equations used in the
SUQC model and those used in the SEIR model. Even though
there is no removed group, individuals in the quarantined
group are effectively removed from the population temporar-
ily until their test results come back. If the diagnosis is con-
firmed, they continue to be effectively removed from the pop-
ulation preventing more disease spread (Fig. 13) [5].
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