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Abstract
Climate change has impacted agricultural production systems, especially in the Sahel region, which is fragile climatically, 
politically, and economically. This region is of particular concern due to its rising population and strategic importance on the 
African continent. Our review focused on the impact of climate change on millet production in the Central Sahel and aimed 
to identify adaptation strategies by the farmers. This review shows that increased temperature has a negative impact on mil-
let yield and growth parameters. Other climatic factors significantly affecting millet production in the Central Sahel include 
drought, desertification, dry spells, rainfall variability, and wind. Projected data suggests a decline in millet production in 
northern, central, and western Mali by 21%, 20%, and 18%, respectively, by 2030. Additionally, there is an anticipated 17% 
decrease in pearl millet production in Sub-Saharan Africa by 2050 under future climate change projections. Nevertheless, 
farmers in the Central Sahel have devised a variety of indigenous climate change adaptation strategies to sustain millet 
production. These adaptation strategies encompass Zai, half-moon, stone-line, and intercropping. These adaptation prac-
tices have proven effective in mitigating the effects of climate change on millet production in the Sahel region. This review 
suggests strengthening farmers' adaptive capacity to climate change, promoting regional knowledge, integrating millet as 
a fundamental crop group for food security in the Central Sahel, adopting zero-tillage or minimum-tillage practices during 
crop production, diversifying crops, and providing heat- and drought-tolerant crop varieties.
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Introduction

In the cereal world, millets are a miscellaneous collection of 
crops that generally produce small seeds (Garí 2002; Weber 
and Fuller 2008; Padulosi et al. 2015). Smallholder farm-
ers in Africa and Asia cultivate dozens of millet species 

that originated from various genera and were domesticated 
(Sakamoto 1987; Garí 2002; Fuller 2011; Fuller et  al. 
2021). Despite adverse agroecological conditions, millets 
thrive, and their nutritional value makes them a particularly 
valuable crop (Tadele 2016; Suneetha et al. 2019). Millets 
serve as crucial plant genetic resources for poverty-stricken 
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farmers living in parched, nonfertile, and marginal lands 
(Garí 2002). Africa hosts significant centers of millet ori-
gin, diversity, and production (Garí 2002; Dida et al. 2008; 
Winchell et al. 2018). In West Africa, millets like fonio, 
black fonio, and guinea millet are considered truly African 
millets (Garí 2002). Globally recognized millet species, such 
as pearl millet and finger millet, are extensively cultivated in 
Africa and elsewhere (Garí 2002; Belton and Taylor 2004; 
Saxena et al. 2018).

African farmers have inherited a vast genetic diversity of 
these millets, alongside cultivars adapted to harsh agroeco-
logical conditions. Millet finds its way into a wide range of 
foods and appetizers (Amadou et al. 2011; Abah et al. 2020). 
Many food products, including bread, beer, cereal, and more, 
can be made using millet (Taylor et al. 2006; Saleh et al. 
2013). Even today, millets remain a staple food globally 
(Karuppasamy 2015; Chandra et al. 2021), regaining popu-
larity due to its versatility and ease of cultivation (Obilana 
2003; Mal et al. 2010; Karuppasamy 2015).

Millet offers various health benefits, including improved 
digestion, heart protection, and a high concentration of 
essential nutrients such as potassium, vitamin A, vitamin 
B, phosphorus, antioxidants, niacin, calcium, iron, and zinc, 
with finger millet boasting the highest concentration of vita-
mins and minerals (Obilana 2003; Saleh et al. 2013; Devi 
et al. 2014; Hassan et al. 2021). When it comes to essential 
amino acids like methionine and cystine, there is no nutri-
tional difference between millets and most cereals for the 
human body (Obilana 2003; Anitha et al. 2020; Hassan et al. 
2021). The Sahel region cultivates several millet varieties, 
contributing significantly to global millet production.

The West African Sahel (17° W–230 E/13° N–17° N), 
commonly referred to as the Sahel, is already recognised as 
a region characterized by significant interactions between 
climate variability and crucial socioeconomic sectors, such 
as agriculture and freshwater resources (Ben Mohamed et al. 
2002; Kandji et al. 2006; Desmidt et al. 2021). The Sahel 
region receives an annual rainfall ranging from approxi-
mately 350 to 800  mm along a north–south axis (Ben 
Mohamed et al. 2002; Biasutti 2019). This Sahel region 
extends over approximately 5000 km, spanning from Sen-
egal to Kenya (Stephen 2014; Epule et al. 2017). The Central 
Sahel countries encompass Burkina Faso, Mali, and Niger, 
and according to the 2017 ND-GAIN Index, these countries 
rank among the 20% most vulnerable nations to global cli-
mate change (Cooper and Price 2019). Out of 181 ranked 
countries, Burkina Faso, Mali, and Niger are positioned 
within the top 10% of highly vulnerable nations (Cooper 
and Price 2019). Agriculture, particularly subsistence farm-
ing, as well as transhumant livestock rearing, which are 
major sources of income and livelihood in the region, face 
threats from climate change (Kamuanga et al. 2008; Lewis 

and Buontempo 2016; Giannini et al. 2017; Molina-flores 
et al. 2020).

Climate change is currently exerting its influence on 
the Sahel region, as documented by various studies (Ben 
Mohamed et  al. 2002; Van Duivenbooden et  al. 2002; 
Lewis and Buontempo 2016; Serdeczny et al. 2017; Epule 
et al. 2017; Ahmed 2020). Temperatures in the Sahel have 
experienced an increase ranging from 0.2 to 2.0 °C over 
the past three decades (Intergovernmental Panel on Climate 
Change 2007; Epule et al. 2017; Sheen et al. 2017; Biasutti 
2019; Zhang et al. 2021). This temperature shift, along with 
shifting rainfall patterns, has led to adverse effects such as 
reduced crop production, increased tree mortality, declining 
species richness, and density (Gonzalez et al. 2012; Epule 
et al. 2017).

Food systems in the Sahel are under immense strain, with 
climate change contributing to food insecurity for approxi-
mately 50% of the 60 million inhabitants in the Sahel (Epule 
et al. 2017). It is evident that these climatic changes pose 
a significant threat to agriculture in developing countries, 
particularly in the Sahel region, which raises a legitimate 
concern regarding their potential negative impact on pov-
erty and sustainable development (Van Duivenbooden et al. 
2002; Ben Mohamed et al. 2002; Ouedraogo et al. 2006; 
Mendelsohn 2008, 2014; Legg and Huang 2010; Epule et al. 
2017; Tanure et al. 2020; Abubakar et al. 2021a, b; Malhi 
et al. 2021).

Furthermore, there is a growing concern that climate 
change will impede the development of Sahelian agriculture 
(Food and Agriculture Organization 2009; Lalou et al. 2019; 
Ahmed 2020; Mbow et al. 2021). In the Sahel, food security 
and rural livelihoods have suffered from the increasingly 
unpredictable and irregular weather systems (FAO 2009). 
Recent floods in Burkina Faso and persistent droughts in 
Ethiopia have devastated farms and homes throughout the 
Sahel, providing explicit examples of the impacts of climate 
change (FAO 2009; González et al. 2011; Philip et al. 2018; 
Tazen et al. 2019; Dos Santos et al. 2019; Hirvonen et al. 
2020). Frequent droughts and floods exacerbate water scar-
city, food insecurity, and famine, elevating the region's vul-
nerability to climate change (Mendelsohn 2008; Msowoya 
et al. 2016).

The consequences of climate change in the Sahel are 
reflected in rising food prices and declining calorie avail-
ability, contributing to malnutrition (Msowoya et al. 2016). 
Agricultural production has also been severely impacted 
by these climatic changes (Heinrigs 2010; Serdeczny et al. 
2017). Despite long-standing predictions of substantial 
impacts, there have been few studies measuring climate 
impacts in the Sahel (Mendelsohn 2008). Nevertheless, 
agriculture continues to persevere in the Sahel, with farm-
ers employing various adaptation mechanisms to cope with 
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the effects of climate change (Schultz and Adler 2017; Epule 
et al. 2017; Ahmed 2020; Monerie et al. 2021).

This review is primarily centered on the effects of climate 
change on millet production in the Central Sahel, with the 
aim of identifying the adaptation strategies implemented 
by farmers. This review serves as a guide for policymak-
ers in the Central Sahel by shedding light on the impact of 
climate change on millet. It also contributes to our under-
standing of the geographical aspects of the Central Sahel 
while addressing an identified gap in the existing literature. 
Further research is required to enhance climate projections 
and evaluate the efficacy of diverse agricultural adaptation 
measures within the Central Sahel. It's important to note 
that this review does not encompass post-harvest impacts 
and adaptations. Instead, our focus lies on four indigenous 
adaptation strategies: Zai, half-moon, intercropping, and 
stone-line.

Millets cultivated in Sahel region

Millets play a crucial role as staples and ethnobotanical crops 
in the Sahel region, as evidenced by studies conducted by 
Obilana and Manyasa (2002), Power et al. (2019), Ponnaiah 
et al. (2019), and Champion et al. (2021). Taylor (2015) has 
documented the vernacular names of millets in the Sahel, 
including “‘gero’ (Nigeria, Hausa), ‘hegni’ (Niger, Djerma), 
‘sanyo’ (Mali), and ‘dukhon' (Sudan, Arabic)”. Millets are 
not only thermophilic, thriving in high-temperature environ-
ments, but they are also xerophilic, capable of reproduction 
with minimal water, as pointed out by Saxena et al. (2018).

In the Sahel and Sub-Saharan Africa, nine millet species 
serve as major sources of energy and protein for approxi-
mately 130 million people, as indicated by Garí (2002) and 
Obilana (2003). However, only four of these species are 
cultivated significantly in the Sahel region, namely pearl 
millet (Pennisetum glaucum, constituting 76% of the total 
production area), finger millet (Eleusine coracana, 19%), 
fonio (Digitaria exilis, 4%), and black fonio (Digitoria ibu-
rua, 0.8%) (Obilana 2003; Ramashia et al. 2019). Prosso 
and foxtail millet varieties are exceptions, as they are not 
grown in Africa (Obilana 2003; Habiyaremye et al. 2017; 
Saxena et al. 2018).

Pearl millet takes precedence as the most vital millet spe-
cies in the Central Sahel, contributing significantly to culti-
vated areas, production, and food security (Ben Mohamed 
et al. 2002). Remarkably, the Sahel region accounts for 
nearly 37% of the global millet cultivation area, yielding 
an impressive 79% of the total millet production in Africa 
(Ben Mohamed et al. 2002). Nevertheless, millet produc-
tion is unevenly distributed among Sahelian countries, with 
Nigeria (54%), Niger (20%), Mali (9%), Burkina Faso (8%), 
Senegal (5%), and Sudan (4.8%) emerging as the prominent 

producers, although their relative importance may vary from 
year to year (Ben Mohamed et al. 2002; Obilana 2003).

Millets are consumed as a staple food (78%) as well as in 
beverages and for other purposes (20%) (Arendt and Zan-
nini 2013). These hardy crops thrive in sandy soils and are 
typically intercropped with other crops like sorghum, cow-
pea, guinea corn, and sesame, among others, as discussed in 
several studies (Diangar et al. 2004; Zegada-Lizarazu et al. 
2006; Omae et al. 2014; Bitew et al. 2019; Sogoba et al. 
2020). Figure 1 depicts the location of the Sahel region and 
the countries (Niger, Mali, and Burkina Faso) that form the 
Central Sahel.

Impact of climate change on millet production 
in Sahel region

Butt et al. (2005) estimated that without the adaptation of 
tolerant varieties, pearl millet grain yield would decrease 
by 6–12% in Mali under various climate change scenarios 
(Hadley Center Coupled Model and Coupled General Circu-
lation Model). Similarly, it is projected that by 2030–2050, 
millet production will decrease by 21%, 20%, and 18% in 
northern, central, and western Mali, respectively (Butt et al. 
2005; Kirtman et al. 2013). Furthermore, this decline is 
expected to reach 40% due to elevated temperatures (Sultan 
et al. 2013; United Nations High Commissioner for Refugees 
2021). Due to climate change, climate models predict a 17% 
reduction in the yield of pearl millet in Sub-Saharan Africa 
by 2050 (Burney et al. 2010; Sultan et al. 2013; Adhikari 
et al. 2015).

Toure et al. (2018) assessed the impact of climate change 
on millet yields in Mali using the Decision Support System 
for Agrotechnology Transfer (DSSAT) model. The authors 
found that under climate change scenarios (described as 
Cold-dry, Hot-dry, Cold-wet), millet grain yields were lower 
compared to historical weather data. All the millet varie-
ties performed worst under the “Hot-Wet” scenario, indi-
cating increased vulnerability to climate change. Climate 
change variability and future projections suggest a substan-
tial decrease in millet yields in the Central Sahel and West 
Africa (Defrance et al. 2020). The yield exhibited a tendency 
to decline while production continued to increase. This phe-
nomenon signifies that more land is being cultivated (Ben 
Mohamed et al. 2002). This represents the agricultural para-
dox of the Sahel, a region experiencing chronic food insecu-
rity as a result of climate change and agricultural practices.

Impact of temperature on millet production

By the mid-twenty-first century, it is expected that tempera-
tures in Africa will rise by 2 °C and could exceed 4 °C by 
the end of this century due to the effects of climate change 
(Niang et al. 2014; Djanaguiraman et al. 2018). The high air 



444	 Environmental Sustainability (2023) 6:441–454

1 3

and soil temperatures have the tendency to pose challenges 
for millet establishment at the beginning of the growing 
season. During the sowing period, maximum air tempera-
tures may surpass 40 °C, with soil temperatures frequently 
reaching above 50 °C (Ben Mohamed et al. 2002). The ris-
ing temperature significantly impacts millet growth param-
eters, such as height, leaf area, and dry matter production, 
all of which decrease as temperatures rise. Germination also 
experiences a sharp decline with increasing temperature, as 
highlighted by Dhanuja et al. (2019).

Similarly, Gupta et  al. (2015) observed that a maxi-
mum daytime temperature exceeding 42 °C, coupled with 
an increase in the vapor pressure deficit during flowering, 
sequentially reduces seed set in pearl millet. Rising tempera-
tures adversely affect millet yields, with reductions of up to 
41% observed at temperatures exceeding 60 °C, as reported 
by Sultan et al. (2013).

Besides that, the future potential climate change impacts 
on millet yields differ markedly from those observed in 
recent times. When temperatures rise above + 2  °C, it 
appears that the likelihood of millet yield reduction increases 
in the Central Sahel and the rest of West Africa (Sultan et al. 
2013). It is estimated that millet and sorghum yield in the 
Sahel region will drop by 15–25% by 2080 when tempera-
tures increase by more than 2 °C (USAID 2017).

Impact of rainfall variability on millet production

In the Central Sahel, the months of May/June and Septem-
ber/October mark the only rainy seasons throughout the year 
(Abubakar et al. 2021a, b; Ahmed et al. 2021). Rainfall in 
this region exhibits significant variability, both spatially 
and temporally, and tends to decrease over time. Rainfall, a 
dominant climatic factor in the Central Sahel, demonstrates 
diverse characteristics and impacts various climatic vari-
ables, including evaporation, temperature, solar radiation, 
wind, and humidity, to varying degrees (Ben Mohamed et al. 
2002).

The variability in rainfall has had a detrimental effect on 
millet yields, leading to reductions of up to 41% for a − 20% 
rainfall deficit (Sultan et al. 2013. Sultan et al. (2013) note 
that "the Sudanese region (southern Senegal, Mali, Burkina 
Faso, northern Togo, and Benin) seems to be more suscepti-
ble to yield reductions than the Sahelian region (Niger, Mali, 
northern Senegal, and Burkina Faso)".

In the year 2100, it is anticipated that Chad and Niger 
may be unable to sustain rainfed crops, while Mali could 
experience a 30% decline in cereal harvests due to the effects 
of climate change (USAID 2017). Similarly, Defrance et al. 
(2020) predict a decrease in rainfall across the Western 
Sahel based on the IPCC scenario RCP8.5 (Representative 
Concentration Pathway). Under all scenarios considered 

for the region, agricultural production in the Central Sahel 
is expected to fall below 50 kg per capita by 2050. This 
prediction encompasses a range of wet-season precipita-
tion changes from − 20% to + 40%. Additionally, due to 
uncertainties in agronomic models, there exists ambiguity 
in impact studies concerning millet and other agronomic 
yield projections, in addition to climate models (Defrance 
et al. 2020).

Impact of drought on millet production

Drought is a complex climatic phenomenon characterized 
by natural reductions in precipitation, which have a nega-
tive impact on millet and other crop productions (Ahmed 
et al. 2021). The Central Sahel region is generally marked 
by three types of drought: meteorological drought, agricul-
tural drought, and hydrological drought (Stanke et al. 2021; 
Ahmed et al. 2021; Abubakar et al. 2021a, b). When drought 
affects well-being, livelihoods, and life, it is classified as a 
socioeconomic drought (Bryan et al. 2020).

Historically, the Central Sahel has experienced droughts 
and famines in various years, including 1883, 1903/1905, 
1913/1915, 1923/1924, 1942/1944, 1954/1956, 1972/1973, 
1982/1983, and more recently in 2004/2005 and 2011/2012 
(USAID 2006; Federal Ministry of Environment 2021a; 
Ahmed et al. 2021). Additionally, in the Sahel, there have 
been three major droughts known to have occurred in 
1883/1885, 1913/1915, and 1942/1944, which follow a 
regional 30-year cycle (FME 2018; Ahmed et al. 2021). The 
Sahel and Sudan climatic belts are typically affected by these 
30-year drought cycles (FME 2018). Conversely, droughts 
on a 10-year cycle tend to be more localized, even in areas 
near the same latitude (FME 2006, 2018).

The increase in the number of drought days and their 
severity lead to a reduction in millet yield (Boubacar 
2012; Diakhaté et al. 2016). Similarly, Winkel et al. (1997) 
reported that drought has a severe impact on millet, resulting 
in lower biomass production and significantly reduced grain 
yield. Interestingly, there is no noticeable effect of rising 
temperatures on grain size. Tiller flowering is either delayed 
or completely inhibited within 30–45 days of the onset of 
drought (De Rouw and Winkel 1998). It has been demon-
strated that pearl millet is negatively affected by drought in 
terms of growth, yield, membrane integrity, pigment con-
tent, osmotic adjustment, water relations, and photosynthetic 
activity (Ajithkumar and Panneerselvam 2014).

Impact of desertification on millet production

Desertification, defined as the degradation of land in arid, 
semi-arid, and dry sub-humid areas caused by various fac-
tors, including climate variability and human activities (Feng 
et al. 2015; Hu et al. 2020), exerts a significant impact on 
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millet production in the Central Sahel (Ikazaki 2015). This 
phenomenon entails a decline in soil fertility, soil degrada-
tion, and a substantial reduction in potential land productiv-
ity, thereby disrupting millet production. As land shifts from 
being arable to arid, it often becomes unsuitable for millet 
cultivation (Ikazaki 2015; Moussa et al. 2016; Tanaka et al. 
2016). Desertification results in soil compaction, the loss of 
soil structure, nutrient depletion, and increased soil salin-
ity, rendering the soil unsuitable for millet cultivation (Lal 
2015). The alarming rate of desert encroachment is causing 
the destruction of arable land, prompting migration to more 
productive areas and exacerbating the pressure on available 
fertile land (Rasmussen et al. 2001; Holthuijzen and Max-
imillian 2011; Moussa et al. 2016; Azare et al. 2020). Conse-
quently, vast expanses of arable land in the Central Sahel and 
the entire Sahel region are disappearing (Ahmed et al. 2021).

Impact of dry‑spell on millet production

The term "dry spell" refers to an extended period of unu-
sually low rainfall and abnormally dry weather conditions, 
lasting longer than typical but not as severe as a full-fledged 
drought (Barron et al. 2003; Sawa and Ibrahim 2011; Fall 
et al. 2021). Dry spells manifest as consecutive days with-
out any precipitation (Breinl et al. 2020). Specifically, a dry 
spell is officially recognized when there is an absence of rain 
for three or more days within the wet season (van Duiven-
booden et al. 2002; Fox and Rockström 2003; Traore et al. 
2017; Bako et al. 2020). In addition to limiting soil moisture 
for millet cultivation, dry spells pose a significant threat to 
nutrient uptake, thereby having a detrimental impact on mil-
let yields (Paudyal et al. 2016; Breinl et al. 2020). In many 
instances, the occurrence of dry spells not only reduced mil-
let yields in the region but also led to complete crop loss 
during the prolonged periods of occurrence, effectively 
resulting in drought conditions. Dry spells adversely affect 
key millet growth stages, including panicle initiation, flow-
ering, and grain filling (Traore et al. 2017). Historically, the 
Central Sahel droughts of 1972/73 and 1984 were primarily 
attributed to the cumulative impact of prolonged dry spells, 
and the severity of these dry spell effects on millet yields 
closely correlates with soil water storage capacity (Barron 
et al. 2003).

Impact of wind on millet production

Another climatic factor influencing millet growth and yield 
is wind (Ben Mohamed et al. 2002). There is significant soil 
loss as a result of strong winds and dry soils (Issaka and 
Ashraf 2017; Yang et al. 2020). The wind has a powerful 
effect on bare soils by removing vast quantities of soil and 
transporting it away, then depositing it onto young millet 
seedlings (Sterk et al. 1995). It is imperative to resow millet 

several times per year due to the weight of this deposition 
combined with the high soil temperatures. By removing the 
clays and organic matter from the soil, wind erosion ren-
ders the surface soil less productive (Gemma Shepherd et al. 
2016). In addition to destroying soil structure and biological 
activity, the removal of clay and organic matter diminishes 
native soil productivity and damages millet production and 
the health of the soil resource (Ikazaki 2015; Gemma Shep-
herd et al. 2016). Millet can also be damaged by wind ero-
sion due to the abrasive action of saltant particles on seed-
lings. Nigerien farmers are not particularly concerned with 
soil particle loss; however, they are more concerned about 
the loss of nutrients from low-fertility soils due to wind ero-
sion (Ikazaki et al. 2012; Abdourhamane Touré et al. 2019). 
Wind erosion is common and frequent in the Central Sahel, 
causing millet seedlings to collapse (Abdourhamane Touré 
et al. 2019). Ikazaki et al. (2012) and Abdourhamane Touré 
et al. (2019) have provided valuable insights into soil and 
nutrient losses resulting from wind erosion.

Moreover, there are other non-climatic factors that con-
tribute to the decline in millet production in the Central 
Sahel. These factors include bio-physical factors, socio-
economic factors, and political factors. Table 1 presents 
non-climatic factors that influence yield in the Sahel region.

Adaptions in Sahel region

Climate change adaptation involves changing ecological, 
social, or economic systems in response to actual or antici-
pated changes in climatic conditions (Stein et al. 2013; IPCC 
2018; Mugambiwa 2018). Adaptation involves modifying 
processes, practices, and structures in order to minimise or 
capitalise on potential damages (Smit and Wandel 2006; 
Nelson et al. 2021; Ayers et al. 2006). In the Sahel region, 
several measures for improving millet yields are available, 
including seed priming (Coulibaly et al. 2019), dry planting, 
application of fertiliser and/or manure, contour ridge tillage 
(Traore et al. 2017), mono-cropping of early maturing vari-
eties, incorporating inorganic fertiliser in very poor soils, 
low density planting, etc. (De Rouw 2004). Elaborating on 
these yield improvement measures are beyond the scope of 
this review. Herein we focus on four indigenous agricultural 
climate change adaptation strategies in the Central Sahel 
(Zai, half-moon, stone-line, and intercropping). Indigenous 
adaptation technologies gleaned through generations of 
monitoring and observation are proving to be effective in 
climate change adaptation (Petzold et al. 2020).

The term "Zai adaptation techniques" describes a plant-
ing pit with dimensions of 20–30 cm in width, 10–20 cm 
in depth, and spaced 60–80 cm apart (Danquah et al. 2019; 
Muchai et  al. 2020), resulting in approximately 10,000 
pits per hectare (Kathuli and Itabari 2015; Danso-Abbeam 
et al. 2019). On the bottom of the pit, farmers usually place 
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approximately two handfuls of organic material (either ani-
mal dung or crop waste). Seeds are planted in these pits as 
soon as the rains begin. Zai combines water and nutrient 
management into one technique that farmers can manage 

themselves, requires few external inputs, and is financially 
accessible (Jouquet et al. 2018; Danso-Abbeam et al. 2019). 
The Zai pits also collect and concentrate water at the plant 
base (Fatondji et al. 2009; Danjuma and Mohammed 2015). 

Fig. 1   The location of Sahel region and the Central Sahel countries. Source: Modified from Epule et al. (2017)
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The success of the Zai adaptation technique became evident 
during the droughts of the 1970s and 1980s that ravaged 
the entire Sahel region (Danjuma and Mohammed 2015; 
Danso-Abbeam et al. 2019). Research conducted in north-
ern Burkina Faso revealed that the utilization of Zai led to 
an increase in millet crop yields by more than 100% (Oue-
draogo et al. 2010). Additionally, Zai was found to enhance 
cereal yields by 428–1200 kg/ha in Togou, Leeba, and Yan-
teng, Burkina Faso (Barbier et al. 2009; Sawadogo 2011; 
Nyamekye et al. 2018). Numerous other studies also confirm 
the effectiveness of Zai in improving yields (Kaboré and 
Reij 2011; Nyamekye et al. 2018; Ebi et al. 2011; Danjuma 
and Mohammed 2015; Moussa et al. 2016; Mutua-Mutuku 
et al. 2017; Muchai et al. 2021; Oduor et al. 2021). In the late 
1950s, the half-moon adaptation technique was introduced to 
complement and strengthen the effectiveness of Zai adapta-
tion techniques.

The half-moon adaptation technique was introduced 
in 1958 to the Sudan-Sahel region of Yatenga by Burkina 
Faso's environmental services (Nyamekye et  al. 2018). 
The half-moon technique modifies the Zai strategy: a basin 

is dug on gentle slopes, and the excavated soil forms an 
arched dyke that follows the contour lines (Organization for 
Economic Cooperation and Development 2009). The half-
moons are arranged in stepped contour lines to collect run-
off water that seeps into the soil (OECD 2009; Nyamekye 
et al. 2018). The gap between adjacent half-moons along 
the same contour line and between two sequential lines is 4 
square meters. The average density per hectare is 315 half-
moons (Zougmoré et al. 2014; Nyamekye et al. 2018). Half-
moons are well suited for semi-arid and arid regions due to 
their ability to collect runoff water (Nyamekye et al. 2018). 
Half-moons have a larger surface area than Zai, allowing 
them to hold more water (Nyamekye et al. 2018). Half-
moons enhance moisture depths by 20–40 cm and optimise 
soil water reserves (OECD 2009). They boost farm output 
when a mineral or organic supplement is added (Zougmoré 
et al. 2014). In addition, growing shrubs on the beds helps 
improve crop yields on farms and appropriately preserves 
the half-moons (Onyango 2015). The half-moon effectively 
collects runoff water, but it requires more organic matter to 
improve soil fertility (Nyamekye et al. 2018). Millet yields 

Table 1   Non-climatic factors that contribute to low millet yields in Sahel

Adopted and modified from Ben Mohamed et al. (2002)

Types Descriptors Specifications

Bio-physical factors Soils Physical vulnerability to wind and water erosion; occa-
sional thin surface crust; cultivation of marginal soils; 
low water-holding capacity; and low soil fertility

Carrying capacity pests and diseases Exceeded in terms of limiting access to rangelands
Socio-economic Population The population is growing rapidly (3.5% per year, dou-

bling every 30 years); people are moving into marginal 
areas; and the educational level is low

Extension and outreach Extension services that are either non-existent or of poor 
quality; a reduction in agricultural research activities

Inputs An organic manure fertilizer, biocide, pesticides, and low-
level chemical fertilisers

Credit National agricultural credit has vanished
Market Only for onion, and cowpea in Niger; the rest is for inter-

nal/domestic consumption
Land tenure and fragmentation Excessive exploitation as a result of non-ownership, inher-

itance, family and communal disputes over land
Political instability Conflict Insurgency, religious extremism and banditry (Niger, Mali 

and Burkina Faso) prevents farmers from land cultiva-
tion

Breeding Cultivar types Developing crop varieties to increase yield or resist pests 
and diseases

Poor Farming Practices Inadequate crop rotation, improper planting techniques, 
and monoculture

Can lead to nutrient depletion, soil exhaustion, and 
reduced yields

Lack of Access to Inputs Limited access to quality seeds, fertilizers, and pesticides Reduces crop yields due to inadequate resources for opti-
mal cultivation

Infrastructure Deficiency Lack of transportation, storage facilities, and market 
access

Hampers the efficient movement of crops to markets and 
reduces profits for farmers

Cultural Practices Traditional farming methods and beliefs May resist the adoption of modern, more productive agri-
cultural practices
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obtained using half-moons range from 1400 to 2000 kg/ha 
(Sawadogo 2011; Nyamekye et al. 2018). Compared to other 
adaptation techniques, the half-moon technique was found to 
be the most effective response to deteriorating growing con-
ditions in the Sahel (Kagamèbga et al. 2011). Although the 
effectiveness of half-moon differs from that of contour stone 
bounds in terms of runoff collection and reducing erosion.

Water runoff causes cropland erosion, which can be mini-
mised with contour stone bunds (Gebrernichael et al. 2005; 
Wakolbinger et al. 2015). Contour stone bunds (25–50 cm 
wide and approximately 25 cm high) are constructed from 
a mix of small and large stones embedded 5–15 cm in the 
ground (Critchley and Bielders 2007). They are built in a 
series behind each other along the natural contour of the 
land, usually 20–50 m apart depending on the slope of 
the terrain. The bund slows runoff by acting as a barrier, 
reducing erosion, and increasing water infiltration into the 
ground (Gebrernichael et al. 2005; Critchley and Bielders 
2007). Overall, stone-lined landscapes increase or maintain 
soil water retention, enhance water harvesting capabilities, 
boost organic matter content, improve soil fertility, promote 
natural tree regeneration, reduce slope length, enhance soil 
structure, increase ground cover, and prevent evaporation 
(Nyssen et al. 2007; Critchley and Bielders 2007; Ponce-
Rodrguez et al. 2019; Traoré et al. 2020). In addition, stone-
line increases soil water, yield, revenue, and resilience 
(Traoré et al. 2020). This directly or indirectly improves 
millet yields. Stone-lines enhance millet yield by over 50%, 
which on average equals 450 kg/ha to 1500 kg/ha, or UDS 
98–294/ha (Nyamekye et al. 2018; Traoré et al. 2020).

During the growing season, intercropping involves plant-
ing two or more crop species in a single field at the same 
time (Mousavi and Eskandari 2011; Maitra 2019). These 
involved several intercropping patterns, such as mixed inter-
cropping, row intercropping, strip intercropping, and relay 
intercropping (Mousavi and Eskandari 2011; Bybee-Finley 
and Ryan 2018; Maitra 2019). Row-intercropping (a combi-
nation of two or more crops planted in regular rows or two 
or more crops grown simultaneously) is the most widely 
accepted form of intercropping in the Sahel, particularly 
the Central Sahel. This involved intercropping millet with 
cowpea, millet with sesame, millet with Guinea corn, etc., 
or both depending on farmer preferences. Intercropping 
enhances millet production, greater use of environmental 
resources, reduction of pests, diseases, and weed damage, 
stability and uniformity of yield, improved soil fertility, and 
increased soil nitrogen fixation where legumes are present 
(Mousavi and Eskandari 2011; Omae et al. 2014; Bybee-
Finley and Ryan 2018; Maitra 2019; Maitra et al. 2021). The 
success of intercropping depends significantly on choosing 
the right combination of crops, considering the local crop 
environment and the availability of suitable varieties (Maitra 
2019). Various studies have confirmed that intercropping 

millet with legumes or other cereals in the Central Sahel 
region yields positive results (Maitra et al. 2001; Sarr et al. 
2008; Aune et al. 2012; Omae et al. 2014; Sanou et al. 2016; 
Bogie et al. 2019; Saharan et al. 2018; Sogoba et al. 2020).

Future prospects

There are several future bottlenecks to increased produc-
tion of millet, including climate change, unpopularity of 
available improved varieties, inappropriate focus of a crop 
research programme, erratic producer pricing policies, pro-
cessing technology, pests and diseases (e.g., striga), agro-
nomic problems, and environmental stresses (Rouamba et al. 
2021; Bado et al. 2021). There are huge challenges in the 
development of millet genetic resources to improve varie-
ties in Africa, especially in the Sahel region (Kanlindogbe 
et al. 2020; Sharma et al. 2021). Governments and policy-
makers have given pearl millet relatively little attention as 
a poor man's crop in terms of supporting upstream science 
(Srivastava et al. 2020). A lack of funding for pearl millet 
genomics research has always been an issue, especially in 
the Sahel region and other developing countries (Serba et al. 
2019). High crossbreeding rates, heterozygous nature, and 
inbreeding depression all cause problems for the crop, caus-
ing bottlenecks in breeding programmes (Srivastava et al. 
2020). Drought-tolerant millet varieties can be developed 
with the advancement and effective integration of genomic 
tools (Srivastava et al. 2022). The least disturbing maturity 
period (70–75 days) is obtained by adding new germplasm 
collections to drought-resistant crossing programmes (Sriv-
astava et al. 2022). Improved sustainability in millet through 
economically sound processes that minimise negative envi-
ronmental impacts while conserving natural resources and 
maintaining or improving soil fertility is important. Among 
smallholder farmers in developing countries, millet could 
improve their food and nutritional security in the future 
(Gairhe et al. 2021). There is also a need to monitor grain 
minerals in future cultivars, improving multiple nutrients 
(Govindaraj et al. 2022). For rain-fed marginal lands to be 
promoted as a source of income, this crop (millet) will need 
increasingly high priority and policy support (Gairhe et al. 
2021). There is potential in the application of geographic 
information systems (GIS), from land-use planning and 
suitability assessment to climate suitability assessment to 
millet-soil-yield monitoring, soil fertility management, post-
harvest operations, etc. (Buckner et al. 2016). Millets are 
drought-resistant and need little input; they are the "marvel 
grain" of the future. Millets are environmentally friendly and 
sustainable for the farmer who grows them because of their 
high tolerance to severe conditions. They also give everyone 
access to affordable, high-nutrition options. However, there 
is a need for further research on the relationship between 
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millet and climate change in the Sahel in order to better plan 
our future actions and adapt to unavoidable climate changes.

Conclusion

Climate change poses significant threats to millet produc-
tion and food security, especially in the densely popu-
lated Sahel region, which grapples with food insecurity 
and malnutrition. However, millet cultivation has shown 
resilience in the face of climate change. To secure a sus-
tainable millet sector and address these challenges, it is 
crucial to incentivize Sahel farmers to embrace indig-
enous adaptation techniques. Indigenous strategies can 
enhance millet yields while conserving land and promot-
ing habitat regeneration, aligning with climate goals. This 
approach, though less economically disruptive, is pivotal 
for long-term economic resilience in Sahel countries. This 
review advocates for cultivating drought-resistant, early-
maturing millet varieties and preserving millet genetic 
diversity through seed banks, fairs, and farmer networks, 
with a focus on West African millets. Active participa-
tion in millet research, indigenous adaptation technolo-
gies, and understanding the link between farmer genetic 
resources and climate adaptation are encouraged. Farmers 
should adopt proven crop mixtures to ensure production 
stability during climate fluctuations and build grain and 
seed reserves as insurance. Policy reforms, agricultural 
insurance enhancements, and strategic grain reserves are 
essential. Transitioning to sustainable millet production 
will not only benefit the Sahel's environment and health 
but also sets an example for Africa and beyond. Stake-
holders, including farmers, policymakers and consumers 
must prioritize the future over short-term interests to bring 
about this transformative change promptly.
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