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Abstract
In order to create eco-friendly composite materials for industries like construction and furniture, it is necessary to find sub-
stitutes for commonly used materials that harm the environment. One potential solution is to explore biopolymer alternatives 
to synthetic polymers. Recently, mycelium-derived products have been examined as a viable solution for large-scale produc-
tion. Mycelium, which comes from fungi, particularly mushrooms, binds organic waste together and acts as an adhesive, 
forming a degradable substance that can take almost any shape. The material properties are influenced by factors such as the 
type of fungus used, the waste used as food, growth kinetics, and post-synthesis processing. These factors enable the crea-
tion of materials with desired properties such as elasticity, porosity, texture, patterns, colour, conductivity, high-temperature 
performance, corrosion resistance, and cost-effectiveness. These materials are widely used in building, bio-textiles, sound 
insulation panels, leather, and furniture. This article provides an introduction to mycelium-based materials, their synthesis, 
material-based design strategies, and industrial applications.
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Introduction

Indiscriminate plastic usage has harmed the environment, 
leading researchers to explore sustainable alternatives. One 
promising area is the production of biopolymers from renew-
able resources, specifically from the agriculture and timber 
industries' lignocellulosic waste. Due to higher operating 
costs and a lack of effective disposal methods, lignocel-
lulosic waste is typically burned or processed as domestic 
waste in the majority of the world's countries (Sun et al. 
2016; Shafer 2020; Kaur and Singh 2022). Mycelium, a 
thread-like structure found in fungi, can grow on lignocel-
lulosic waste materials to produce bio-agglomerates, which 
are solid matrices. Mycelium-based biomaterials have been 
around since the 1980s, and they offer an environmentally 
friendly solution to reusing and recycling biological waste 
(Alemu et al. 2022). Yamanaka and Kikuchi (1991) first 
reported the mycelium's capacity to bond, yielding paper 
and some construction materials. These materials can be 

composted at the end of their useful life without harming the 
environment (Meng et al. 2017). Mycelium-based compos-
ites can also be designed to have a wide range of properties, 
such as stiffness, elasticity, and water resistance, making 
them suitable for various applications (Myers and Antonelli 
2018).

Fungal mycelium is a polymeric composite material made 
up of natural polymers such as mannoproteins, hydrophob-
ins, chitin, glucans, and other protein polymers (Holt et al. 
2012; Jones et al. 2017; Girometta et al. 2019).Fungi create 
mycelium-derived materials by growing their intertwined 
threadlike hyphae network into a substrate.Mycelium is a 
natural adhesive that holds the components together (Manan 
et al. 2021). Mycelium-based materials are made when fungi 
grow on organic waste materials, combining decomposi-
tion products into a physical composite (Butu et al. 2020). 
These materials can be designed to have any desired fea-
ture, e.g. hard, stiff, soft, porous, elastic, flexible, weight-
less, or extremely dense. They can also be mechanically 
and thermally stable, corrosion- and water-resistant, and 
mimic foam, wood, leather, plastic, or paper (Amobonye 
et al. 2023; Balaeș et al. 2023; Majib et al. 2023). They are 
also inexpensive, fast-growing, and possess antibacterial and 
antioxidant qualities, making them ideal for architecture, 
design, cosmetics, and fashion.
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Mycelium‑derived material design

The last decade saw the emergence of the “Growing 
Design” concept, where living organisms synthesise 
new materials (Mironov et al. 2009; Ciuffi 2013; Rath 
et al. 2014; Rognoli et al. 2015; Montalti 2021). Differ-
ent designers and researchers have explored the use of 
mycelium to develop innovative, sustainable, and versa-
tile industrial materials with unique properties, ranging 
from leather-like to papery textures, showing promise in 
both technological and aesthetic aspects (Montalti 2021; 
McGaw et al. 2022; Sydor et al. 2022). The materials pro-
duced by this design technique are bio-based substitutes 
for traditional materials. Material Driven Design (MDD) 
is a more contemporary idea that emphasises and bridges 
the material’s distinctive experiential and technical fea-
tures suitably and creatively (Karana et al. 2015; Majum-
dar et al. 2017). Finding new product applications can be 
aided by this strategy, which supports material design dur-
ing development. Fungi have gained attention as viable 
sources of biomaterials due to their potential in various 
industries (Cerimi et al. 2019; Almpani-Lekka et al. 2022; 
Mohseni et al. 2023). Mycelium is unique because it can 
overgrow and take on a variety of shapes. Materials from 
mycelium can be employed as pure mycelial materials 
(PMM) or as mycelium-bound composites (MBC)(Holt 
et al. 2012; Haneef et al. 2017).

Mycelial leather

Leather is known for its robustness and adaptability, but 
some people hesitate to wear animal-made products due to 
moral implications and concerns about long-term viability. 
Vegan/mycelia leather has become popular in the fash-
ion industry due to its fine quality, appearance, texture, 
and durability. It is also biodegradable, making it a better 
option for synthetic leather. The fashion industry is explor-
ing alternatives to natural leather, which requires a lot of 
processing time and years of cattle farming to produce 
as a by-product of the meat industry (Waltz 2022). Live-
stock farming has serious sustainability challenges and 
is responsible for significant greenhouse gas emissions 
(Reisinger and Clark 2018). Furthermore, post-processing 
of animal hides requires toxic chemicals and energy-inten-
sive processing, resulting in sludge waste, making leather 
an environmentally unsustainable product (Richey et al. 
2015). All these problems make leather a more environ-
mentally unsustainable product.

Mycelial leather/ PMM is a biopolymer created by 
harvesting a liquid culture of pure mycelium (Jones 
et al. 2017). PMM does not contain any lignocellulosic 

substrates and is characterised solely by the biological 
properties of the fungal species, source of nutrients, and 
growing conditions. The notable feature of these materials 
is their reliance on liquid mycelium cultures (Karana et al. 
2018). Mycelial growth does not require light and converts 
waste into a valuable product (Udayanga and Devmini 
Miriyagalla 2021). Harvesting a fungal liquid culture 
yields pure mycelium. When in a static environment, fila-
mentous fungi on a liquid surface develop a hyphal mat 
that, when dried, produces materials with various charac-
teristics that mimic leather, linen, or rubber (Elsacker et al. 
2023). The material's colour, translucency, and stiffness 
can change depending on the additives/plasticizers, such 
as glycerol, sorbitol, PEG, glycol, or ethanol, added to the 
mycelium during the last phase of its development (Haneef 
et al. 2017; Raman et al. 2022; Amobonye et al. 2023). The 
mat-like structure formed during growth becomes a leath-
ery product when further treated with mild acids (tannic 
acid, genipin, vanillin; procyanidin), alcohols, and dyes, 
followed by compression, drying, and embossing (Cerimi 
et  al. 2019; Antinori et  al. 2021; Kaiser et  al. 2023). 
Raman et al. (2022) have derived thermally stable myce-
lium leather using Fomitella fraxinea mushroom. The most 
significant impact on mycelial leather is visible following 
cross-linker and coating treatment, reducing its Young's 
modulus and ultimate tensile strength to 8.49 MPa. Plasti-
cized methods render the mycelium's surface hydrophobic 
and prevent surface leaching. They concluded that it is fea-
sible to modify the tensile strength by adjusting mycelial 
development and leather processing by adding plasticizers, 
cross-linkers, and hot pressing (Raman et al. 2022).

The processing of mycelium leather is quite simple and 
does not require fancy equipment or a skill set for mass pro-
duction. The finished product has a strength, look, and feel 
similar to leather from an animal.The entire process, from 
spore germination to finished product, only takes a few weeks, 
compared to the years needed to raise an animal to adulthood 
(Gougouli and Koutsoumanis 2013). The degree of coloniza-
tion, the fungal skin's thickness, and the filamentous composite 
components' uniformity all affect the fungus type choice. Both 
the level of colonization and the fungal skin significantly 
impact how the fungal sheet material behaves mechanically 
in terms of stiffness, elasticity, and water-repellent properties 
(Aiduang et al. 2022b). White-rot fungi, such as those in the 
Ganoderma, Pleurotus genera, and Trametes of the phylum 
Basidiomycota, are often used because they have a high level 
of colonization and can grow on a variety of organic materials 
(Manan et al. 2021). Bae et al. (2021) investigated 64 strains 
of Polyporales. They found that Ganoderma lucidum was 
the perfect candidate since it demonstrated rapid mycelial 
growth and strong mycelium in both solid and liquid media 
(Bae et al. 2021). While some Polyporales had good mycelial 
development, their mycelial mats lacked physical sturdiness. 
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MycoWorks and Ecovative Design were the first US compa-
nies to obtain patents for these fungus-based leather technolo-
gies. Commercial leather products made from fungus first 
debuted on the market in 2022.

Mycelium‑derived composites

Ongoing research and development in sustainable building 
materials has led to the emergence of mycelium as a viable 
and sustainable alternative in multiple industries (Alemu 
et al. 2022; Elsacker et al. 2022; Balaeș et al. 2023; Bonen-
berg et al. 2023). Mycelium-bound composites (MBC) are 
formed when mycelium grows on agricultural waste such as 
corn husks, straw, sawdust, or even textile waste (Girometta 
et al. 2019; Jędrzejczak et al. 2021). Fungus forms a fine net-
work of threads that acts as a binding agent for the compos-
ite material. Once the mycelium has colonized the substrate, 
composites can be moulded into various shapes and forms, 
making them versatile for manufacturing products (Aiduang 
et al. 2022a). Non-processed MBC resembles the structural 
features of polystyrene and polyurethane foams (Jones et al. 
2017) and finds application as non-structural applications as 
excellent thermal and acoustic insulators (Shakir et al. 2020; 
Gou et al. 2021).

Mycelial-bound composites are eco-friendly, require mini-
mal energy input for growth, and are biodegradable. These 
materials have been explored for various applications, includ-
ing packaging materials, construction materials, insulation, 
and even fashion items, and have the potential to replace tradi-
tional, less sustainable options made from synthetic polymers 
or other non-renewable resources (Alemu et al. 2022). One 
of the key advantages of mycelial-bound composites is their 
ability to decompose naturally, reducing environmental impact 
compared to traditional materials that may persist in the envi-
ronment for a long time (Van Wylick et al. 2022). Therefore, 
using mycelium in biocomposites aligns with the broader goal 
of creating more sustainable and eco-friendly alternatives in 
response to environmental concerns. Several input parameters 
influence the final qualities of the mycelium-based material 
during production (Appels et al. 2019; Girometta et al. 2019). 
The precise selection of fungi, nutrient substrates, growing 
conditions, processing techniques, and additives significantly 
impact the characteristics of pure mycelium and mycelium-
based goods. Water resistance and appearance are a few of the 
desired qualities (Elsacker et al. 2020).

Factors affecting the mycelium derived 
design

Mycelium source

Different strains of fungi used to create mycelium-based 
products affect the properties of the final composite (Ala-
neme et al. 2023). After inoculation, the hyphae grow 
inside the substrate matrix, forming a tight network that 
replaces the substrate. The resulting mycelium can firmly 
cement the substrate, creating a solid and lightweight bio-
composite similar to expanded polystyrene (Lelivelt et al. 
2015). Filamentous species that cause white rot are often 
used to grow mycelium-based materials, and these fungi 
can adapt to various situations. Interestingly, they can turn 
harmful substances like terpenes into non-toxic feeding 
substrates (Lee et al. 2015).

Each fungus has unique hyphal system that comprises 
different types of hyphae. The three most common types 
of hyphae are the skeleton, binding, and generative types. 
These hyphae range from straight to single-branched 
(generative hyphae), from thick-walled to solid straight 
elements (skeletal hyphae) with a few branches (skeleto-
binding hyphae), to generously branching elements with 
twisted and contorted branches (binding hyphae). The 
"mitic" system refers to a species' variety of hyphal forms. 
There are three types of hyphal systems: (1) monomitic, 
(2) dimitic, and (3) trimitic. A monomitic hyphal system 
only shows generative hyphae instead of generative, skel-
etal, and binding hyphae in a trimitic hyphal system. Dim-
itic hyphal systems also exhibit skeletal or skeleto-binding 
hyphae (Porter and Naleway 2022).

Depending on their ability to break down lignin or cel-
lulose, wood fungi are either white rot or brown rot. These 
organisms have the unique capacity to grow and derive 
energy from the intricate chemical structure of wood owing 
to their very active degradative mechanisms (Schmidt et al. 
2012). Basidiomycota members are the most effective spe-
cies for creating the best mycelial matrices (Lelivelt et al. 
2015). For example, Trametes multicolor formed a velvety 
soft skin at the substrate surface with a flexible and foam-
like structure, while Pleurotus ostreatus produced a stiff, 
rough surface substance when grown on rapeseed straw 
(Appels et al. 2019). An additional study found that the 
bending strength of Ganoderma grown on biomass from 
cotton plants ranged from 7 to 26 kPa (Ziegler et al. 2016). 
When grown on cellulose, P. ostreatus produced a more 
rigid material than G. lucidum. However, by adding dex-
trose to the growing medium, both fungal-based composites 
exhibited enhanced elasticity (Haneef et al. 2017).

Many fungi species have been used or mentioned in 
patents for mycelial-material applications as of the current 
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date (Elsacker et al. 2020). Their mycelia function as a net-
work of biopolymers whose mechanical properties depend 
on how each hyphae behaves individually, the network's 
orientation, and its connectedness (Islam et al. 2017). 
These many hyphal system topologies are represented 
in the physical properties of basidiomes, such as their 
hardness, consistency, or flexibility. Different fungi pro-
duce different hyphal structures like thin-walled hyaline 
clamped generative hyphae (P. ostreatus), digitiform lat-
eral branched short generative hyphae, thick-walled septate 
generative hyphae (Nothophellinus andinopatagonicus), 
thick-walled skeleto-binding hyphae, and thick-walled 
clamped generative hyphae (Ganoderma austral), multi-
branched thick-walled hyaline skeletal hyphae (Funalia 
trogii). The fungus that forms an elaborate network of 
thick-walled, branched, skeleto-binding hyphae produces 
a stiff structure in a lignocellulosic substrate and a tena-
cious layer in an agarized medium (Aquino et al. 2022). 
The Basidiomycota's mono-, di-, and trimitic hyphal net-
works illustrate how innate biological characteristics affect 
mycelial density (Jones et al. 2017).

Ganoderma species are commonly used in mycelium-
based composites because they grow quickly and use organic 
waste as substrates. G. lucidum has high elasticity and is 
ideal for packaging and building materials. Additionally, 
Ganoderma species can form a dense, fibrous mycelium 
film (Sydor et al. 2022). But Ganoderma spp. also has some 
disadvantages, e.g., excessive hygroscopicity, low tensile 
strength, susceptibility to biological corrosion, and the 
need to deactivate the fungus (Sydor et al. 2022). When 
using Ganoderma fungi for composite production, address-
ing potential pathogenicity concerns is essential. The prob-
lem can be mitigated by selecting fungi that are not harm-
ful to humans, animals, and plants, fungi that don't produce 
mycotoxins, and using spore-less strains. Killing the fungus 
in the mycelium material before leaving the facility and 
confirming the efficacy of the killing procedure are other 
options. By selecting appropriate fungi species, identifying 
fungi through standardized procedures, and conducting a 
risk assessment, mycelium-based composites can be pro-
duced safely for various applications (Van Den Brandhof 
and Wösten 2022).

Substrates and supplements

The type of substrate used for mycelium growth plays a 
significant role in determining the qualities of the resulting 
material (Alemu et al. 2022). Mycelium-based composites 
can be grown on various organic substrates, such as straw, 
sawdust, fibres, and agricultural waste streams (Holt et al. 
2012; Pelkmans et al. 2016; Jones et al. 2017). Using bio-
logical waste as a substrate is a significant advantage of 
biocomposites (Girometta et al. 2019). The natural fibres in 

the substrate provide strain-hardening properties, making 
mycelium-based materials more robust and more resistant 
to shear failure. The choice of organic substrate impacts the 
quality of the final bulk material, as the properties of myce-
lium materials can be modified by changing the feeding sub-
strates (Yang et al. 2017). Fungi degrade lignin, cellulose, 
and hemicellulose using two different enzyme systems: a 
hydrolytic system that breaks down polysaccharides using 
hydrolases and a particular degradative-oxidative extracel-
lular system that degrades lignin and oxidizes the phenolic 
units (Sánchez 2009). Mycelium-material characteristics 
correlate with their nutritional sources, and the substrate 
used as nutrients impact the final quality of the bulk mate-
rial. For instance, materials made of straw are more rigid 
than those made of cotton.

Contrary to cotton-based composites, straw-based materi-
als are less moisture-resistant. A densely packed substrate 
produces composites with higher densities, elastic moduli, 
and compressive strengths than a loosely packed substrate 
(Appels et al. 2019). Composites made from oak sawdust 
showed higher tensile strength than those of beech sawdust 
(Faruk et al. 2014). The compressive strength of P. ostrea-
tus mycelia composites formed using straw, sawdust, and 
mixtures of both substrates were compared. The strength 
of straw and straw plus sawdust did not significantly differ, 
suggesting that straw had a more significant influence on the 
composites' compressive strength. The mycelial composite 
of straw is naturally more elastic and regains its previous 
shape and height, which can be used to make foam alterna-
tives (Ghazvinian et al. 2019).

Cellulose in the composite promotes burning, while lignin 
inhibits it (Dorez et al. 2014). The feeding substrate impacts 
the final composition of the composite, and different custom 
composites with desirable properties can form by varying 
the feeding substrate. A study indicated that P. ostreatus 
grew on potato dextrose frequently exhibited collapsed 
hyphae, narrow hyphae, and less chitin than those grown 
on cellulose. Low polysaccharides/chitin ratio synthetic 
material demonstrated poor Young's modulus, high water 
absorption, and high elongation rate (Haneef et al. 2017). 
Growing P. ostreatus and G. lucidum created a hydrophobic 
mycelium composite on cellulose and cellulose potato-dex-
trose. Fungus grown on cellulose exhibited higher levels of 
chitin, higher Young's modulus, and lower elongation than 
fungus grown on dextrose-containing substrates. The cellu-
lose potato dextrose-fed fungus produced softer composite 
materials than those fed cellulose due to the higher percent-
age of lipids or proteins, which can function as plasticisers. 
The inference from the above mentioned research implies 
that filamentous components become more rigid when the 
feeding substrate is more challenging to digest. They found 
that the feeding substrate impacted the final composition of 
the composite and that different, custom composites with 
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desirable properties could form by varying the feeding 
substrate (Haneef et al. 2017). Aquino et al. (2022) created 
composite discs by infecting poplar sawdust substrate with 
five different fungi (P. ostreatus, Nothophellinus andinopa-
tagonicus, Funalia trogii, G. austral, and Ryvardenia creta-
cea). Only G. austral created the best composite, whereas R. 
cretacea had no successful substrate colonisation (Aquino 
et al. 2022).

Previously, composites made from lignocelluloses were 
produced using resin binders that were hazardous, fossil-
derived, and required a lot of energy to create. These res-
ins had formaldehyde, which could be harmful (Kariuki 
et al. 2019). The bonding of hyphae with the substrate in 
mycelium composites was also relatively weak, leading to 
weak mechanical strength. However, this can be improved 
by adding organic additives such as latex, which was used 
as a binder (He et al. 2014). He et al. (2014) found that by 
adding less than 5% latex and silane coupling agents, the 
growth of mycelium was not negatively affected, and the 
composite strength was significantly improved. Ghazvinian 
et al. (2019) found that when sawdust was supplemented 
with wheat bran, the resulting substrate had a lower den-
sity and improved mycelium growth, affecting tensile prop-
erties. Elsacker et al. (2020) also used bacterial cellulose 
as an additive in a study with white-rot fungus Trametes 
versicolor. They created pure bacterial cellulose sheets by 
culturing Komagataei bacterxylinus and then mechanically 
disintegrated them before mixing them with hemp substrate 
(Elsacker et al. 2020). After seeding the substrate with fun-
gus and allowing mycelium growth, the resulting samples 
were heat compressed at 70 °C or 200 °C to create particle 
board samples with enhanced internal binding and tuneable 
mechanical characteristics. Finally, cellulose nanofibrils 
with a high surface area were found to mechanically inter-
lock with natural fibres by hydrogen bonding, which gives 
the composites their structural stability.

Ly and Jitjak (2022) conducted a study using Lentinus 
squarrosulus to colonize three substrates: rice husk, coco-
nut husk, and rice straw. Their findings showed that the rice 
straw composite had the highest compressive strength value 
and the greatest biodegradability, as indicated by the high-
est weight loss. Saini et al. (2023) investigated the potential 
of P. ostreatus to grow on textile residues containing white 
and coloured cotton and polyester mixtures. They obtained 
a lightweight biocomposite material with compressive 
strength ranging from 100 to 270 kPa. These findings sug-
gest that the fungus can thrive on polyester plastic in textiles 
and can be an alternative method for converting this plastic 
material into bio-based materials. Balaeş et al. (2023) found 
that a RECOSOL73 strain of Abortiporus biennis when 
grown on a mixture of sawdust and wheat bran, developed 
a strongly hydrophobic surface material, had a density as 
low as 0.255 g per cm3 and showed strong resistance. The 

hydrophobicity of the material makes it a promising candi-
date for producing biodegradable packaging items.

Growth parameters

The optimum environment for fungal growth varies depend-
ing on the species and the surface on which it grows. For 
example, the ideal incubation temperature for different fungi 
ranges from 21 to 30 °C, while the optimal humidity var-
ies from 70 to 100%. The ideal pH range for most fungi is 
between 5 and 8 (Haneef et al. 2017; Appels et al. 2019). 
The incubation time for fungal strains can vary from 1 to 
6 weeks, depending on the size and type of substrate (Jiang 
et al. 2013; Haneef et al. 2017). A more extended incubation 
usually results in a more thermally stable and less porous 
material with increased strength. As the mycelium grows, it 
fills the crevices between the fibres, making the fibre more 
firmly connected and increasing the overall density. How-
ever, a prolonged incubation period may cause complete 
substrate degradation, which can improve the elastic stiff-
ness and reduce the shearing behaviour of the biocompos-
ites (Yang et al. 2017). Maintaining a high level of carbon 
dioxide is essential to avoid the formation of fruiting bod-
ies and to ensure efficient mycelium growth (Lelivelt et al. 
2015). Chang et al. (2019) suggested a biological method 
to control the production of fruiting bodies. Using GSK-3 
inhibitors in the cultivation medium inhibits the Pleurotus 
djmour strain's ability to produce fruiting bodies, promoting 
mycelium growth (Chang et al. 2019). This method is sim-
ple, economical, and reliable. Light and carbon dioxide also 
affect the density of the material, with high-density materials 
produced in low-carbon dioxide conditions in the dark and 
low-density materials produced in high-carbon dioxide envi-
ronments in the light (Appels et al. 2019; Alemu et al. 2022).

Mycelial composite production systems

Mycelial biocomposites comprise 95% lignocellulosic mate-
rial and 5% fungal mycelium (Jones et al. 2020; Haneef et al. 
2017). These composites contain proteins, glucans, chitin, 
cellulose, tannin, cutin, lignin, lipids, and carbohydrates 
(Yang et al. 2021; Aiduang et al. 2022a, b; Sydor et al. 2022; 
Meyer et al. 2020). Although they offer environmental ben-
efits, the diversity of fungal species and substrates used in 
their production poses challenges to standardization.

The process of producing mycelial bio-polymers begins 
with multiple containers. Each container holds a soft scrim, 
a nutritional substrate, and a specific fungal strain. These 
containers are then placed into a closed incubation cham-
ber with directed airflow, and the temperature and humidity 
are set to the target level. This specific culturing method 
efficiently produces mycelial biomass and allows precise 
growth process control (Kaplan-Bie et al. 2022; Greetham 



	 Environmental Sustainability

et al. 2022) (Fig. 1). The VTT Technical Research Centre in 
Finland has demonstrated the potential for mass-producing 
mycelial bio-polymer through continuous PMM production 
using bioreactor fermentation (Szilvay et al. 2020).

Mycelium-based composites (MBCs) have mechanical 
properties similar to wood and cork and can be rigid or pli-
able (Appel et al. 2019). The strength of the MBC can be 
controlled by adjusting the balance between the mass of 
the substrate and the mycelial mass. This balance enables 
the creation of versatile composites with tuneable density 
and porosity (Holt et al. 2012). Different substrates can be 
used to maximize the growth of mycelium. The substrate's 
nutritional profile affects the material's density, as a higher 
proportion of grains typically corresponds to a higher mate-
rial density (Yang et al. 2021). The use and customization of 
substrates can be tailored to achieve the desired properties 
in the final material, depending on the desired material pro-
file and field of application. Techniques such as submerged 
fermentation (SmF) and solid-state fermentation (SSF) are 
generally used to cultivate fungi and develop composite 
materials at the laboratory scale (Lübeck and Lübeck 2022; 
Jones et al. 2020). These materials can then be scaled up 
for industrial applications. Mycelium-bound composites are 
created through bio-fabrication, using fungal mycelium to 
grow on substrates (Alemu et al. 2022). For example, Fomes 
fomentarius, a type of basidiomycete, has been established 
to produce composite materials in industrial settings (Pohl 
et al. 2022). Mycelium from edible and medicinal fungi 
like G. lucidum and P. ostreatus has also been studied for 
creating tuneable and customizable materials with desirable 
mechanical properties (Haneef et al. 2017).

MBCs are developed using filamentous fungi, primarily at 
the laboratory stage, to create biocompatible materials from 
lignocellulosic waste and fungal mycelium. Once proven 
effective, these methods can be scaled up for industrial appli-
cations. One example involves the production of MBC using 
a more complex process (Schaak 2019; Dessi-Olive 2022), 

wherein a bacterial species is combined with a fungal spe-
cies, non-nutritional substrates, and additional nutritional 
materials. In this approach, the bacteria provide mechanical 
properties to the bio-composite material through its meta-
bolic process, and the fungal species binds it.

Post‑processing

Mycelium-based materials have limited load-bearing struc-
tural elements (Bitting et al. 2022). Therefore, it is crucial 
to consider structurally informed geometry and appropri-
ate digital fabrication methods when using mycelium-based 
materials due to their comparatively low structural load 
capacity.Various fabrication parameters impact the prop-
erties of mycelium-based materials, including their shape, 
density, flexibility, hydrophobicity, tensile strength, and 
mechanical and moisture absorption properties. By carefully 
selecting these parameters, the qualities of mycelium-based 
materials can be modified to suit various applications (Hou-
ette et al. 2022). Mycelium can be shaped and grown inside 
a scaffold during colonisation to achieve the desired shape. 
The mycelium can either be killed at 60 °C or left at room 
temperature, preserving its potential for future development 
(Attias et al. 2019).

Several processing techniques, including laser cutting, 
cold and heat compression, drying, and baking, can be used 
to achieve the desired shape and structure of the growing 
material (Jiang 2015; Yang et al. 2017). The temperature 
used for pressing after synthesis significantly affects the 
mechanical, physical, and thermal characteristics of myce-
lium-based materials. Cold or heat pressing can enhance the 
structural properties of mycelium-based composites, reduce 
porosity, and increase material density. Moreover, it facili-
tates the horizontal reorientation of fibres in a plane while 
reducing their thickness (Thoemen and Humphrey 2003). 
A combination of mycelium with polysaccharide-based 

Fig. 1   Biofabrication process of mycelium-based composites
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substrates of different compositions has been designed to 
attain fibrous films with various properties. Two white-rot 
fungal species, namely, G. lucidum and P. ostreatus, were 
fed on cellulose and potato dextrose broth (PDB) supple-
mented with cellulose and later baked at 60 °C. Since the 
two feeding substrates share a common polysaccharide 
nature, it is expected that the mycelium would use simi-
lar fungal enzymes to hydrolyse them. The homogeneity 
of the two substrates resulted in the formation of uniform 
fibrous materials with tuneable and controlled structural 
and mechanical properties. Analysis of fibrous mycelium 
materials grown on the two substrates revealed that the 
ones formed on amorphous cellulose, which was hard to 
digest compared to PDB, were mechanically more robust 
and exhibited higher Young's modulus. When compared to 
natural-sourced materials, these fibrous mycelium materials 
exhibited high hydrophobicity (Haneef et al. 2017).

Heat-pressed mycelium-based composites resemble par-
ticle board and medium-density fibre board (MDF), possess 
densities and elastic moduli similar to natural wood, and 
are more robust, stiffer, and homogeneous. The cured but 
unpressed material forms a foam-like material. Three-point 
bending demonstrates increased flexural strength from hot-
pressed > cold-pressed > unpressed materials. Although the 
organic substrate particles immediately stiffen the material 
at high strain, the composite's mycelium matrix undergoes 
mild compression at low strain (Appels et al. 2019). The 
pressing temperature significantly influences the mechani-
cal characteristics of mycelial composites (Liu et al. 2019). 
Composites made by heat pressing exhibited higher stiffness, 
bending properties, and lower rupture strain when compared 
to P. ostreatus-rapeseed straw composites made by cold 
pressing, which had lower stiffness and tensile strength. Heat 
pressing increased the density of P. ostreatus-rapeseed straw 
composites by three times, and the thickness of the compos-
ite was uniform (Appels et al. 2019). However, it may lower 
the composites' thermal breakdown temperature, although 
it increases the thermostability of the siliceous layer, indi-
cating that it can make fire-resistant materials (Liu et al. 
2019). G. lucidum and cotton stalk heated at 200 °C and 
heat-pressed created material with 4.6 MPa rupture mod-
ulus, 680 MPa elasticity modulus, and 0.18 MPa internal 
bonding strength. The creation of hydrogen bonds during 
esterification, polymerization, and high pressing temperature 
is responsible for the composite's improved properties (Liu 
et al. 2019). The hydroxyl groups of the substrate's cellulose 
nanofibrils interacting with the cross-linkers or radicals dur-
ing the fungus-induced breakdown of the substrate could be 
one reason for the formation of hydrogen bonding at higher 
temperatures (Widsten et al. 2006). Lignin is repolymerised 
at a pressing temperature of 200 °C by free radicals and 
acidolysis. Amino acid esterification in the substrate and 
mycelium improves interfacial adhesion (Liu et al. 2019). 

Aspergillus niger mycelium biomass-derived chitosan films 
underwent structural reorganization and lost solubility due 
to amidation after being heated (Solodovnik et al. 2017). 
Antinori et al. (2020) found that even minor changes in the 
PDB's composition could cause significant alterations in 
the morphology, hydrodynamics, and chemical properties 
of G. lucidum mycelium. According to Houette et al. (2022), 
compacted baked composites formed on a microparticle sub-
strate had the highest elastic modulus during compression 
and flexural testing (Houette et al. 2022). Table 1 summa-
rizes the mechanical properties of various mycelial-based 
materials created on different substrates.

Application

The twentieth century witnessed a lot of inventions in pack-
aging materials, but most of them caused environmental 
pollution (Ncube et al. 2020; Wang et al. 2022). Mycelium-
based polymers can be a sustainable, affordable, and envi-
ronmentally friendly alternative to petroleum-based plastics 
(Abhijith et al. 2018). Ecovative Design LLC, a bio-compos-
ite materials company in Green Island, New York, is creating 
mushroom-based products to replace plastics and polysty-
rene foams for packaging, construction materials, and other 
uses. These mycelium-based products can be used for foam 
structures, styrofoam alternatives, mycelium bricks, furni-
ture, structural frameworks, thermal and acoustic insulation 
panels, textiles, leather, and pharmaceuticals (Parkes and 
Dickie 2013; Jones et al. 2017; Yang et al. 2017) (Table 2). 
The foam insulation, wood and plastic panels, door cores, 
flooring, and furniture may all be replaced with these myce-
lium-based items. Much data has been accumulated on sev-
eral patents on using fungi as a source for creative bio-based 
materials and given in Fig. 2 (Cerimi et al. 2019).

Mycelium-based goods are low-energy building materi-
als that significantly aid in waste recycling (Madurwar et al. 
2013). They have several advantages over traditional materi-
als, such as cost, biodegradability, lower emissions, and light-
weight. Combining a wide range of substrates with precise 
processing techniques makes it feasible to produce mycelium-
derived materials with the desired structure and function for 
specific applications. For instance, straw/fibre-based mycelium 
composites can function as natural insulators due to their low 
density and low thermal conductivity (Uysal et al. 2004; Collet 
and Pretot 2014). These materials have lower thermal con-
ductivity due to more dry air in the free-air gaps. It is very 
promising to employ mycelium biofoams as an alternative to 
traditional insulating materials for building and infrastructure 
development (Yang et al. 2017; Bruscato et al. 2019). Myce-
lium biofoams can be an alternative to conventional insulating 
materials for building and infrastructure development. These 
biocomposites can absorb around 75% of low-frequency 
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(1500 Hz) sound waves, which can be used as construction 
material for noise-cancelling buildings in metropolitan cities 
and noisy industrial areas (Pelletier et al. 2013). As the acous-
tic wave travels through the material's numerous pathways 

and gets converted to heat, the fibres in such composites act 
as frictional elements and may reduce the wave's amplitude 
(Peters 2013). Thin fibres are more acoustically absorbent 
due to their ease of movement, but a large density of fibres 

Table 1   Effect of substrate on the mechanical properties of various mycelium based biocomposites

Fungus Substrate Material Type Density (g/cm3) Tensile Strength 
(MPa)

Flexural strength 
(MPa)

Compres-
sive strength 
(MPa)

Young Modulus 
(MPa)

Pleurotus sp. 
(López Nava 
et al. 2016)

Triticum sp. & 
edible films

Mycelium based 
Foam

178.7–198.9 0.0499 0.004–0.018 0.020–0.060

Mycelium Hemp pith and 
cotton mat

Mycelium-based 
sandwich 
composite

0.10–0.14 0.1–0.2 – 0.670–1.180 66.14–71.77

Mycelium (Jiang 
2015)

Flax Mycelium Based 
Sandwich 
composites

– 0.035 – – –
Jute – 0.016 – – –

Mycelium 
(Islam et al. 
2017; Silver-
man et al. 
2020)

- Mycelial based 
Foam

0.029–0.045 0.1–0.3 – 0.040–0.080 0.6–2.0

Psyllium husk Mycelial based 
Foam

0.29–0.35 – – 0.156–0.340 –

Trametes multi-
colour

(Appels et al. 
2019)

Beech sawdust 
and rapeseed 
straw

Mycelial based 
composites

0.10– 0.39 0.010–0.240 0.050–0.87 – 2–97

Pleurotus 
ostreatus 
(Ghazvinian 
et al. 2019)

Saw Dust Mycelium-based 
bio-composites

0.552 1.018 – – –
Saw 

Dust + wheat 
Bran

0.493 1.380 – – –

Trametes versi-
color (Zimele 
et al. 2020)

Wood chips Mycelium-based 
biocomposites

179 0.11 0.52 –

Hemp shives 134 0.04 0.16 0.36 –
Trametes versi-

color (Jones 
et al. 2020)

Rapeseed straw Mycelium-
bound com-
posites

– 0.04 0.22 – –

Pleurotusostrea-
tus (Jones et al. 
2020)

Rapeseed straw Mycelium-
bound com-
posites

– 0.01 0.06 – –

Ganoderma-
resinaceum 
(Angelova 
et al. 2021)

Rose flowers Mycelium-based 
bio-composites

462 – – 1.029 –

Lavender straw 
waste

347 – – 0.718 –

Ganoderma 
lucidum (Chan 
et al. 2021)

Sawdust + empty 
fruit bunch

Dense myce-
lium-bound 
composites

239 0.81 1.62 2.21 286.1

Trametes versi-
color (Elsacker 
et al. 2020)

Bacterial cel-
lulose

Mycelium Based 
composites

456.82 – – 0.056 0.007GPa

Pleurotus 
ostreatus 
(Vašatko et al. 
2022)

Beech sawdust Mycelium-based 
biocomposites

0.27 – – 4.310 0.1432

Pleurotus 
ostreatus 
(Alemu et al. 
2022)

Potato dex-
trose agar 
(PDA) + saw-
dust

Mycoblock 343.44 – – 0.750 –
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per unit volume produces more twisting paths and increases 
airflow resistance (Jailani et al. 2004). Mycelium-based mate-
rials' surface porosity and shape are crucial factors in sound 
absorption. Less porous materials perform significantly better 
at sound attenuation than highly porous ones (Samsudin et al. 
2016). Mycelium-based materials are non-flammable com-
pared to petroleum-based materials, produce less carbon diox-
ide, and take longer to spread flame over (Jones et al. 2019). 
Thus, they are a practical, affordable, safe, and ecologically 
friendly substitute for conventional building materials. Design-
ers work at the nexus of biology and design, illustrating how 

they can influence the development of novel materials in an 
interdisciplinary setting. While mycelium-based composites 
are emerging as a viable substitute, there is still more to learn 
about their mechanical characteristics.

Table 2   Major mycelial biocomposites and their application in various industries

Product Category Uses References

Mycelium leather Textiles, apparel, footwear, bags and accessories e.g. 
MycoWorks; Mycelium Textiles (Tartan mycelium); 
Mycelium lace; Mycelium velvet

Ross (2014), Collet (2017)

Mycelium based foams Packaging material as an
alternative to traditional packaging materials like 

Styrofoam e.g. MycoFoam (corn husks); EcoCra-
dle (Ecovative Design

LLC -Ecovative)

Holt et al. (2012), Abhijith et al. (2018), Appels et al. 
(2019

Mycelium Based Composites mycelium bricks, furniture, structural frameworks, 
thermal and acoustic insulation panels, fabrics, 
leather, medicine, timber and plastic insulation, 
door cores, panels, flooring, furniture and furnish-
ings

e g. MycoFlex™;MycoComposite™; Mycotecture; 
Mycotecture Alpha; Mycelium + Timber series; 
MycoTree; Mycelium Chair

Parkes and Dickie (2013), Pelletier et al. (2013), 
Ziegler et al. (2016), Jones et al. (2017), Yang et al. 
(2017), Cerimi et al. (2019), MoK (2019)

Biomedical patches and platforms Curcumin-loaded mycelium-based antimicrobial 
wound healing patch

Tissue engineering adhesion platforms

Khamrai et al. (2018), Narayanan et al. (2020), Wang 
et al. (2020), Antinori et al. (2021)

Fig. 2   Different types of fungi 
belonging to various phyla cited 
in patents for mycelial biocom-
posites synthesis
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Challenges associated with biocomposite 
production

Upscaling mycelial biocomposite production has many 
challenges that must be addressed to ensure its scalability 
and viability in various sectors. The main challenges are 
mentioned below.

•	 A lack of consistent standards and protocols makes 
reproducing results and maintaining quality control 
difficult (Bitting et al. 2022).

•	 Selecting suitable substrates and fine-tuning their com-
position to achieve desired properties remains a signifi-
cant challenge (Alaneme et al. 2023).

•	 Enhancing the durability and longevity of mycelium-
based composites while maintaining their biodegrad-
able nature requires careful consideration (Butu et al. 
2020).

•	 Reducing costs to make these materials competitive 
with existing alternatives is essential for widespread 
adoption (Butu et al. 2020).

•	 Transitioning from laboratory-scale production to full-
scale industrial manufacturing necessitates efficient and 
reliable automated systems (Bitting et al. 2022).

•	 Controlling moisture levels throughout the growth and 
post-processing stages is critical for achieving optimal 
performance (Yang et al. 2021).

•	 Establishing robust testing and certification frameworks 
to guarantee product safety and reliability is necessary 
for market acceptance (Bitting et al. 2022).

•	 Bridging the gap between academic research and indus-
trial practice is vital for advancing knowledge and pro-
moting innovation (Bitting et al. 2022).

By overcoming these challenges, developing mycelium-
based composites as viable alternatives to traditional 
materials in various industries can be achieved. This will 
contribute to sustainability efforts and foster economic 
growth.

Future prospects

Mycelium has gained attention for its ability to grow and 
form tuneable structures, making it a potential alternative 
to traditional materials in industries such as construction, 
packaging, and even fashion. In the future, mycelium-
based composites can create lightweight and sturdy build-
ing materials that replace traditional materials like plastic 
or insulation. They can be used for packaging as an eco-
friendly alternative to conventional plastic, as they can be 

grown into specific shapes and then dried to create a bio-
degradable packaging material. Mycelium-based products 
like myco-leather are gaining popularity due to their bio-
degradable nature and circular production process. They 
have diverse applications beyond traditional composites, 
including wound care and biomedical scaffolds (Ruggeri 
et al. 2023). Engineered melanin-producing mycelium can 
provide antioxidant properties and a self-growing radiation 
shield for deep-space exploration (Vandelook et al. 2021). 
As some fungi can break down and absorb contaminants, 
mycelial-driven design could be employed in environmen-
tal remediation projects to help clean up polluted areas 
(Vaksmaa et al. 2023). Ongoing research may uncover new 
applications and improvements in mycelial-driven design, 
expanding its potential uses. However, it is -necessary to 
note that the development and adoption of mycelial-driven 
design depends on various factors, including technological 
advancements, market demand, regulatory considerations, 
and public acceptance. The versatility and sustainability 
of these materials make them a promising next-generation 
biomaterial.

Conclusion

Sustainability has become an essential aspect of our lives 
today. Mycelial biocomposites provide a sustainable alter-
native to traditional materials derived from non-renewable 
resources. Additionally, these biocomposites have the poten-
tial to biodegrade naturally, which reduces their environmen-
tal impact. Biocomposites are versatile and can be adapted 
to various applications such as packaging, construction, and 
consumer goods. This versatility makes them suitable for 
replacing non-biodegradable materials, thus aligning them 
with the global focus on circular economies and waste reduc-
tion.Continued research and development efforts will likely 
lead to technological advancements addressing current chal-
lenges. These technological advancements involve refining 
production processes, improving material properties, and 
enhancing scalability. Increased investment and interest 
from industries may drive the commercialization of mycelial 
biocomposites. The cost-effective and efficient production 
methods will make these materials widely adopted in vari-
ous sectors. Educating consumers and businesses about the 
benefits of mycelial biocomposites will be crucial for market 
acceptance. Overcoming scepticism and demonstrating these 
materials' economic and environmental advantages will con-
tribute to their successful integration into mainstream indus-
tries. Clear regulatory guidelines and support for sustainable 
materials could facilitate the adoption of mycelial biocom-
posites. Governments and international bodies may play a 
role in establishing standards and incentivizing environmen-
tally friendly materials.Collaboration between researchers, 
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industries, and policymakers will drive innovation in myce-
lial biocomposites. Cross-disciplinary approaches and part-
nerships can lead to material science, engineering, and appli-
cation breakthroughs.
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