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Abstract
Biochar is a carbon-rich product, derived from the pyrolysis of biomass in the absence of oxygen. It is a widely accepted 
soil amendment for increasing the amount of soil carbon, nutrients, organic matter, enhancing population of soil microbes, 
soil retention and aeration capacity. Biochar can be produced using agriculture residues, plant biomass, and animal waste. 
Eichhornia crassipes is a high biomass producing aquatic plant used for a variety of purposes around the world. This review 
highlights the fabrication of biochar from E. crassipes biomass. The biochar produced from E. crassipes biomass bears 
good nutritive values and its application to the soil enhances agricultural crop productivity with improved soil health. The 
conversion of E. crassipes biomass in to biochar not only provides a significantly better alternative to chemical fertilizers 
but also a sustainable management strategy of this invasive plant species.
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Introduction

The expanding population has led to depletion of natural 
resources with their increasing demands. This concurrent 
effect can decline the sustainable agricultural production 
and food security. For this, a variety of chemical syn-
thetic fertilizers, pesticides, and other products have been 
used for enhancement of crop yields. Nevertheless, these 
chemical fertilizers contain toxic metals which degrade the 
soil health with set of certain antagonistic reactions, as a 
result of which soil becomes degraded resulting in stress-
ful conditions for plants. Therefore, with the excessive use 
of chemical and inorganic fertilizers, the agricultural yield 
and soil fertility declines. In this connection, some sustain-
able approaches have been investigated including organic 
farming, agroecology, agroforestry etc. (Nair et al. 2017). 
The utilization of natural substances or the products derived 
from them are found economically viable and environmen-
tally sound, for not only enhancing the crop yield but also 

soil fertility. Biochar, a carbonaceous solid material, is one 
of these products which has good percentage of aromatiza-
tion and strong anti-decomposition capabilities (Yuan et al. 
2019). Moreover, it can be produced from various materials 
such as weeds, food wastes, timber debris, straw, rice shell, 
crop residues, etc., (Ding et al. 2016; Rehman and Razzaq 
2017; Das et al. 2021; Jia et al. 2021). Biochar produced 
from organic biomass is quite a novel alternative to improve 
the soil fertility, agricultural yield, and organic matter, in 
order to prevent soil deterioration (Das et al. 2021; Jia et al. 
2021). In many countries like India, Europe, China, Japan, 
and America, biochar is being used as an amendment for 
improving soil fertility (Gabhane et al. 2020).

Utilization of weeds especially high biomass producing 
species for production of biochar has become a novel tool 
due to its easy availability and cost-effective nature. The 
exponential growth of aquatic weeds has is of concern to 
both environment and ecologists (Zedler and Kercher 2004; 
Chamier et al. 2012; Brundu 2015). However, silver lin-
ing is that these species have been found to bear significant 
potential to be used for the preparation of biochar. Eich-
hornia crassipes (water hyacinth) is a major exotic weed, 
well known for its obstinate growth around the water bod-
ies. Hence, it can severely affect the biodiversity, nutrient 
cycle, and water quality. Resultantly, numerous physical, 
chemical and mechanical techniques have been suggested 
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to suppress growth of this invasive weed but the incurring 
expenditure becomes a snag to it. On the other hand, these 
techniques remain unsatisfactory in genuinely managing 
the problem, regardless of being a cause of multiple envi-
ronmental dilemmas (like increase in pollutant load, heavy 
metals, etc.) (Gao and Li 2004). Besides the drawbacks, 
aquatic invasive species also possesses evident qualities 
like, high biomass, improved metabolic properties, superior 
tolerance level, and greater efficiency to decontaminate the 
water. Thereby, to control the load on environment due to the 
invasion, a new and sustainable approach is gaining a great 
deal of attention throughout the globe. Bio-waste valoriza-
tion, which facilitates conversion of waste-biomass into eco-
friendly bio-products is now becoming important to tackle 
to utilise the waste biomass (Abosede et al. 2017; Ahmed 
et al. 2020; Ulusal et al. 2020). Eichhornia biomass can be a 
good alternative source and can be utilized in many possible 
ways such as in phytoremediation, preparation of compost 
or vermicompost, manure, biochar, paper, board and energy 
production, due to its rich cellulosic properties (cellulose, 
hemicellulose and lignin content), and higher biodegradabil-
ity when disposed directly into the soil (Wilson et al. 2005; 
Cai et al. 2017; Sindhu et al. 2017). Also, due to rapid and 
high biomass producing potential, it has considerable ability 
of carbon dioxide (CO2) sequestration (Spokas et al. 2012; 
Gupta et al. 2020). These alternatives can be useful as low-
cost operation, waste minimization, economical, ecological 
and societal development (Ban et al. 2019; Kwon et al. 2020; 
Wang et al. 2020).

So, during the process of biochar production, cellulosic 
carbons in water hyacinth biomass can be converted into 
stable aromatic carbons, which may help in attracting the 
soil particles through decomposition process and increasing 
the soil carbon content. Meanwhile, several scientific studies 
have proved that biochar has a greater role in enrichment of 
soil properties (Ding et al. 2016; Rehman and Razzaq 2017). 
Thus, the present review is aimed to explore the potential, 
characteristics and production methods of biochar from E. 
crassipes. The application of biochar in agroecosystems and 
their effects on soil fertility parameters, plant growth and 
yield are also discussed.

Eichhornia crassipes: a recalcitrant alien weed

E. crassipes (water hyacinth), an exotic free-floating per-
ennial vascular aquatic plant, is known for its impetuous 
growth all around the world coupled with serious ecologi-
cal and socio-economic changes to the ecosystem (Center 
et al. 1999). It belongs to family “Pontederiaceae” and is 
native to Amazon basin of tropical and sub-tropical South 
America. It reproduces both sexually and asexually (Mitchell 
1985) however, for the prolific growth and reproduction of 
water hyacinth, high nutrient concentrations and optimum 

temperature are deemed as the strongest factors (Wilson 
et al. 2005). In contrast to other emergent macrophytes, 
water hyacinth is not confined to shallow water because of 
its free-floating root system. It has nearly invaded in around 
50 countries on different continents and, may expand to top-
level latitudes as temperature rises due to increased green 
house gas emissions and climate change (Rodriguez-Gallego 
et al. 2004; Hellmann et al. 2008; Rahel and Olden 2008). E. 
crassipes is pervasive across Southeast Asia, the Central and 
Western Africa, the Southeastern United States and Central 
America (Fig. 1) (Brendonck et al. 2003; Lu et al. 2007; 
Téllez et al. 2008; UNEP 2013). The accelerated growth of 
water hyacinth affects the drainage systems and irrigation 
patterns, spread the pathogens, alters the quality of water 
and hydropower and water supply ways, sabotage water 
transport, obstructs the canals and rivers causing floods, low-
ers the dissolved oxygen of water, and reduces the aesthetic 
value of tourist places (Singh 2005; Martinez-Jimenez and 
Gomez-Balandra 2007). Irrespective of the adverse impacts, 
water hyacinth also possesses some benefits, it can be used 
in traditional medicines, biogas production, as mushroom 
bedding material, carbon black production, making of ropes, 
production of fiber boards, as animal fodder and fish feed, 
green manure, compost, biochar and as an ornamental plant 
(Abosede et al. 2017; Ahmed et al. 2020; Ulusal et al. 2020).

Biochar (BC): an environmental medicament

Biochar is rich in active organic clusters and aromatic con-
figurations with reasonably high cation exchange capacity, 
optimum pH, extensive surface area, and negative surface 
charge (Chan et al. 2007; Li et al. 2016a, b; Cheng et al. 
2020). As described in Fig. 2 biochar application enhances 
the soil organic matter and soil enzymes, stimulates soil 
microbial population, aids in improved water holding capac-
ity, limits the leaching behavior of chemically derived fer-
tilizers, promotes soil aeration, stretches the retention time 
of nutrients and increases soil stress tolerance capacity and 
other environmental problems as well (Amonette and Joseph 
2009; Cao and Harris 2010; Chen and Yuan 2011; Jiang 
et al. 2012). Also, biochar has higher adsorption potential 
due to its greater surface area, when added to contaminated 
sites (Zhao et al. 2019). Moreover, the biochar can act as pH 
regulator of the soil, as a result of which, soil retains high 
moisture to immobilize the metals released from chemical 
fertilizers (Renner 2007; Kumar et al. 2018). Microstruc-
ture of the biochar is a captivating material to stimulate the 
bio-availability of toxic pesticides or herbicides. The effects 
and behavior of biochar depends on adsorption or desorp-
tion, degradation and bio-accessibility in the soil along with 
leaching of chemical pollutants (Manyà 2012; Zhang et al. 
2012; Safaei Khorram et al. 2016; Cai et al. 2017). Higher 
proportion of carbon can be sequestered and confiscated for 
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a longer period in the soil by application of biochar (Kuh-
lbusch 1998; Kuhlbusch et al. 1996; Lehmann et al. 2005; 
Nguyen et al. 2009). Biochar has the ability to mineralize 
the complex components including pollutants through both 
biotic (Hamer et al. 2004; Kuzyakov et al. 2009) and abi-
otic mechanisms (Liang et al. 2008; Nguyen and Lehmann 
2009). All these factors and conditions (mentioned above) 
are favorable for better plant growth and productivity (Jha 
et al. 2010; Kalus et al. 2019; Sánchez-Reinoso et al. 2020). 
Regardless of the adequate environmental benefits, the bio-
char commercialization stumbled due to the higher expenses 
involved in its manufacturing. This major hindrance can be 

alleviated by using cheap and locally available raw materials 
for its production (like, weeds and other biowaste materials) 
(Uchimiya et al. 2010; Masto et al. 2013; Li et al. 2016a, 
b; Gaurav et al. 2020). The employment of biomass waste 
valorization to obtain biochar and other valuable products 
from invasive weed species (like E. crassipes) can be a great 
initiative and may be an important plan for the suitable man-
agement and utilization of the invasive weeds (Masto et al. 
2013; Li et al. 2016a, b; Gaurav et al. 2020).

Recently, the production of biochar using plant biomass 
has gained a lot of interest in the scientific community; 
however, it can be produced in a variety of ways, including 

Fig. 1   Global distribution of water hyacinth  (Map source: Téllez et al. 2008; UNEP 2013)

Fig. 2   Multi-benefits of application of biochar into the soil (Masto et al. 2013; Mosa et al. 2018; Najmudeen et al. 2019; Zhou et al. 2020)
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thermochemical and biochemical methods. Therefore, con-
verting biomass to biochar can improve the carbon storage 
and soil fertility, forging the previously known recalcitrant 
weed to a valuable resource. Biochar assimilation into 
agricultural soil has recently encouraged much scientific 
research for agronomic, financial and ecological benefits. 
Pyrolysis of feedstock at various temperatures under oxygen-
limiting conditions has shown the effects and efficiency of 
biochar (Khan et al. 2013; Uchimiya et al. 2011). In addi-
tion, several types of feedstock have been used for biochar 
production such as rice straw, wood, corn stover, rice husks, 
bamboo, wheat straw, peanut shells, poultry litter, and ani-
mal manures (Adekiya et al. 2020; Azeem et al. 2019; El-
Naggar et al. 2018; O’toole et al. 2018; Paetsch et al. 2017; 
Muhammad et al. 2017; Naeem et al. 2017) (Table 1). There 
are some common methods for biochar production which 
have been discussed below.

Incineration or combustion

Incineration or combustion is the oldest methodology being 
used to extract energy from plant biomass without any 
chemical processing. Biomass can be used to produce heat 
in the presence of air at temperature set between 800 and 
1000°C leaving ash (McKendry 2002; Tripathi et al. 2016). 
However, the remaining ash can be utilized in degraded land 
for soil reclamation. Huang et al. (2016) studied that com-
bustion of water hyacinth released various gaseous emis-
sions like CO2, NO2, SO2 and methane without pretreat-
ment. However, the pretreatment of biomass feedstock prior 
to combustion improves process efficiency and suppresses 
overall process expenses (Goyal et al. 2008).

Pyrolysis

Pyrolysis is the most promising technique being employed 
to convert waste into useful biochar, liquid and gas. In this 
process, with the increase in temperature, the quality of 
biochar and surface structure of particles may get affected 
(Gogoi et al. 2017; Gopal et al. 2019). Generally, pyrolysis 
is of two major types i.e., slow pyrolysis and fast pyrolysis. 
The fast pyrolysis easily decomposes the waste materials 
and produces gases, aerosol particles and biochar. This pro-
cess includes high heating, less reaction time, temperature of 
500ºC or more, quick char product removal and fast cooling 
of vapors. Apart from these, the constituent product is bio-
oil obtained from dry biomass along with biochar and gas. 
It is a rapid process that ends within seconds. In this process 
the yield is indicated as 60% of bio-oil, 20% of biogas and 
20% of syngas (Huang et al. 2016; Dai et al. 2017). Whereas, 
the slow pyrolysis is categorized by slow heating rates, more 
solid materials and less temperature i.e., 400°C or less as 
compared to fast pyrolysis. In case of slow pyrolysis, biochar 

is the prime product (35–45%) together with other prod-
ucts as bio-oil (25–35%) and syngas (20–30%) (Verma et al. 
2012; Lai et al. 2013; Méndez et al. 2015). The solid frac-
tion (biochar) product is quite evident during the process 
with certain volume of liquid and gas products from wet 
biomass upto 75 wt% (Bridgwater et al. 1999; Amutio et al. 
2012). Some researchers observed that pyrolysis is the best 
method for the conversion of any biomass waste materials 
such as rice straw, wheat straw, sawdust, flax straw, bamboo 
biomass, etc., into biochar (Azargohar et al. 2013; Xiao and 
Yang 2013) (Table 2). Several authors demonstrated that 
the differences in pyrolysis temperature induces substantial 
variations in the chemical structure and biochar composi-
tion (Li et al. 2006; Scott and Glasspool 2007; Asadullah 
et al. 2010), that may essentially elucidate the importance 
and variances in biochar stability and the carbon mineraliza-
tion process in the soil (Baldock and Smernik 2002; Nguyen 
and Lehmann 2009).

Gasification

Gasification, a thermo-chemical process, is carried out to 
produce the gaseous fuels and stable carbonaceous biomass 
at temperature of around 700–900°C in presence of nitro-
gen, air and CO2 (Reddy et al. 2014; Tripathi et al. 2016). 
With reference to other methods, gasification discards larger 
volume of syngas along with diminutive emissions. Hydro-
gen is the primary yield of this process, though a sizeable 
amount of biochar is also produced (Guan et al. 2016). Dur-
ing this process, an internal heat transfer within particles 
increases the native temperature of biomass that carries off 
the removal of water and aids the steady release of pyro-
lytic volatiles. Although the biomass elements decompose 
at different temperatures but the entire decomposition ceases 
within the temperature range of 400–500°C, where biochar 
is the minute product. To obtain the higher energy efficiency 
with minimum feedstock, particle size is increased that 
simultaneously increases the operational cost. On the other 
hand, an increase in feed particle size decreases the milling 
costs but increases the residence time and fixed cost (Luo 
et al. 2009; Al-Rahbi and Williams 2017).

Hydrothermal carbonization

Basically, the hydrothermal carbonization (HTC) process 
is an effective and eco-friendly technique with the tempera-
ture range of 180–350°C (Sevilla and Fuertes 2009) where 
water is used as reaction medium above the saturation pres-
sure. The HTC process is comparatively cleaner and hazard 
free method due to water as the individual reaction medium 
under pressure and heat. The HTC is operated in very com-
plex pressurized rotary drums, kilns and stoves which make 
it a cost bearing process (Hoekman et al. 2011). During the 
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production of biochar through carbonization process at tem-
perature range of 450–550°C, a considerable volume of yield 
was obtained. So, the researchers emphasize on the tempera-
ture variations in slow pyrolysis and lignin decomposition 
(Cornette et al. 2018). Though the yield of biochar decreases 
with temperature and time variations but, the biochar car-
bon stability increases with temperature variations. When 
compared with other methods, HTC produces biochar that 
retained nutrients like N and P, which can be supportive in 
regaining soil fertility. Also, HTC proves to be advantageous 
over other methods in terms of reduction in O/C ratio, higher 
calorific value, and increased hydrophobicity (Libra et al. 
2011; Gao et al. 2013).

Nevertheless, the production of biochar from plant bio-
mass is usually triggered through energy conversion pro-
cesses. Moreover, amongst the above-mentioned processes, 
pyrolysis and hydrothermal carbonization are most suitable 
and practical alternatives for the extraction of biochar as 
mentioned in Table 2. Even, complete combustion of plant 
biomass in absence of oxygen takes place in both the pro-
cesses (Masto et al. 2013; Ding et al. 2016; Nyamunda et al. 
2019). For both the methods, the end product is biochar 
along with a little amount of syngas and biofuel but, the por-
tion of biochar is comparatively larger. However, the amount 
of biochar produced depends on the processing conditions 
such as temperature, duration, biomass sources, etc. A large 
variety of biomass feedstock such as wood, manure, grasses, 
invasive plants, crop residues, can be utilized for volarizing 
into biochar (Xu et al. 2020). Even, the types of biomass 
can also distort the efficiency and effectiveness of produced 
biochar (McLaughlin et al. 2009) and the characterization of 
biochar may be helpful for soil amendment in terms of crops 
and forest productivity.

Potential utilization of E. crassipes biomass 
for valorization into biochar

E. crassipes is a nitrogen rich plant species (up to 3.2% of 
dry matter) and C/N ratio is 1:5 suggesting good content of 
organic matter in the plant (Gunnarsson and Petersen 2007). 
Also, it is a rich source of minerals and can serve as suitable 
economic feed for the production of biochar. In a study, it 

has been found that dry matter of water hyacinth consists of 
5.2% N, 0.22% P, 2.3% K, 0.36% Ca, 280 ppm of Fe, 45 ppm 
of Zn, 2 ppm of Cu and 332 ppm of Mn (Lata and Veenapani 
2011). Similarly, in some other studies, it was observed that 
the use of water hyacinth biochar enhanced the consistency 
of carbon, organic matter and water holding capacity of the 
soil (Bordoloi et al. 2018; Cornette et al. 2018; Gopal et al. 
2019). In view of the above characteristics, water hyacinth 
emerges out as righteous choice for the production of bio-
char. Biochar produced through pyrolysis of water hyacinth 
biomass effectively removes carbon from the atmospheric 
carbon cycle and transfers it to long-term storage in soil as 
a result of which the plants have higher carbon–nitrogen 
percentage (i.e., 1:24.3) (Jafari 2010).

Characterization of biochar produced from water 
hyacinth biomass

For the production of biochar, the determining components 
are organic carbon, nitrogen, lignin, cellulose, hemicellu-
lose, etc. However, the characterization of the produced bio-
char needs to be accomplished prior to its application into 
the soil as amendment for further suitability. The yield of 
biochar was determined as the ratio between the dry weight 
of Eichhornia and the obtained biochars (Thermo Scientific 
Flash 2000). As the yield decreases with elevating tempera-
ture in pyrolysis, the pH contrastingly increases from 7.98 to 
11.54 with the rise of temperature from 300 to 700°C. Also, 
the carbon content grows from 47.17 to 51.34%, while there 
is a considerable decrease in oxygen, nitrogen, and hydrogen 
contents from 47.13 to 46.83%, 0.73 to 2.12%, and 1.10 to 
3.580% respectively (Walkley and Black 1934; Pereira et al. 
2011; Masto et al. 2013). Even, the surface polar functional 
groups curtail thereby signifying decrease in the (O + N)/C 
ratios with the pyrolysis temperature (Cantrell et al. 2012). 
Likewise, the H/C and O/C ratios of the Eichhornia biomass 
and biochar are 1.71 and 0.78 and 0.85 and 0.33 respectively, 
this decrease in values indicates high degree of aromaticity 
in resultant biochar (Feng et al. 2017). Masto et al. (2013) 
found that the biochar produced at 300°C is thermally more 
stable than that produced at 500°C, which states that loss of 
organic matter is quite lower for biochar at 300°C as against 

Table 2   Different production methods of biochar from water hyacinth biomass

Temperature Methods References

300–350 °C temperature with 30–40 min residence time Carbonization Masto et al. (2013)
Biomass of water hyacinth under N2 at 250, 350, 450, and 550 °C for 1 h Slow pyrolysis Zhang et al. (2015)
Under N2 temperature at 300, 450, and 600 °C for 2 h Slow pyrolysis Ding et al. (2016)
300, 450, and 550 °C Pyrolysis methods Cornette et al. (2018)
Biomass was initially heated to 100 ºC for 2 h followed by heating at rate of 5 °C per 

min to reach three maximum temperatures (200, 300, and 600 °C) for 6 h
Pyrolysis Nyamunda et al. (2019)
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biochar at 500°C. For this reason, biochar at 300°C is more 
effective for soil amendment motive in relation to biochar 
produced at 500°C. Also, the puffy surfaces are clearly vis-
ible in scanning electron microscope (SEM) images. This 
process increases the surface area and porosity in the result-
ant biochar. So, considering biochar application into the soil, 
these two features are useful in boosting nutrient retention, 
improving water holding capacity, magnifying soil organ-
isms and intensifying fertilizer use efficiency. The results 
of SEM–EDX (Energy dispersive X-ray analysis) of some 
studies reveal the composition of water hyacinth biochar 
particles, where, the prime elements found were C, O2, K, 
Cl, P, Na, Fe, Ca, Mg and Si (Masto et al. 2013; Mosa et al. 
2018; Abd et al. 2018) and varied according to the types 
of biomass feedstock (de la Rosa et al. 2014). In another 
study, the maximum contents of P, K and Mg (4.3, 9.9 and 
2.8 g/kg, respectively) were detected in the biochar obtained 
at 500°C temperature, whereas the 400°C temperature the 
result was confined to maximum contents of C and N (73.6% 
and 1.9%, respectively) (Saletnik et al. 2016). Out of which, 
K has a major role in influencing biochar formation as it pro-
motes dissolution of cellulosic compounds and also affects 
the thermal stability (Zhou et al. 2009). Bottezini et al. 
(2021) characterized water hyacinth biochar using 13C and 
31P NMR spectroscopy and found that the formed extract-
able phosphorus, mainly orthophosphate at 400°C, contains 
60 mg kg−1 of extractable P, and 0.83% of total P. They have 
also found that aromaticity of produced biochar increased 
from 52 to 79% with pyrolysis temperature which is very 
promising for a soil P-supplier.

Effects of water hyacinth biochar on soil and plant 
productivity

Utilization of Eichhornia biomass for making of biochar 
is proved to be low-cost and environment-friendly biotech-
nological application (Lahori et al. 2017). The biochar is 
applied for various purposes such as soil quality improve-
ment, wastewater treatment, climatic chaos mitigation, waste 
minimization and management (Lehmann and Joseph 2009; 
Li et al. 2017; Wang et al. 2017; Mosa et al. 2018). How-
ever, biochar can enhance the soil properties along with soil 
fertility and nutrient contents,  especially by reducing the 
leaching of nitrate, phosphate and other anionic nutrients, 
improving the soil structure and soil–water capacity and 
enhancing the soil microbiological properties (Wilson 2014; 
Petersen-Rockney 2015; Blanco-Canqui 2017). Meanwhile, 
the greater availability of nutrient to crops can be made more 
efficient, if the biochar is supplemented with various types 
of soil amendments like compost, manure, cow dung, press 
mud or synthetic fertilizer. Masto et al. (2013) reported that 
application of water hyacinth biochar substantially increased 
soil microbial activity (around three times in active biomass) 

as well as soil respiration. Similar kind of results were also 
observed by Gorovtsov et al. (2019) where they found that 
large fungal colonies were developed after the application 
of biochar into the soil. According to Jafari (2010) water 
hyacinth biomass can be used as an efficient soil amend-
ment because it contains up to 75.8% organic matter, 1.5% 
nitrogen, and 24.2% ash, as well as 28.7% K2O, 1.8% Na2O, 
12.8% CaO, 21.0% Cl, and 7.0% P2O5.

The application of biochar in soil has a great potential 
to improve soil quality as well as sequester carbon at the 
same time (Verheijen et al. 2009). Many studies showed 
that application of biochar increased crop productivity, 
improved water quality, minimized nutrient leaching rate, 
reduced soil acidity, increased water holding capacity and 
minimized the use of fertilizers. However, all these condi-
tions are favorable for better plant growth and productiv-
ity, as described in Table 3. Masto et al. (2013) reported 
that application of biochar derived from water hyacinth 
biomass aids in salubrious growth of Zea mays seedlings. 
Oladele (2019) in his observation found that using Eichhor-
nia biochar on rice cultivation at 3–6 tons ha−1 significantly 
(P ˂ 0.05) increased grain yield by 46% and straw yield 
by 47%. Similarly, Najmudeen et al. (2019) in their study 
observed higher yield in crops cultivated in the soil applied 
with 4% of Eichhornia biochar than in controlled conditions. 
Along with higher yield, there was remarkable increase in 
the growth of plant shoots and roots. Biochar derived from 
water hyacinth also regulates heavy metal pollution in soil, 
paving the way for large-scale utilisation of water hyacinth 
resources (Yin et al. 2016). Likewise, Eichhornia biochar 
can be used as a soil amendment to reduce heavy metal and 
phytotoxicity because of its high surface area, broad surface 
functional group, and interlocking patterns of its particles 
(Xu et al. 2020). Bordoloi et al. (2018) examined the efficacy 
of water hyacinth biochar for improving soil fertility and 
metal adsorption.

Comparison of E. crassipes biochar with other plant 
biomass biochar

E. crassipes is an invasive plant, thus there is need of 
advance research in this field to control its growth and man-
agement of its biomass that includes production of biochar 
for soil as well as water remediation, and use as catalyst in 
restoration of environmental issues (Zheng et al. 2016). With 
recent technological advancements, it is possible to con-
vert the biomass of this aquatic weed into biochar, biometh-
ane, biohydrogen, and absorbent for remediation of pollut-
ants crack propagation (Feng et al. 2017; Zheng et al. 2016; 
Bordoloi et al. 2019). The application of water hyacinth 
biochar for soil remediation, of oil and and other pollutants 
retains more water than soil not amended with biochar under 
both saturated and drought conditions. In a study, Muigai 
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et al. (2021) found that the biochar made from water hya-
cinth, yellow oleander, and sugarcane bagasse can also be 
used as an additional carbon source in agronomy, increasing 
soil mineral content and maintaining pH. They have sug-
gested that biochar derived from water hyacinth can be used 
as a supporting matrix for the synthesis of-stable bio-com-
posites due to its increased surface area. Besides, the gradual 
addition of biochar to soil subsequently decreases the crack 
intensity factor (CIF) potential from 7 to 2.8% in soil (Bor-
doloi et al. 2018). Yin et al. (2016) observed that biochar 
derived from water hyacinth, when incorporated at 2% (w/w) 
showed substantial and persistent reduction of cadmium 
mobility from soil (used for paddy cultivation) in compari-
son with biochar made from rice straw. Hence, many stud-
ies have proven that biochar obtained from water hyacinth 
biomass can be effective in mitigating several issues of soil 
and environment.

Conclusion and future perspectives

From the aforementioned debate, it is quite evident that 
the conversion of E.crassipes (water hyacinth) biomass 
into biochar could possibly be a good alternative in man-
aging and utilizing the biomass of such invasive weed. 
Water hyacinth is a well-suited candidate for fabrication 
of biochar due to its higher content of C-N and rich source 
of minerals like Fe, Cu, Mn, K, P, Zn, etc. Valorization of 
water hyacinth biomass into biochar, and its application 
to agricultural ecosystems possesses several benefits and 
strengthens the economy for longer run. Even, in several 
parts of the globe this invasive species is widely being 
employed for the biochar production and management 
of soil quality. As suggested by many researchers, water 
hyacinth is considered as a good phytoremediator species 
and has great potential in accumulation of heavy metals 
and other toxic substances from the contaminated habitats 
(Singh and Kalamdhad 2012; Jain et al. 2019). Biochar 
made from E. crassipes proves to be a propitious adsorbent 
for the treatment of wastewater as well as contaminated 
soil, which can successively convert one environmental 
conundrum to a modern cleaning technology (Li et al., 
2016a, b; Chaiyaraksa et al. 2019, 2020). The proper man-
agement of biochar residues containing higher number 
of toxic substances also requires to be researched upon. 
For example feedstock rich in heavy metals can result in 
their biomagnification in the food chain, when applied 
to soil for the enhancement of crop productivity. So, the 
future researches can be more focused on proper char-
acterization and management of biochar produced form 
aquatic weeds like water hyacinth. Also, a very limited 
number of studies have estimated the changes in micro-
bial activity in soils after addition of biochar and further Ta
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research is required in this area. As a result, the study on 
use of biochar to improve crop production with simul-
taneous microbial inoculation can be important. Biochar 
from water hyacinth had a significant role in maintaining 
the soil permeability which allows successive inflows of 
materials within the soil that promotes plant and micro-
bial growth (Garg et al. 2021); however, a limited number 
of studies have been done to explore the long-term effects 
of biochar amendment on soil properties. Therefore, stud-
ies on water hyacinth biochar must be done for the diverse 
aspects which can transform a tough challenge to a poten-
tial opportunity in the future.
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