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Abstract
To highlight the current aspects and developments in the management of neurogenic urine storage dysfunction and to
sensitize urologists for this interdisciplinary and important topic. Neurogenic lower urinary tract dysfunction affects a
large proportion of patients with chronic neurological diseases or lesions such as multiple sclerosis, Parkinson’s disease,
stroke, spina bifida, and spinal cord injury. Such a dysfunction is not only highly bothersome and devastating for the
quality of life but also poses a significant risk for health. Particularly, detrusor overactivity and detrusor-sphincter-
dyssynergia are frequent pathological patterns in neurogenic lower urinary tract dysfunction that are associated with
sequelae such as recurrent urinary tract infections and renal impairment. The current cornerstones of treatment for urine
storage dysfunction in neurological patients such as intermittent self-catheterization, antimuscarinic drugs, botulinum
neurotoxin A intradetrusor injections, augmentation cystoplasty, urinary diversion, and artificial urinary sphincter have
significantly contributed to improvements in QoL, health, and survival of neurological patients affected by neurogenic
lower urinary tract dysfunction. However, these treatments have not advanced much recently. Moreover, the level of
evidence of many therapy options specifically regarding their application in neurological patients is quite low and the
main and auxiliary mechanisms of action are often only poorly understood. Despite former accomplishments in Neuro-
Urology, more specific evidence for treatments of lower urinary tract dysfunction in neurological patients as well as
better knowledge on their mechanisms of action is needed to advance the field and exploit the full treatment potential of
available therapies.
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Introduction

The human lower urinary tract (LUT), comprising the urinary
bladder, the urethra, and the external urethral sphincter, has
two opposing functions [1]: (1) the low pressure, continent,
and symptom free storage of urine which is constantly
draining from the kidneys, and (2) the periodical, voluntarily
controlled, unobstructed, and complete release of the stored
urine.

The correct progression of each phase and specifically the
switch from one phase to the other requires the orchestration
of a neural network of afferent and efferent pathways involv-
ing different levels of the nervous system, i.e., peripheral au-
tonomic and somatic nerves, spinal neurons and tracts, and
finally supraspinal processes to enable voluntary control and
judgment of appropriateness (Fig. 1).
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Hence, it is not surprising that neurological diseases or
lesions that interfere with such complex neuronal control
easily lead to dysfunction and/or symptoms in the LUT.
Indeed, the prevalence of lower urinary tract dysfunction
(LUTD) and related symptoms in neurological conditions
such as spinal cord injury (SCI), multiple sclerosis (MS),
Parkinson’s disease (PD), and stroke, can reach 100%
(Tables 1 and 2).

Lower urinary tract symptoms (LUTS) such as urinary fre-
quency, urgency, and incontinence or urinary retention are
highly bothersome [15, 16] and severely reduce quality of life
(QoL) [17] particularly in neurological patients as they often
already struggle with the comorbidities of their neurological

disease / lesion such as impaired mobility. Hence, restoration
of bladder function is one of the top priorities of individuals
with neurogenic lower urinary tract dysfunction (NLUTD),
such as SCI patients [18].

In addition, the underlying dysfunction of LUTS (Tables 3
and 4) can bear certain health risks. The most relevant sequel-
ae that are associated with NLUTD are upper urinary tract
(UUT) damage, i.e., impairment of kidney function, and re-
current urinary tract infections [20–28].

Not by accident, renal disease and other urological compli-
cations such as urosepsis ranged among the most frequent
causes of death in SCI patients until the mid 1970s whereupon
neuro-urological work up and follow-up gradually became

Fig. 1 Schematic illustration of spinal cord and brain stem regions
involved in lower urinary tract (LUT) control and their most relevant
neuronal connection to the LUT. The illustration summarizes the
findings of neurophysiological animal studies from De Groat et al. [2]
and early functional neuroimaging studies in humans from Blok et al. [3].
During the storage phase (a), which normally accounts for most of the
day (98%), the detrusor is relaxed and the bladder neck closed due to
sympathetic tone acting on the bladder body and neck. Sympathetic fibers
travel along the hypogastric nerve from the sympathetic nuclei in the
intermediolateral column of the lumbar spinal cord to the LUT and pro-
vide adrenergic input to beta-receptors on intramural ganglia of the blad-
der body (→ relaxation) and alpha-receptors at the bladder neck (→
contraction/closure). Bladder afferents traverse through the pelvic nerve
and enter the dorsal horn of the sacral spinal cord. At low filling volumes,
there might be only little afferent activity and weak afferent signals might
reach the PAG and diencephalic structures (e.g., thalamus), but bladder
sensations do usually not reach consciousness during this state. With
increasing bladder volumes, afferent activity might increase, likely due
to changes in intravesical pressure and at some degree of filling, bladder
sensations will reach consciousness in the form of a first desire to void.
From the sacral dorsal horn, excitatory collaterals reach the sympathetic
nuclei in the lumbar intermediolateral column and the sacral frontal horn,
where the motor neurons of the external urethral sphincter (EUS) are
located (Onuf’s nucleus), to facilitate sympathetic input to the bladder

and bladder neck, and somatic input to the EUS respectively. This sup-
ports continence during increasing bladder volumes, when voiding has to
be postponed. Another region thought to be responsible for continence is
the pontine L-region (named L-region as it is lateral to the other relevant
pontine structure named the pontine micturition center or M-region or
Barrington’s nucleus), which has excitatory input to the EUS motor neu-
rons in Onuf’s nucleus and thus facilitates the elevation of the EUS tone.
If the decision to empty the bladder is made (in the higher brain centers),
the periaqueductal gray (PAG) activates the pontine micturition centre
(PMC) (b). The switch between L-region and PMC activation is some-
times conceived in a simplified manner as moving a lever from one
programme to the other. Only one region can be activated at a time. From
the PMC strong inhibitory inputs reach the sympathetic nuclei in the
intermediolateral lumbar cord to suppress the sympathetic input to blad-
der body and bladder neck to enable synergic micturition.
Simultaneously, the PMC has strong excitatory projections to the para-
sympathetic nuclei in the sacral spinal cord that in turn activate the
detrusor muscle via muscarinic receptors. The parasympathetic fibers
travel along the pelvic nerve. In addition to the parasympathetic activa-
tion, the PMC has excitatory collaterals to inhibitory interneurons in the
sacral cord that reduce the activity of EUS motor neurons, and thus facil-
itate EUS relaxation and synergic micturition. Figure and legend reprinted
by permission from Springer-Verlag London Limited: Mehnert [4]
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established [29–36]. Nowadays, due to improvements in med-
ical care, including neuro-urological management, many pa-
tients with neurological disease or trauma and NLUTD have
increased their life expectancy to a level close to normal [33,
37–40]. As a consequence, not only the number of elderly
individuals with NLUTD is increasing but also the time period
for which they have to deal with their NLUTD. This is further
potentiated by the increasing life expectancy of the general
population, and consequently, age-associated, chronic degen-
erative neurological diseases such as PD [41, 42]. Finally, these
aspects are also relevant from a uro-oncological view point as,
while the incidence of bladder malignancies may not be nec-
essarily higher in NLUTD compared to the general population,
they may occur earlier and with a more rapid/aggressive pro-
gression. This can, in conjunction with the comorbidities relat-
ed to the neurological disease/lesion, lead to a higher degree of
morbidity [43–45]. Thus, it is all the more important to under-
stand how to manage NLUTD and associated complications to
provide sustainable treatment and follow-up strategies.

Storage Dysfunction of the Lower Urinary
Tract in Neurological Patients

Detrusor Overactivity

One of themost relevant risk factors for developing LUTS and
complications of lower and upper urinary tract, especially in

neurological patients, is detrusor overactivity (DO) [21, 28,
46–48]. This term describes a condition of involuntary
detrusor contractions during the storage phase that result from
loss or impaired supraspinal inhibitory input to the sacral blad-
der reflex circuitry. This also implicates that DO can occur as a
consequence of any lesion / disease affecting the suprasacral
central nervous system. This makes DO one of the most com-
mon dysfunctions in neurological patients (Tables 1 and 2).
DO can be visualized and diagnosed using filling cystometry.
This specialized examination provides details on the maxi-
mum pressure amplitude during DO, the frequency and dura-
tion of DO, and the volume of DO occurrence, which are
relevant parameters for a full understanding and characteriza-
tion of the extent of DO. An increase in detrusor pressure
during DO will usually cause a sensation of urgency, if sen-
sory function is maintained. When pressure levels of DO ex-
ceed the sub-vesical closing pressure, the DOwill result in DO
incontinence. Moreover, DO has been proven to be associated
with irreversible morphological alterations of the LUT and
renal function impairment in the long-term [20–23, 25, 26].

The morphological alterations associated with DO include
detrusor hypertrophy, trabeculation of the bladder wall, and
the development of pseudo-diverticula [25]. Renal function
impairment associated with DO may occur through multiple
mechanisms, such as obstruction, excessive pressure expo-
sure, and recurrent infections.

Usually, the terminal distal parts of the ureters pass trans-
versely through the bladder wall to their orifices in the trigone

Table 1 Prevalence of different neurogenic lower urinary tract dysfunction (NLUTD) and symptoms in multiple sclerosis (MS), Parkinson’s disease
(PD), multiple system atrophy (MSA), and stroke. Table adapted from [5]

MS PD MSA Stroke

Prevalence of NLUTD 34–99% [6] 27–71% [7, 8] 78–96% [9] 38–94% [10, 11]

Average time interval between diagnosis
of neurological disease and onset of
urological symptoms [years]

5.9 (4.6–7.8) [6] 5 [12] 2 [12]

Urinary urgency 63.4% (32–86%) [6] 33–68% [7, 8] 63% [13] 70% [10]

Urinary frequency 54.4% (25–99%) [6] 16–71% [7, 8] 45% [13] 59% [10]

Nocturia 60–86% [7, 8] 74% [13] 76% [10]

Urinary urgency incontinence 56.3% (19–80%) [6] 27% [8] 63% [13] 29% [10]

Dysuria 34.8% (6–79.5%) [6] 30% [12] 69% [12] 6% [10]

Retention / incomplete bladder
emptying

(PVRV >100 mL)

35.6% (8.3–73.8%)
[6]

52% [13] 48% [10]

DO 65% (43–99%) [6] 45–93% [8] 35–56% [12, 13] 36–82% [10]

DSD 35% (5–83%) [6] 47–98% (incl. bladder neck dyssynergia) [12, 13]

Reduced compliance 2–10% [6] 31% [13]

Detrusor hypocontractility 25% (0–40%) [6] 53% [8] 52–67% [9, 12] 33–40% [10]

Open bladder neck during filling
cystometry

31% [9] 87% [9]

Pathologic EUS-EMG 5% [9] 93% [9]

The listed numbers reflect only gross guide values due to sparse and/or heterogeneous data form investigations using different assessment methods.
PVRV post void residual volume,DO detrusor overactivity,DSD detrusor-sphincter-dyssynergia, EUS-EMG external urethral sphincter electromyogram
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[49]. This intramural passage provides a flap valve mecha-
nism with compression of the intramural ureter parts during
a detrusor contraction, preventing vesico-ureteral reflux
(VUR) during micturition. During storage, when the detrusor
is relaxed, the intramural ureter is not compressed and can
thus deliver the urine into the bladder. However, in case of
detrusor hypertrophy due to chronic DO, the intramural ureter
parts may become constantly compressed by the hypertrophic
detrusor resulting in ureteric outflow obstruction, which in the
long-term will lead to dilatation of the ureters and subsequent-
ly also of the pelvicalyceal system of the kidneys [25]. Such
pressure-related ectasia of the UUT is associated with renal
damage [25, 27].

Even prior to the development of detrusor hypertrophy, DO
can become harmful to renal function if detrusor pressure
increases to amplitudes above 40 cmH2O, pressures that have
been demonstrated to be associated with UUT deterioration
[21, 22, 50, 51]. However, this pressure threshold of
40 cmH2O for UUT damage is deemed controversial due to
the rather low level of evidence and the clinical observation
that intravesical storage pressures below 40 cmH2O do not
guarantee UUT safety but may result in even more severe
UUT deterioration if tolerated over a longer period of time.
Hence, the pressure level of DO alone is certainly not the only
factor related to UUT deterioration but rather a mixture of
pressure level, frequency of DO contractions, and duration
of pressure elevation during single DO contractions [52].
Development of VUR in this context may aggravate pressure
exposure and transmission to the kidneys but the absence of
VUR does not prevent renal impairment in DO.

UUT deterioration due to DO may even be accelerated by
recurrent urinary tract infections (UTI). Patients with LUTD
such as DO are prone to develop recurrent UTI [24, 47, 53]

and in conditions of altered UUT urodynamics, i.e., obstruc-
tion and VUR, such infections may reach the upper urinary
tract more frequently and easily.

Detrusor-Sphincter-Dyssynergia

The development of elevated storage pressures and dysfunctional
dynamics of the urinary tract due to DO may aggravate with
Detrusor-Sphincter-Dyssynergia (DSD), which is frequently as-
sociated with DO specifically in neurological patients [54].

DSD is defined as a detrusor contraction concurrent with an
involuntary contraction of the urethral sphincter and/or
periurethral striated muscle groups. Occasionally, flow may
be prevented altogether [55]. Hence, DSD may on the symp-
tomatic level limit or prevent urinary incontinence but in turn
contribute to significant rise of intravesical pressure due to
functional subvesical outlet obstruction during a detrusor con-
traction. Such DSD-related intravesical pressure excesses can
increase urgency or pain symptoms and, more importantly,
potentiate the risks for LUTand UUTcomplications, the latter
leading to significant renal damage in the long run [56].

Different types of DSD have been described previously
[57–59]: type (1) concomitant increase in both detrusor pres-
sure and sphincter EMG activity with sudden sphincter relax-
ation at the peak of the detrusor contraction, type (2) sporadic
contractions of the external urethral sphincter throughout the
detrusor contraction, and type (3) a crescendo-decrescendo
pattern of sphincter contraction which results in urethral ob-
struction throughout the entire detrusor contraction. However,
the clinical relevance of the different types of DSD is contro-
versial as type distinction does not yet have any impact on
treatment decision or outcome [59, 60].

Autonomic Dysreflexia

An acute and potentially life-threatening complication associ-
ated with DO/DSD most commonly observed in SCI patients
with lesions above the thoracic (Th) level 6 is autonomic
dysreflexia (AD) [61, 62]. AD is defined as an increase in
systolic blood pressure (SBP) of at least 20 mmHg from base-
line [63]. It is based on an sympathetic overreaction due to the
loss of descending central (brain stem) inhibitory pathways to
the sympathetic chain causing vasoconstriction below the lev-
el of lesion and consequently a blood pressure increase [61].
This becomes especially pertinent in SCI lesions above Th6
due to the lack of central modulation on the splanchnic nerves
that usually emanate below Th5 but innervate the critical mass
of blood vessels required to cause elevation of the blood pres-
sure [61]. In response to the excessive hypertension during
AD, baroreceptors above the lesion level may become activat-
ed and induce a vagal-mediated bradycardia. This compensa-
tory parasympathetic output above the level of lesion is
thought to be responsible also for symptoms such as

Table 2 Associations between injury levels and urodynamic findings in
patients with spinal cord injury (SCI) based on a meta-analysis by Jeong
et al. [14]

Level of SCI p value*

Cervical Thoracic Lumbar Sacral

No. of Patients 259 215 137 46

DO [%] 65 78 49 22 < 0.001

DSD [%] 63 72 33 13 < 0.001

DU [%] 9 9 39 70 < 0.001

Normal [%] 1 2 2 9 0.002

Thoracic lesions are indicated to spinal cord level T9 or above, and inju-
ries at the T10 through T12 levels are included in lumbar lesions. The
combined suprasacral and sacral lesions have been excluded from this
analysis

DO detrusor overactivity. DSD detrusor-sphincter-dyssynergia. DU
detrusor underactivity. Table adapted from [14]

*Pearson chi-square test
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headache, flushing and sweating in the head and neck region
[61]. However, AD may also occur completely asymptomat-
ically, which makes it even more hazardous in daily life.

In addition to DO/DSD, AD can be triggered by various,
often usually benign stimuli below the lesion, i.e., bladder
and/or bowel distention, urinary stones or infection, skin le-
sions/irritations, wounds, fractures, menstruation, and sexual
intercourse [64]. When AD occurs, it is important and most
effective to eliminate the trigger stimulus, i.e. emptying the
bladder, to prevent otherwise rapid progression of AD.

Restoration of Urinary Bladder Storage
Function

DO with or without DSD are the main causes of increased
storage pressures and long-term damage to the UUT and
LUT particularly in neurological patients [20–24, 26–28, 46,
47, 50]. Hence, to protect the UUT function and prevent long-
term complications, it is necessary to maintain or restore low-
pressure and unrestricted urinary drainage from the kidneys
[65]. Depending upon to the extend and severity of the

Table 3 Summary of common storage symptoms that might occur due
to lower urinary tract dysfunction in neurological diseases or lesions in
association with their typically related urodynamic and clinical findings.

Definitions of Symptoms are reproduced from the International
Continence Society Standardisation of terminology in lower urinary
tract function [19]

Storage symptom Most typical urodynamic and clinical findings
(listed are single findings that can also occur in combination)

Typical neurological
lesion site

Urinary urgency
Complaint of a sudden compelling desire to pass

urine which is difficult to defer.

- Detrusor overactivity 1, 2

- Low bladder compliance 1, 2
1 suprasacral
2 supraspinal

Urinary frequency (increased daytime frequency,
pollakisuria)

Complaint by the patient who considers that
he/she voids too often by day.

- Detrusor overactivity 1, 2

- Low bladder compliance 1, 2

- Incomplete bladder emptying / elevated post void
residual volume due to hypocontractile detrusor 3, 4

or bladder outlet obstruction
(anatomical: prostate enlargement, urethral stricture;
functional: detrusor-sphincter-dyssynergia 1, 2)

1 suprasacral
2 supraspinal
3 subsacral / lumbosacral
4 peripheral

Nocturia
Complaint that the individual has to wake at

night one or more times to void.

- Detrusor overactivity 1, 2

- Low bladder compliance 1, 2

- Incomplete bladder emptying / elevated post void
residual volume due to hypocontractile detrusor 3, 4 or
bladder outlet obstruction (anatomical: prostate enlargement,
urethral stricture; functional: detrusor-sphincter-dyssynergia 1, 2)

1 suprasacral
2 supraspinal
3 subsacral / lumbosacral
4 peripheral

Urgency urinary incontinence
Complaint of involuntary leakage accompanied

by or immediately preceded by urgency.

- Detrusor overactivity 1, 2

- Low bladder compliance 1, 2
1 suprasacral
2 supraspinal

Stress urinary incontinence
Complaint of involuntary leakage on effort or

exertion, or on sneezing or coughing.

- Urethral sphincter insufficiency 3, 4

- Bladder neck incompetence 3, 4
3 subsacral / lumbosacral
4 peripheral

Mixed urinary incontinence
Complaint of involuntary leakage associated

with urgency and also with exertion, effort,
sneezing or coughing.

- Detrusor overactivity 1, 2

- Low bladder compliance 1, 2

AND
- Urethral sphincter insufficiency 3, 4

- Bladder neck incompetence 3, 4

1 suprasacral
2 supraspinal
3 subsacral / lumbosacral
4 peripheral

Continuous urinary incontinence
Complaint of continuous urinary leakage.

- Open bladder neck and flaccid urethral sphincter 3, 4

OR
- Overflow incontinence due to bladder outlet obstruction

(anatomical: prostate enlargement, urethral stricture;
functional: detrusor-sphincter-dyssynergia 1, 2)
and/or acontractile 3, 4, hyposensitive bladder 3, 4

1 suprasacral
2 supraspinal
3 subsacral / lumbosacral
4 peripheral

Reduced or absent bladder sensation
The individual is aware of bladder filling but does

not feel a definite desire to void or reports no
sensation of bladder filling or desire to void.

- Bladder distension during filling cystometry is not
perceived or only at high volumes 1–4

1 suprasacral (only in
complete spinal cord
lesions)

2 supraspinal (only in
complete spinal cord
lesions)

3 subsacral / lumbosacral
4 peripheral

Increased bladder sensation
The individual feels an early and persistent

desire to void.

- Bladder distension during filling cystometry is
perceived early, at low volumes 1, 2.

1 suprasacral
2 supraspinal
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neurogenic urinary storage dysfunction, this can be achieved
using conservative, minimally invasive, and/or surgical treat-
ment options:

Conservative Treatment Options

Neurophysiological Background

Despite the apparently more obvious cause of LUT storage
dysfunction in neurological patients based on the impairment
of aforementioned multilevel neuronal control, it is important
to also consider the physiological mechanisms occurring with-
in the LUT. This is of particular relevance since there are as yet
no direct treatments available for most of the neurological
lesions/diseases causing LUT storage dysfunction.
Understanding the physiological processes in the LUT also
on a receptor and neurotransmitter level, however, can help
to detect useful targets for pharmacotherapy.

In previous decades, different receptors, chemical media-
tors and signal transduction pathways within the LUT have
been discovered and described as being involved in normal
and pathological LUT function [66]. Of those, the cholinergic
system, including muscarinic receptors, is probably the best
described and longest-knownmechanism in the LUT [67, 68].

In order to contract, the detrusor requires an appropriate
command, delivered by acetylcholine released from
parasympathetic postganglionic nerve terminals.

Acetylcholine binds to the muscarinic receptors on the detrusor
and activates G-protein-related pathways that lead to smooth
muscle contraction [69]. Depending on the muscarinic receptor
subtype that is activated, detrusor contraction is facilitated by
(1) inhibition of adenylyl cyclase via M2 receptors and subse-
quent decrease of intracellular cAMP, and/or (2) phospholipase
c activation via M3 receptors to generate inositol triphosphate
which then releases Ca2+ from the sarcoplasmic reticulum [69].
Since intracellular Ca2+ release is regarded as the main trigger
for smooth muscle contraction, M3 receptors are regarded as
most relevant for the initiation of voiding contractions [69].

Beyond the detrusor, muscarinic receptors of all subtypes
(M1 – M5) have been found elsewhere in the LUT [67, 68]:
e.g., urothelium, suburothelium, afferent nerve fibers, and au-
tonomic postganglionic nerve endings. Their exact role and
function in these locations is not yet fully established.
However, there is evidence that muscarinic receptors on the
postganglionic nerve endings are involved in facilitation (M1)
and inhibition (M2, M4) of axonal acetylcholine release [68].
In the urothelium and suburothelium, activation of muscarinic
receptors can lead to release of neurotransmitters such as
adenosine triphosphate (ATP), that in turn can modulate affer-
ent nerve- and smooth muscle activity [70].

In the context of DO, both of idiopathic and neurogenic
origin, alterations of muscarinic receptor expression and sen-
sitivity have been observed and seem to contribute to the path-
ophysiological process of DO: e.g., muscarinic receptors in

Table 4 Summary of common voiding symptoms that might occur due
to lower urinary tract dysfunction in neurological diseases or lesions in
association with their typically related urodynamic and clinical findings.

Definitions of Symptoms are reproduced from the International
Continence Society Standardisation of terminology in lower urinary
tract function [19]

Voiding symptom Most typical urodynamic and clinical findings
(listed are single findings that can also
occur in combination)

Typical neurological
lesion site

Urinary retention
Inability to pass urine to empty the bladder. This might

occur acute or chronically, complete or incomplete.

- Hypo- or acontractile detrusor muscle 3, 4

- Bladder outlet obstruction (anatomical:
prostate enlargement; functional:
detrusor-sphincter-dyssynergia 1, 2)

1 suprasacral
2 supraspinal
3 subsacral /

lumbosacral
4 peripheral

Urinary hesitancy
An individual describes difficulty in initiating micturition

resulting in a delay in the onset of voiding after the
individual is ready to pass urine.

- Bladder outlet obstruction (anatomical: prostate
enlargement, urethral stricture; functional:
detrusor-sphincter-dyssynergia 1, 2)

- Hypocontractile detrusor 3, 4

1 suprasacral
2 supraspinal
3 subsacral /

lumbosacral
4 peripheral

Urinary intermittency
An individual describes urine flow which stops

and starts, on one or more occasions, during micturition.

- Detrusor-sphincter-dyssynergia 1, 2

- Hypocontractile detrusor 3, 4
1 suprasacral
2 supraspinal
3 subsacral /

lumbosacral
4 peripheral

Slow urinary stream
Perception of reduced urine flow, usually compared to previous

performance or in comparison to others.

- Bladder outlet obstruction (anatomical: prostate
enlargement, urethral stricture; functional:
detrusor-sphincter-dyssynergia 1, 2)

- Hypocontractile detrusor 3, 4

1 suprasacral
2 supraspinal
3 subsacral /

lumbosacral
4 peripheral
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the detrusor tissue of patients with idiopathic detrusor overac-
tivity (IDO) and neurogenic detrusor overactivity (NDO) dem-
onstrated increased sensitivity to stimulation, compared to
healthy controls [71] and decreased suburothelial expression
[72]. In the animal model, SCI seem to alter the muscarinic
receptor profile on the postganglionic nerve terminals towards
upregulation of M3 and downregulation of M1 receptors [73,
74].

The sympathetic counterparts of muscarinic receptors are
beta-adrenoceptors. Their activation, naturally by noradrena-
line release from postganglionic sympathetic neurons of the
hypogastric nerve, can mediate relaxation of the detrusor and
thus contribute to the restoration of bladder storage function.
Beta-3-adrenoceptors seem to be the most relevant in this
context [75] and recent clinical trials have resulted in approval
of a beta-3-adrenoceptor agonist for the treatment of bladder
overactivity including DO [76, 77] (see paragraph on beta-
adrenoceptor agonists below).

In addition to the classical cholinergic/adrenergic mecha-
nisms, there are other pathways, neurotransmitters, and recep-
tors that have been described to play a role in bladder storage
(dys-)function and thusmay serve as relevant treatment targets
[66]: e.g., purinergic system, cannabinoid system, nerve
growth factor, Rho-kinase pathway, transient receptor poten-
tial (TRP) channels, prostanoid receptors, potassium channels,
and vitamin D3 receptors. So far, purinergic receptors, TRP
channels, and the cannabinoid system seem to constitute the
most promising targets [66].

The purinergic system is based on the principle that ATP is
released from the urothelium upon stretch and binds to
purinergic receptors (P2X) on suburothelial sensory nerves
which mediate the sensation of bladder filling. Increased
levels of ATP release or purinergic receptor expression may
contribute to increased sensitivity, i.e., urinary urgency, or
detrusor overactivity [66]. In the bladders of patients with
NDO, increased levels of nerve fibers expressing the
purinergic receptor P2X3 have been detected [78, 79].
Patients with a clinical response to intravesical vanilloid treat-
ment with resiniferatoxin showed decreased P2X3 expression,
whereas non-responders did not [78]. Similar effects were
observed in response to botulinum neurotoxin A (BoNT/A)
intradetrusor injections [80]. In SCI rats, which showed higher
frequencies of spinal cord field potentials and non-voiding
contractions compared to normal rats, application of P2X3
antagonists A-317491 and AF353was demonstrated to reduce
both parameters [81, 82].

TRP cationic ion channels are universal sensors of physical
and chemical stimuli that are ubiquitous in various tissues of
the human body including the LUT [83]. Their basic mecha-
nism is to allow cationic (e.g., K+, Ca2+) influx upon stimula-
tion, causing secondary reactions dependant on the tissue in
which the TRP channel is located, e.g., depolarization with
elicitation of an action potential in neurons. Within the LUT,

several TRP channels have been detected in various layers
(including mucosa and detrusor) and on neuronal fibers inner-
vating the LUT. Of such TRP channels, specifically TRPV1,
TRPV2, TRPV4, TRPM8, and TRPA1 have been attributed to
play a relevant role in normal and pathological LUT function
[66, 83]. As with the increased purinergic receptor expression
in patients with NDO, TRPV1 expression was also found to
be elevated in NDO patients [84, 85]. Again, treatment with
resiniferatoxin or BoNT/A intradetrusor injections was able to
reduce TRPV1 expression in those patients responding also
clinically to treatment [80, 84, 85].

Despite their promising effects in human studies, the evidence
for intravesical treatment with vanilloids such as capsaicin and
resiniferatoxin is still very limited and adverse events including
pelvic pain, facial flush, worsening of incontinence, autonomic
dysreflexia, urinary tract infection, and haematuria are very fre-
quent [86]. Intravesical vanilloids are not approved for treatment
in LUTD / LUTS and have largely fallen into oblivion, particu-
larly after the propagation of BoNT/A intradetrusor injections.
However, based on their action on specific LUT receptors and
afferent fibers, vanilloids are still of scientific interest and may
undergo a clinical revival once more tolerable solvents for their
application are developed [86].

The cannabinoid system in the LUT involves two G-protein-
coupled cannabinoid receptors, CB1 and CB2, their
endogeneous (e.g., anandamide, 2-arachidonoylglycerol) and
exogeneous (phytocannabinoids, synthetic cannabinoids) li-
gands, and related enzymes for biosynthesis and degradation
(e.g., fatty acid amid hydrolase, monoacylglycerol lipase) [87].
Hence, effects can be elicited directly by stimulation of the can-
nabinoid receptors or indirectly by inhibiting the degradation
enzymes such as fatty acid amid hydrolase (FAAH). In SCI rats,
treatment with the selective CB2 agonist O-1966 resulted in
improved bladder function recovery which was associated with
a significant reduction of inflammatory response in the spinal
cord following injury [88]. In MS patients with NDO, delta-9-
tetrahydrocannabinol alone or in combination with cannabidiol
applied as oral capsule or spray improved symptoms such as
urinary incontinence and frequency [89]. However, symptomatic
improvements were not reflected urodynamically and there were
mild but frequent adverse events such as UTI, dizzinesss, head-
ache, vomiting, and worsening of dry mouth [66, 89]. Although
Sativex® is an approved drug, its indication in most countries is
limited to treatment of refractory spasticity in patients with ad-
vanced MS. The overall clinical evidence for the use of canna-
binoids in the treatment of NLUTD is still very limited and trials
applying indirect cannabinoid stimulation, e.g., use of FAAH
inhibitors, for the treatment of NLUTD, are lacking.

Despite the numerous potential treatment targets identified
in different animal models, of which only few are neurogenic,
i.e., SCI or MS, translation of findings into humans is a major
challenge. Thus, approved pharmacotherapy for LUTD/
LUTS is still very limited and antimuscarinic drugs are still
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the mainstay of conservative therapy for bladder storage dys-
function (see paragraph below).

Antimuscarinic Drugs

In principle, antimuscarinics act as reversible competitive an-
tagonists, that block the muscarinic receptors in the detrusor
myocytes resulting in reduced detrusor excitability through
acetylcholine release at parasympathetic nerve terminals
[69]. Assuming urinary urgency and DO are the result of pre-
mature acetylcholine release from the parasympathetic nerves
during the storage phase, the available antimuscarinic drugs
will shift the dose response curve of acetylcholine to the right,
i.e., more acetylcholine is necessary to cause the same effect
or symptom, resulting in the postponement or attenuation of
cholinergic stress in the detrusor. Clinically, this results in the
typical improvements in LUTD / LUTS such as increased
warning time, larger bladder capacities prior occurrence of
urgency and DO, and reduced pressure amplitudes of DO
[90–96]. This competitive antagonism is a dynamic process,
the efficacy of which depends inter alia on the available con-
centration of the antimuscarinic drug at the neuromuscular
junction in relation to the acetylcholine concentration. Thus,
high dosages of antimuscarinics may cause enough detrusor
sedation to result in increased post-void residual volume
(PVRV) or even urinary retention [94, 97, 98]. However, with
the clinically applied and approved antimuscarinic dosages,
this seems to happen rarely—at least in patients with non-
neurogenic overactive bladder symptoms (OABS) [99, 100].
Nevertheless, antimuscarinics still apply a verifiable effect on
storage symptoms and DO [90, 91, 96], raising the question
why they seem to selectively act during the storage but not
voiding phase. Certainly, antimuscarinics cannot differentiate
or act differently across both phases and this observation may
simply be a false conclusion, as many aspects of the patho-
genesis of OABS and the interplay between muscarinic recep-
tor expression, acetylcholine release and antimuscarinic drugs
remain unknown. In addition, the treatment effect of currently
available antimuscarinic drugs for LUTD/LUTS is often little
greater than placebo [101] and their effect on the detrusor
pressure amplitude during micturition has never been system-
atically analyzed. This would be of relevance for our under-
standing of antimuscarinic action and the lack of voiding
symptoms does not per se prove that there is no effect on
detrusor contractility during voiding at all. Yet, potential
relationships between antimuscarinic effects during the
storage and voiding phase remain unclear, e.g., if the reduc-
tion in DO or urgency corresponds to a reduction in voiding
contraction. The explanation that during micturition the ex-
pected massive neuronal release of acetylcholine cannot be
countered by antimuscarinic drugs in the approved dosages
[102] appears reasonable in view of the competitive antag-
onistic mechanism of action of antimuscarinic drugs but

still leaves unclear what happens during the storage phase
causing urinary urgency and DO that can be alleviated by
antimuscarinics. As mentioned, some premature neuronal
ace ty lchol ine Bl eakage^ tha t can be covered by
antimuscarinic drugs at the approved dosages may be in-
volved, providing support to the neurogenic hypothesis of
OABS [103], but non-neuronal acetylcholine release and
muscarinic receptors on other tissues than detrusor may
also play a role.

Recent studies in animals and isolated human bladder tissue
provide evidence for acetylcholine release from sources other
than the parasympathetic nerve terminals, i.e., urothelium and
suburothelial myofibroblasts, and the presence of muscarinic
receptors on afferent nerves [102, 104]. In addition, it has been
demonstrated that antimuscarinic drugs can suppress adenosine
triphosphate release form the urothelium [102, 105]. The
antagonization of acetylcholine release from non-neuronal
sources and the modulation of neurotransmitter release at the
urothelial and suburothelial level by antimuscarinic drugs may
influence localized autonomous non-micturition contractile ac-
tivity [106] and afferent activity, which in consequence reduces
OABS [102]. However, the detailed mechanism in humans,
especially if there is a direct afferent effect of muscarinic drugs,
requires further elucidation.

Although some newer antimuscarinic drugs show some se-
lectivity for the M2 and/or M3 receptors on the detrusor, all
antimuscarinic drugs for LUTD / LUTS treatment still bind to
other muscarinic receptors elsewhere in the body causing, to
various extents, adverse events such as dry mouth, constipation,
blurred vision, somnolence, dizziness, and cognitive impairment
[107]. The main route of antimuscarinic drug administration is
oral, through which extended-release compared to immediate-
release formulations are usually better tolerated and enable a
once-daily application. Alternative administration routes, such
as transdermal and intravesical application, are available and
may be an option for reducing some side effects [107].

The voluminous literature and evidence available for the
use of antimuscarinic drugs is mainly related to the treatment
of OABS which occurs per definition only in patients without
any neurological etiology of their LUTS for whom these drugs
have been mainly developed and marketed [91, 96, 108].
However, there is also some evidence for the efficacy of
antimuscarinic drugs in NDO [90, 92, 109]. In conjunction
with the relatively good safety profile and tolerability, as well
as being a conservative treatment strategy, are the reason
antimuscarinic drugs also remain first line treatment for
NDO [65]. Data on the urodynamic effects of antimuscarinics
in NDO are primarily available for Bolder^ drugs such as
oxybutynin, trospium chloride, propiverine, and tolterodine
and show increases in maximum cystometric bladder capacity
of about 120 mL and reductions in maximum detrusor pres-
sure amplitude of about 28 cmH2O [92, 109]. Data for
urodynamic effects of newer drugs in NDO such as
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darifenacin, solifenacin, or fesoterodine are scarce.
Solifenacin seems to be beneficial but with somewhat less
impact on maximum cystometric bladder capacity and maxi-
mum detrusor pressure [110].

For some patients with NDO, antimuscarinic drugs are not
efficacious at the available dosages [109]. This may be related
to the fact that current antimuscarinics as competitive antago-
nists cannot resist the likely massive cholinergic output from
the parasympathetic nerve terminals during full-blown NDO.
Here, some authors suggest the application of higher dosages
either of the same or as a combination of different
antimuscarinic drugs [111–115]. However, this is off-label
use without sufficient evidence and adverse events might be
more pronounced, decreasing the benefit/risk ratio and patient
compliance with this therapy [65, 90].

Beta-Adrenoceptor Agonists

An alternative strategy is combined treatment of an
antimuscarinic drug and the newer beta-3-agonist mirabegron,
aimed at achieving a synergistic effect by targeting two differ-
ent receptors without exceeding approved dosing [116, 117].
In addition to a small, retrospectively-analyzed case series
suggestig beneficial urodynamic and clinical effects of such
combination treatment [118], there is a very recently pub-
lished randomized placebo-controlled trial available, conclud-
ing that mirabegron monotherapy with 50mg once daily im-
proves both urodynamic variables and patient reported out-
comes in patients with NDO [119]. However, this trial had a
very short follow-up period of only 4 weeks and the main
urodynamic parameters such as maximum detrusor pressure
and maximum cystometric bladder capacity were not signifi-
cantly improved, raising doubts as to the efficacy of
mirabegron in the treatment of NDO. More comprehensive
data are lacking. Moreover, mirabegron may not be a good
option in the treatmet of patients prone to AD due to its sym-
pathomimetic properties, which may cause elevated blood
pressure and palpitations and potentially lead to more pro-
nounced symptoms and blood presure elevations during AD.

Per- or Transcutaneous Neuromodulation

Neuromodulative therapies aim to modulate neuronal signals in
both afferent and efferent directions, exerting their effect by
fairly slowly-occurring alterations of neuronal communication
and circuitry. Thus, they must be distinguished from
neurostimulation aiming at a direct response, i.e., muscle con-
traction, upon stimulation. The exact mechanism of action of
neuromodulation for LUTD/LUTS remains unknown but it is
hypothesized that, in the dorsal horn of the sacral spinal cord,
bladder afferent activity may be inhibited through interneurons
activated by somatic sensory pathways originating in the exter-
nal genitalia, perineum, lower limb and muscles of the pelvic

floor via the pudendal and/or tibial nerve [120, 121]. This inhib-
itory interaction between larger somatic sensory fibers and small
bladder afferents (A-delta or unmyelinated C fibers) may oper-
ate in a similar way to the ‘gate control’ theory of pain [122].
Animal studies suggest that pudendal nerve stimulation can elic-
it two effects [123]: (1) suppression of pelvic nerve activity to
the detrusor by inhibition of the sacral micturition reflex at either
the afferent input or the parasysmpathetic pre-ganglionic motor
neurons and (2) activation of sympathetic neurones running in
the hypogastric nerves causing inhibition of the parasympathetic
efferent motor neurons at the level of the pelvic ganglia.

Based on these hypotheses, the most frequently investigat-
ed sites to apply per- or transcutaneous neuromodulation for
the treatment of LUTD/LUTS are the dorsal genital nerve
[124] as a terminal branch of the pudendal nerve and the tibial
nerve [125].

The approach of using the pudendal and tibial nerve as
therapeutic targets for NLUTD goes back at least to the pub-
lication by Parker M.M. and Rose D.K. in 1937, which dem-
onstrated reduced DO in response to pin prick stimulation at
the glans penis and sole of the foot in complete traumatic SCI
patients [126]. In the 1970s, initial reports of electrical stimu-
lation of terminal branches of the pudendal nerve, mainly
using anal or vaginal plugs to reduce detrusor (over)activity,
were published [127, 128]. Today, clitoral/penile, vaginal or
rectal electrodes to reach the pudendal nerve or its terminal
branches are commercially available, but transcutaneous elec-
trical nerve stimulation (TENS) for LUTD / LUTS treatment
is not limited to the genital/rectal area and may also be applied
to sacral and suprapubic sites using conventional surface elec-
trodes [124]. For percutaneous tibial nerve stimulation
(PTNS), a 34-gauge needle electrode is inserted approximate-
ly 5 cm cephalad to the medial malleolus and posterior to the
tibia with a surface electrode on the arch of the foot [121]. In
some more recent studies, transcutaneous tibial nerve stimu-
lation (TTNS) has been used, which works with another sur-
face electrode instead of the needle and thus makes it more
amenable to individual home-use.

Both TENS and PTNS/TTNS have been demonstrated to
be effective on urodynamic and bladder diary parameters in
patients with NLUTD [124, 125]. Specifically, TENS in-
creased maximum cystometric capacity by 4–163 mL, re-
duced maximum storage detrusor pressure by 3–58 cmH2O,
the number of bladder emptyings/24 h by 1–3, and the number
of incontinence episodes/24 h by 0–4 [124]. PTNS/TTNS
increased maximum cystometric capacity by 49–150 mL, re-
duced maximum storage detrusor pressure by 4–21 cmH2O,
the number of bladder emptyings/24 h by 3–7, and the number
of incontinence episodes/24 h by 1–4 [125].

Despite these promising beneficial effects, there are very
few long-term results [129] and a lack of QoL data. Larger
randomized controlled trials are needed to provide reliable
evidence, which might be, in addition to the handling and
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necessity for regular application of treatment sessions, a rea-
son that this kind of therapy is still not very commonly used,
despite the commercial availability of inexpensive devices
and the fact that adverse events are almost inexistent.

Intermittent Self-Catheterization

In addition to its obvious utility in emptying the urinary blad-
der, it is often necessary to add intermittent self-catheterization
(ISC) to the management of bladder storage dysfunction in the
neurological patient in order to achieve continence. It may
even represent the first choice in patients with DO inconti-
nence provoked by a reduced functional bladder capacity prior
to the occurrence of the DO incontinence due to accumulation
of residual urine volume. Post-void residual volumemay even
increase with therapies aiming to restore continence by
detrusor sedation in order to reduce or prevent DO, i.e.,
antimuscarinic drugs, BoNT/A intradetrusor injections and
augmentation cystoplasty. If such a residual volume becomes
too large and the bladder is not regularly emptied, symptoms
such as urinary urgency and incontinence may persist or reoc-
cur due to a reduced functional capacity. In such cases, ISC is
today’s gold standard for regularly, efficiently, and autono-
mously emptying the bladder. A certain degree of hand func-
tion and in females also of pelvic and lower limb mobilization
is required to adequately perform ISC and these aspects must
be considered in the treatment strategy of LUTD in neurolog-
ical patients.

Since its introduction in 1972 by Lapides [130], catheter
models and characteristics have significantly improved and
today there is a wide selection of high-tech catheters available,
covering the needs of nearly every patient. More recent data
and expert panels are in favor of single-use catheters with a
hydrophilic coating [131, 132]. However, further evidence
from prospective randomized controlled trials evaluating cath-
eter type (coated vs. uncoated) and catheterization technique
(sterile vs. clean vs. aseptic; single-use vs. re-use) in a broader
context, including evaluation of therapy compliance, QoL,
and costs is needed.

Other Conservative Treatment Options

There are a few other alternative conservative treatment op-
tions available such as pelvic floor muscle training [133] and
intravesical electrostimulation [134, 135]. In particular pelvic
floor muscle training under professional guidance is a first line
conservative treatment option that should be considered if
appropriate to improve LUT function. However, the level of
evidence for these therapies in the treatment of NDO is very
limited as randomized controlled trials are lacking. Moreover,
p e l v i c f l oo r musc l e t r a i n i ng and i n t r av e s i c a l
electrostimulation require at least some preserved sensory-

motor function to be effective and therefore may be suitable
only for a subset of patients with NDO.

Minimally Invasive Treatment Options

Implantable Devices for Tibial Nerve Stimulation

Sacral Neuromodulation

Similar to the principles described for TENS and PTNS/TTNS
earlier, sacral neuromodulation (SNM) aims to modulate the
activity of one of the neural pathways affecting the pre-
existing activity of another neural pathway, i.e., LUT-related
afferent and efferent pathways, via spinal interneurons and
synaptic interaction. Available evidence suggests that both
spinal reflexes and supraspinal circuits involved in LUT con-
trol are modulated in this way [140, 141].

Although SNM has been commercially available for more
than 20 years, it was not initially used for NLUTD in the first
place, as it was believed that intact neuronal innervation is a
prerequisite for SNM to be effective [142–144]. In contrast to
the per- or transcutaneous neuromodulation, SNM is an im-
plantable therapy that delivers constant stimulation to the sa-
cral nerve roots. For the purposes of LUTD/LUTS treatment,
electrodes are usually placed next to the S3 root as it passes
through the sacral foramen.

In a first stage, the quadripolar electrodes (tined lead,
Medtronic, Minneapolis, Minnesota, USA) are placed in a
minimally-invasive fashion by puncturing the 3rd sacral (S3)
foramen under fluoroscopic guidance and implanting the tined
lead using the Seldinger technique with a special introducer
sheath [145, 146]. The procedure can be performed under local
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To facilitate tibial nerve stimulation outside the hospital or clin-
ic setting implantable devices are also available [136–139]:
Urgent-SQ® (formerly Uroplasty then Cogentix Medical,
now Laborie, Mississauga, ON, Canada), RENOVA®
(BlueWind Medical, Herzliya, Israel), and StimGuard® im-
plantable miniature device (StimGuard, Pompano Beach, FL,
USA). These devices consist of a small electromagnetic im-
pulse receiver requiring no battery with stimulation electrodes
and an external electromagnetic impulse generator. The impulse
receiver with electrodes is implanted next to the tibial nerve,
usually above or at the ankle, and the external impulse genera-
tor is strapped around the ankle during therapy sessions to allow
wireless transmission of the stimulation signal to the implanted
receiver to induce stimulation. Despite this smart approach and
some decent long-term-data [136], currently available studies
focus on non-neurogenic overactive bladder (NNOAB) patients
only and the level of evidence is generally low due to the lack of
randomized controlled trials [136–139]. Hence, currently, no
recommendation or conclusion on the use in neurological pa-
tients can be made.



anesthesia, which allows for evaluation of sensory responses
and the anal motor response. However, sensory testing during
tined lead placement for sacral neuromodulation does not nec-
essarily improve clinical outcomes of neuromodulation [147].
Following tined lead placement, which can be performed uni-
or bilaterally, electrode wires are tunneled subcutaneously and
connected to an external stimulator [145, 146]. During a sub-
sequent test phase, different neuromodulative settings, i.e.,
number of active electrodes, stimulation frequency, and stim-
ulation strength, can be evaluated with respect to treatment
efficacy. If an improvement of at least 50% can be achieved
with a certain parameter setting and the patient is happy to go
for the full implantation, the permanent neuromodulator
(Insterstim or Interstim II, Medtronic. Minneapolis,
Minnesota, USA) is implanted into the gluteal subcutaneous
fat tissue [145, 146].

To date, a pooled success rate of 68% in the test phase
and 92% in the fully implanted condition has been de-
scribed for SNM in the treatment of NLUTD [140].
Despite these very promising numbers, the current evi-
dence is based on rather small prospective cohort studies
and retrospective case series only and consequently con-
stitutes an evidence level too low to allow a final conclu-
sion or recommendation [65]. The first randomized con-
trolled trial is currently ongoing (NCT02165774) [148].

Adverse events seem to be more frequent after complete
implantation than during the test phase and comprise lead
migration (7%), pain at the neuromodulator implantation site
(5%), infection at neuromodulator implantation site (5%), hy-
persensitivity to stimulation (4%), infection at the lead site
(2%), pain at the lead site (1%), lead fracture (1%), migration
of the neuromodulator (1%), malfunction of the
neuromodulator (1%), and others (4%) [140].

A more recent study using bilateral SNM for treatment of
LUTD in patients after complete traumatic SCI demonstrated
excellent results on bladder, bowel and sexual function [149].
NDO in particular could be prevented resulting in normo-
capacitive and normo-active bladders in the storage phase.
This surprisingly advantageous effect was attributed to the
early time point of implantation, i.e. 3 months after SCI. An
early application of SNM may at least partly prevent the for-
mation or emergence of pathological reflex circuits in the spi-
nal cord below the lesion during the spinal shock phase that
otherwise results in NDO. Also, detrusor inhibitory effects via
the sympathetic hypogastric nerve may be activated or facili-
tated through SNM, contributing to a degree of autonomic
balance below the lesion that otherwise is deranged due to
the SCI [149]. However, this potentially promising approach
has only been described in this publication of 10 cases and
long-term, multi-center, and randomized controlled data are
lacking.

Very recently, newer devices for SNM have been devel-
oped, e.g., Virtis® (Nuvectra, Plano, TX, USA) and

Axonics Sacal Neuromodulation System (Axonics, Irvine,
CA, USA), that provide improvements with regard to MR-
compatibility and ability to recharge the implanted
neurostimulator. Since none of the devices are yet approved
for treatment, the clinical experience is currently still very
limited and data for use in NLUTD are lacking. However,
initial study results appear promising, at least in NNOAB
patients, not only with respect to symptom relief but also in
terms of cost-effectiveness [150–152].

Botulinum Neurotoxin A Intradetrusor Injections

BoNT/A is a highly potent neurotoxin that has been in
medical use for several decades in the treatment of local-
ized motor dysfunction and muscle spasms such as bleph-
arospasm, cervical dystonia, strabism, and hemifacial
spasm [153]. Beyond motor/movement disorders, also
treatment of autonomic dysfunction such as sialorrhea,
hyperhidrosis, and detrusor overactivity using BoNT/A
injections has been explored.

The proposed general mechanism of action of BoNT/A is
the irreversible cleavage of the SNAP-25 protein in the axon
terminal of the neuromuscular junction. SNAP-25 is a SNARE
(soluble N-ethylmaleimide sensitive fusion protein attachment
receptor protein) that is responsible for the fusion of the synap-
tic vesicles into the synaptic membrane and subsequent release
of the neurotransmitter, i.e., acetylcholine, from the vesicles
into the synaptic cleft [153, 154]. The disenabling of SNAP-
25 by BoNT/A prevents or reduces acetylcholine release upon
arrival of an action potential at the axon terminal and hence
results in a chemo-denervation of the target muscle.
Depending on the applied dosage, such chemo-denervation
can reduce elevated muscle tone or spasticity or even paralyze
the muscle. Despite the permanent cleavage of the SNAP-25
protein, the duration of effect of BoNT/A is limited to several
weeks or months depending inter alia on the type of targeted
nerve terminal (somatic vs. autonomic) and applied dosage
[154–156]. The mechanism presumed to be responsible for
the reversibility of the neuroparalysis is synaptic sprouting with
formation of new neuromuscular junctions [154, 155].

Due to the large molecular size, i.e., 150 kD for the core
toxin alone, BoNT/A cannot be absorbed through skin or mu-
cosa and needs to be injected to reach the target tissue. Intra-
detrusor injections can be applied via a flexible or rigid cysto-
scope [157]. Although, several aspects of the injection tech-
nique, i.e., number of injection sites, volume per injection and
injection depth are still matter of discussion, the currently ap-
proved dosage and technique for the treatment of NDO implies
a total dose of 200 units onabotulinumtoxinA, as 1 mL (~ 6.7
Units) injections across 30 sites into the detrusor [158, 159].

There are several different BoNT/A formulations on the mar-
ket, i.e., onabotulinumtoxinA (Botox®), abobotulinumtoxinA
(Dysport®), incobotulinumtoxinA (Xeomin®) of which
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currently only onabotulinumtoxinA is approved for the treatment
of NDO. However, two ongoing Phase-III studies using
abobotulinumtoxinA in the treatment of NDO (NCT02660138,
NCT02660359) may lead to approval of abobotulinumtoxinA in
the near future.

OnabotulinumtoxinA 200 or 300 units significantly re-
duced the mean frequency of urinary incontinence per week
by 11 episodes in patients with NDO at 6 weeks after treat-
ment compared to placebo. In the same time, maximum
cystometric capacity significantly increased on average by
145 mL and maximum detrusor pressure decreased on aver-
age by 33 cmH2O compared to placebo [160].

In selected cases, 100 units may be sufficient to reduce
NDO and associated symptoms but still allow voluntary mic-
turition [161].

BoNT/A intra-detrusor injections are a safe treatment with
few adverse events that are mostly self-limiting such as
haematuria (relative risk 1.7), injection site pain, procedure-
related urinary tract infection (relative risk 1.47), and general-
izedmuscle weakness (relative risk 2.59) [156, 160]. However,
urinary retention (relative risk 5.58) can occur and needs to be
explained to the patient prior to injection as it may require the
use of intermittent or indwelling catheters [156, 160].

Due to the limited effect duration, repeated treatments are
necessary in the majority of cases, which seems to be feasible
without loss of efficacy [162–164]. Caution should be taken in
regard to multidisciplinary BoNT/A treatments to prevent un-
intended overdosage. It is recommended to not exceed a total
dose of 360 units onabotulinumtoxin-A administered in a
3 month interval [158].

Based on the existing high-level evidence, BoNT/A intra-
detrusor injections are recommended as second line treatment
for NDO refractory to antimuscarinic treatment [65]. Usually,
prior antimuscarinic treatment is stopped shortly after
BoNT/A intradetrusor injections, but may be continued as
concomitant treatment in selected cases to optimize efficacy
if required. Antimuscarinic treatment may be restarted once
the BoNT/A effects starts to fade and symptoms recur to
bridge the time until reinjection.

Similar to antimuscarinic drugs, recent basic research
has revealed multiple alternative or additional sites and
mechanisms of action of BoNT/A within the LUT [165].
Such alternative mechanisms include modulation of neu-
rotransmitter and -peptide release, receptor trafficking,
and neurogenesis both on peripheral but probably also
at a central level [165].

Moreover, BoNT/A has been evaluated in applying
intraprostatic injections, which seem to improve prostate
related LUTD/LUTS [166]. This may be specifically rel-
evant for male neurological patients who show a prostatic
component in their LUTD/LUTS but in whom surgical
intervention would bear increased risk of urinary inconti-
nence [167–169].

Surgical Treatment Options

Sacral De-afferentation (With/Without Sacral Anterior Root
Stimulation)

Considering NDO as result of an overshooting spinal reflex be-
cause of impaired or lost inhibitory control from supraspinal
centers similar to musculoskeletal spasticity, transection of the
afferent branch of the reflex arc would result in the disruption
of this spinal reflex and consequently abolish NDO. Sacral de-
afferentation is a neurosurgical procedure with the aim of
transecting the dorsal S2-S5 nerve roots. It requires a
laminectomy to access the spinal nerve roots and opening of
the dura to microsurgically separate the ventral from the dorsal
roots prior to transection [170]. An extradural approach is also
possible but implies a higher risk of incomplete de-afferentation
and injury of the anterior root due to a less definite separation
between anterior and posterior root segments compared to the
intradural approach [171]. Intraoperative urodynamics and car-
diovascular monitoring allow the functional differentiation be-
tween ventral and dorsal roots upon electrical stimulation
[170]. After this procedure, a form of catheterization, i.e., ideally
ISC, is required to empty the bladder.

Complete de-afferentiation of the S2-S5 roots can be
achieved in 73–95% [170, 172, 173] resulting in an
acontractile, flaccid detrusor and continence without further
treatment in 83–85% [170, 173]. Moreover, coexisting AD
can also be abolished with this treatment in about 59–61%
[172, 173].

The main drawbacks of this treatment are the invasive and
irreversible character of the procedure with the necessity of
performing a laminectomy and to irreversibly transect intact
nerve tissue resulting in loss of potentially preserved sensory
function of the pelvis and lower limbs. Moreover, sexual func-
tion (e.g., reflex erections) and the defecation reflex will be
lost. These drawbacks are the main reason why few patients
are today willing to undergo such treatment. A possibility for
regaining function and to even empty the bladder through the
urethra without using a catheter is to implant a sacral anterior
root stimulator (SARS) after sacral de-afferentation. A SARS,
e.g. Finetech-Brindley bladder stimulation system, can be im-
planted in the same procedure following sacral de-
afferentation by placing special electrodes bilaterally around
the anterior roots S2-S4. By placing each root in a separate
electrode segment, independent control of pelvic functions is
possible, for example S3 stimulation for detrusor contraction
and micturition, S3 + S4 stimulation for rectal pressure rise
and defecation, and S2 stimulation to induce penile erection
[170]. However, adjustments may differ on an individual level
and while the efficacy of the SARS for micturition and defe-
cation seems to be good, it is less effective for sexual function.

Although the SARS is sometimes referred to as a bladder
pacemaker in the same manner as the SNM system, both
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procedures must be clearly distinguished. The SARS is much
more invasive, needs much higher amplitude of stimulation
above the pain threshold, and thus has a much narrower indi-
cation, reserved to selected SCI patients.

Augmentation Cystoplasty

Augmentation cystoplasty is a well-established abdominal
surgical procedure that aims to reduce detrusor contractility
and to enlarge bladder capacity. Detrusor contractility is re-
duced by removing part of the detrusor or cleaving the
detrusor at the dome and thereby interrupting its muscular
continuity. Bladder capacity is increased by replacing or aug-
menting the bladder with bowel tissue. In addition, augmen-
tation cystoplasty can be combinedwith a continent cutaneous
urinary diversion to facilitate ISC via an abdominal site, when
ISC via the urethra is impossible or difficult [174].

Although several types of gastrointestinal tissues have been
used for augmentation cystoplasty [175], i.e., the stomach,
ileum, colon, or sigmoid, ileum is nowadays the most fre-
quently used tissue, generally due to its slightly more advan-
tageous properties with regard to intraoperative handling,
postoperative complications, and effectiveness [175].

Using an augmentation cystoplasty for NDO treatment, re-
duction of MDP from 60 to 15 cmH2O and an increase in MCC
of 166–500mL can be achieved, contributing to continence rates
of 69–88% [176–180]. In addition, augmentation cystoplasty
has been described as reducing VUR [181]. Patients with con-
comitant neurogenic sphincter insufficiency may require a com-
plementary, anti-stress urinary incontinence (SUI) procedure,
e.g. aponeurotic sling or artificial sphincter to achieve
continence.

Augmentation cystoplasty requires some hospitalization
time (2–4 weeks) but has a rather low mortality rate of 0–
3.2% [175]. However, there are several moderate to severe
complications that can occur in the short and long term
[176–178, 180, 182]: urinary stones (6–21%), recurrent symp-
tomatic UTI (20%) including recurrent pyelonephritis (1.5–
11%), ileus (1.9–11.7%), chronic diarrhea (7–18.6%), perfo-
ration (0.75–4%), and fistulas (0.4–1.3%). In addition, meta-
bolic complications can occur due to altered absorption/
reabsorption of metabolic products in the augmented bladder
and in the shortened gastrointestinal tract. Thus, type and se-
verity of metabolic complications largely depend on the type
and length of the resected gastrointestinal tissue. Metabolic
complications include: hypochloremic acidosis, lipid malab-
sorption, vitamin B12 deficiency, and bile acid deficiency
[183]. Patients with a catheterizable cutaneous derivation
might experience additional complications regarding the uri-
nary stoma [184–186]: stomal stenosis (6–15%), channel
leakage (9%), false passage (6%), and stomal prolapse (5%).

Nevertheless, patient satisfaction is usually high [182], as
most patients already suffered for a considerable time period

from severe DO and usually had several failed treatment at-
tempts before being considered for augmentation cystoplasty.
However, only patients able and willing to perform ISC should
be considered for this kind of treatment, as otherwise the pa-
tient is not gaining much from this kind of invasive therapy.

Cystectomy with Urinary Diversion

If none of the aforementioned treatment options can sufficiently
reduce NDO and/or significant structural alterations have al-
ready occurred, it may become necessary to remove the entire
bladder as a last resort. It is thus the most definite form of NDO
treatment and requires the formation of a urinary diversion that
can be constructed to be continent or incontinent.

Operative and postoperative risks and complications are sim-
ilar to those of the augmentation cystoplasty. However, complete
cystectomy and creation of a urinary diversion is usually more
complex and time-consuming and requires the re-implantation
of the ureters, which implies the risk of ureteral stenosis.

For a continent urinary diversion, different forms of
pouches and neo-bladders made of detubularised bowel seg-
ments are available and can be selected depending on the
patient’s needs and physical preconditions and the surgeon’s
expertise [187, 188]. Again, it is important to consider the
patient’s abilities and preferences with regard to emptying
the new pouch or bladder in advance.

For an incontinent urinary diversion, which is usually
somewhat less complex and less prone to complications than
a continent diversion, the ureters are connected to a short,
detached ileum segment that is then diverted through the ab-
dominal wall outwards and connected to the skin [189]. This
form of urinary diversion is also called ileal conduit or Bricker
diversion, named after Eugene M. Bricker who described this
procedure for the first time [189].

As the urine is now continuously and directly draining
outwards, a urine bag has to be placed on the stoma site to
collect the draining urine.

Such an intervention certainly interferes with the body im-
age of most patients, but in addition to a high probability of
UUT protection from elevated pressures, it offers the possibil-
ity to independently manage urinary drainage with less expen-
diture of supplies and time compared to other treatment strat-
egies that require regular catheterisation, medical treatment
(antimuscarinc drugs, BoNT/A intradetrusor injections) and
follow-up (urodynamic investigation).

However, changes in kidney function andmorphology, steno-
sis of the ureteroileal and ileocutaneous junction, and bowel dys-
function are known postoperative complications [190, 191].

Alternative Treatment Options for Selected Patients

In principle, the reduction of elevated storage pressures in the
LUT and protection of UUT can be achieved by diminishing
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outflow resistance to a minimum in order to guarantee suffi-
cient urine outflow from the bladder prior to the onset of
elevated pressures. However, it has to be considered that the
two treatment options (a and b) mentioned below do not ac-
tually restore or maintain a low pressure reservoir but rather
aim at continuous low pressure drainage leaving the restora-
tion of the native bladder as a reservoir unconsidered, which
may work for selected patients but is also one of the main
drawbacks of these treatment strategies contributing to their
associated complications in short- and long-term.

(a) Insertion of an indwelling catheter either transurethrally or
suprapubically and left on permanent drainage would help
to reduce storage pressures and post void residual urine by
direct continuous low pressure drainage. However, in-
dwelling catheters are associated with several complica-
tions such as recurrent or chronic UTI, stone formation,
urethral erosion (with transurethral catheters), increased
risk of bladder cancer, and reduction of sperm quality
and motility and are hence not generally recommended
[65, 192–194] but may be an option for selected patients
not able to perform ISC and who are not suitable for more
invasive therapies such as urinary diversion. Nevertheless,
an indwelling catheter itself does not treat DO and associ-
ated complications such as AD will persist and become
evident each time the catheter occludes [195]. Moreover,
constant urinary drainage required here to avoid elevated
storage pressures may lead to significant loss of capacity
over time and consecutive urinary leakage transurethrally
and/or alongside the catheter [196].

(b) Transurethral sphincterotomy plus further subvesical
desobstruction if required (e.g., resection of prostate
and/or bladder neck tissue), implantation of a urethral
stent, or BoNT/A intrasphincteric injections (off-label
use) are options for reducing outflow resistance to enable
low pressure urine drainage from the LUT. Although
there are several cohort studies reporting promising re-
sults for each technique, i.e., reduction of maximum
detrusor pressure and PVRV as well as lower incidence
of hydronephrosis and AD [54], there are specific com-
plications such as the necessity for repeated procedures
due to urethral scarring, bladder neck obstruction, ineffi-
cient urodynamic improvement, stent migration/erosion,
and stone formation. In addition, there are only very few
randomized controlled trials available with inconclusive
urodynamic data and a lack of QoL data, hampering clear
recommendations [65, 197] and official approval for the
use of BoNT/A in this context. Moreover, the mentioned
techniques based on their principle of lowering outflow
resistance will not reduce DO but lead to increased uri-
nary incontinence and are thus mainly applicable to male
patients who can wear a condom catheter to collect the
urine.

Restoration of Urethral Urine Storage
Function

Urinary incontinence has a devastating impact on QoL as it
demonstrates loss of bodily control in its most inconvenient
and unpleasant way, make LUTcare the most challenging issue
in the patient’s daily life, and can itself drive patients into de-
pression [198–200]. Furthermore, urinary incontinence can neg-
atively affect the skin due to frequent contact with urine and/or
the necessity to wear pads or diapers which facilitates the devel-
opment of wounds/ulcerations and dermal infections [201–203].

Despite the frequent association of NDO with urinary in-
continence [204], adequate treatment of NDO alone may be
either insufficient to prevent urinary incontinence or even
evoke urinary incontinence.

Sometimes, behavioral aspects have to be considered and
augmented, as even the best NDO treatment is not meant to
create a low pressure and continent urinary reservoir that
needs to be emptied just once daily. In this regard, the patient’s
expectations and post-treatment responsibilities have to be
clearly discussed. Behavioral treatments such as timed
voiding/catheterization or adaption of fluid intake may help
to prevent urinary incontinence in patients with impaired blad-
der sensibility or increased evening fluid intake, respectively
[205].

Nevertheless, patients with an insufficient closing mecha-
nism at the bladder neck and/or external urethral sphincter due
to a lack or impairment of neurogenic innervation of these
structures will most likely suffer from neurogenic SUI. In such
cases, the main treatment principle is to increase outlet resis-
tance. Hence, prior to application of such treatments, it is
absolutely mandatory that NDO is either absent or at least
adequately treated to prevent high pressure conditions and
consequently a risk of renal damage.

Four different types of surgical interventions can be distin-
guished: (1) bladder neck/urethral reconstruction, (2) inject-
ables (e.g., bulking agents), (3) suspensions (e.g., Burch,
suburethral tapes and slings), and (4) prostheses (e.g., artificial
urinary sphincter).

Bladder Neck/Urethral Reconstruction

Urethral lengthening in the form of an intravesical extension of
the urethra using a bladder wall flap creates a valvular closure
of the urethra with increasing filling of the bladder [206–210].
The original technique described by Young-Dees-Leadbetter
was modified in recent decades by different urological sur-
geons mainly in pediatric patients with bladder extrophy
[206, 211–214]. These techniques provide continence rates
of 50–94% [206, 207, 211, 215, 216]. However, such bladder
neck/urethral reconstructions require regular ISC to empty the
bladder and often prior or simultaneous bladder augmentation
to secure low pressure storage [217]. Compared to the artificial

SN Compr. Clin. Med. (2019) 1:160–182 173



urinary sphincter (AUS), continence rates seems to be similar
but with a significantly lower reoperation rate [218].

Injectables

Injectables can consist of different materials (e.g., autologous
fat, collagen, silicon, carbon, Teflon®, poly-acrylamide hy-
drogel) and are injected transurethrally below the bladder neck
to create a sub-mucous cushion/bulking of the urethra that
cause obstruction to withhold the urine. Despite some recent
promising findings [219, 220], the current literature does not
provide sufficient evidence for this kind of therapy [221] and
long-term results in patients with neurogenic sphincter defi-
ciency seems to be rather poor [222].

Suspensions

Suspension therapies aim to restore or to improve urethral
and/or bladder neck position and support, thereby enhancing
the bladder neck or sphincteric closing mechanism. These are
established treatment methods for female SUI [223, 224] and
have recently been introduced also for male SUI [225, 226].
Alongside t radi t ional techniques such as Burch
colposuspension, there are several different forms and mate-
rials of slings and tapes available. In patients with NLUTD,
the use of autologous rectus abdominis fascia slings in a pe-
diatric or adolescent population with or without simultaneous
augmentation cystoplasty has been reported most commonly,
demonstrating excellent results and low complication rates
[227–237]. Synthetic tapes also seem to be suitable and effec-
tive for neurogenic SUI [238–240], except where a tight sling
is necessary to provide adequate continence as there is a
marked increase in the erosion risk.

Prostheses

Prostheses for neurogenic SUI treatment comprise implant-
able devices that cause adjustable mechanical obstruction or
closure of the urethra and/or bladder neck. Autologous pros-
theses for sphincter augmentation have also been successfully
explored using gracilis myoplasty around the bladder neck or
urethra [241–244]. The use of autologous tissue around the
urethra and bladder neck may reduce the risk of infection and
erosion compared to artificial implants, especially in condi-
tions where increased tension needs to be applied and ISC is
performed. Nevertheless, an implanted pulse generator is re-
quired to stimulate the gracilis prosthesis to obtain contraction
and urethral closure, respectively. Data on this procedure are
scarce and, due to the rather sophisticated surgical approach,
this technique is not widely-used.

Regarding artificial prostheses two options are available,
the AUS (e.g., AMS 800®, ZSI 375®) and the inflatable
para-urethral balloons (ACT® / ProACT®).

Currently, the most widely-used AUS model (AMS 800®,
formerly American Medical Systems, now Boston Scientific,
Marlborough, MA, USA) consists of 3 major components, the
inflatable cuff, the pump, and the pressure-regulating balloon.
All three components are implanted and connected via special
flexible but non-colliding tubes, allowing hydraulic function
of the sphincter. The inflatable cuff is placed around the bulbar
urethra (in men) or bladder neck (in men after prostatectomy
and women or in some neurogenic indications) and connected
to a control pump that is placed in the scrotum (in men) or
labium majus (in women). The balloon is placed in the
subperitoneal space lateral to the bladder. Activating the pump
deflates the cuff by pumping water from the cuff into the
balloon, from where it flows back into the cuff due to the
hydraulic gradient between balloon and cuff. The re-closing
of the cuff takes 2–4 min during which the patients can empty
the bladder via spontaneous voiding or via ISC. ISC may be
performed even with a closed AUS but the risk of urethral
injuries may increase. The AUS is suitable for both men and
women. Due to its high efficacy, the AUS is today’s gold
standard in the therapy of SUI [226]. Patients with neurogenic
SUI, in whom the natural sphincter is insufficiently working
due to damage of its neuronal control, also have greatly
benefited from this therapy [245]. The success rate (proportion
of continent patients) in patients with neurogenic SUI lies
between 23 and 91% (mean 73%) [246–253].

Frequent complications for this procedure are erosion, in-
fection, and mechanical/device-related failure that cause a re-
operation rate for revisions and/or explantations of 16 to 80%
[246, 247, 249–252].

Murphy et al. compared treatment outcomes between patients
with neurogenic SUI and patients with non-neurogenic SUI
[248]. According to this study, patients with neurogenic SUI tend
to have complications more frequently that were not related to
mechanical or device-related failure [248]. Bersch et al. reported
very promising long-term results of a modified AMS800 system
in patients with neurogenic SUI [254]. This modified system has
the advantage that it works without the pump and is thus less
susceptible to device-related defects and less costly [254]. Instead
of the pump, a subcutaneous port is implanted that enables post-
operative adjustments of the cuff-pressure. This system also
seems to have some advantage with regard to the risk of pump-
erosion in wheelchair-bound female patients [254]. In addition,
cuff pressure can be adjusted at any later time point via the
subcutaneous port. Using cuff only AUS implantation in con-
junction with an augmentation cystoplasty seems to be another
alternative with very few AUS specific complications [255].

Inflatable paraurethral balloons are a relatively new mini-
mally invasive technique that offers the advantage of postop-
erative adaption of the balloon size and consequently the de-
gree of urethral obstruction [256, 257]. The balloons are
placed bilaterally to the urethra at the bladder neck (in women)
or at the membranous urethra (in men). Each balloon has a

174 SN Compr. Clin. Med. (2019) 1:160–182



port that is placed into the ipsilateral scrotum or labiummajus.
The inflation is performed during follow-up visits with saline
via the port of each balloon. Depending on the volume, the
balloons cause a functional obstruction that should keep the
urine within the bladder during situations of increased abdom-
inal pressure. The use of this prosthesis in neurogenic SUI has
demonstrated promising results [258, 259]. Despite a lower
efficacy compared to the appliance in non-neurological pa-
tients [260, 261], which is most probably related to the more
severe sphincter insufficiency in neurogenic SUI, this pros-
thesis can significantly improve neurogenic SUI also in the
long term with about 40% of patients reaching complete con-
tinence [258, 259]. Due to the minimally invasive approach
also with regard to explantation, ACT® / ProACT® may be a
particular valuable option for patients with mild to moderate
neurogenic SUI who are not willing, not suitable or not yet
ready for more invasive procedures or more complex im-
plants. Nevertheless, randomized controlled trials are lacking,
hampering clear recommendations.

Summary and Conclusion

Without doubt, the achievements of previous decades in the
management of urinary storage dysfunction have significantly
contributed to improvents in QoL, health, and survival of neu-
rological patients affected by NLUTD. The cornerstones of
urine storage dysfunction in neurological patients are ISC,
antimuscarinic drugs, intradetrusor BoNT/A injections, augmen-
tation cystoplasty, urinary diversion, and artificial urinary
sphincter. However, these treatments have not advanced much
recently. Moreover, with the exception of onabotulinumtoxinA
intradetrusor injections, the level of evidence of many therapy
options specifically regarding their appliance in neurological
patients is quite low.

New therapy options are on the horizon but translation of
findings from animal models into humans is still a major chal-
lenge that often fails. But even of treatments that are available
or approved for use in NLUTD, the detailed mechanism of
main and auxiliary actions are often only poorly understood,
e.g. sacral neuromodulation, effect of BoNT/A on afferent
signaling. Here, further research efforts may help or enable
us to better use the full potential of already available treat-
ments while attending new options.

Since there is no stable neurological disease in regard to
NLUTD, efficiency of a chosenmanagement strategy requires
regular urodynamical reevaluation, particularly in individuals
with a high risk profile, e.g. detrusor overactivity with or
without detrusor-sphincter-dyssynergia, or with already evi-
dent structural or functional changes to LUT or UUT, e.g.
VUR or renal ectasia.
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