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Abstract
The inoculation of diazotrophic endophytic bacteria in micropropagated sugarcane plants has been utilized in studies on 
the association between plants and diazotrophic bacteria, allowing us to evaluate the potential of BNF and growth promo-
tion. The objective of this study was to evaluate the effects of inoculation (alone and in a mixture) of different strains of 
endophytic bacteria from the sugarcane variety RB867515, collected in northeast Brazil, on sugarcane growth at the initial 
growth stage (45 and 120 days after inoculation—DAI). For this purpose, two experiments were carried out in a greenhouse 
at the Agronomic Institute of Pernambuco (IPA), located in the city of Goiania, PE, Brazil, in a completely randomized 
design. The first experiment, with micropropagated seedlings grown in tubes at 45 DAI, was composed of uninoculated 
plants, plants inoculated in vitro with three individual endophytic bacterial isolates, and plants inoculated in vitro with a 
mixture of all three bacterial isolates. The second experiment, at 150 DAI, consisted of inoculated plants transplanted to 
pots with nonsterile soil without nitrogen fertilization and uninoculated plants with nitrogen fertilization equivalent to 80 kg 
of N ha−1. The variables analyzed were the shoot and root dry weight, tillering and N content accumulated in the plant. At 
45 DAI, there was no significant difference between the inoculated plants and the uninoculated control. The inoculation of 
nitrogen-fixing bacteria native to the northeast region in micropropagated seedlings of sugarcane variety RB867515 grown 
in pots promoted plant development and presented similar performance to the nitrogen treatment at 150 DAI.

Keywords Biological nitrogen fixation · Pseudomonas sp. · Mixture of strains · In vitro cultivation of plants

Introduction

Currently, Brazil plays an important global role in the 
production and trade of agricultural commodities, which 
grows each year through the adoption of new technologies 
and increased chemical inputs. Among the main Brazilian 
agricultural crops, sugarcane (Saccharum spp. L.) is one of 
the most important, with Brazil being the largest producer 
in the world. According to the National Supply Company 
(CONAB), the area planted in the 2017/18 season was 
approximately 8.6 million hectares, with an estimated pro-
duction for the 2018/2019 season of 625.96 million tons 
(CONAB 2018). To obtain the current levels of production, 
it is estimated that in 2017, 34.4 million tons of fertiliz-
ers were used, of which 26.3 million tons were imported 
(National Association for the Diffusion of Fertilizers and 
Correctives—ANDA 2018).
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In the 2018/19 season, sugarcane production will 
decrease by − 1.2% in relation to that in the previous season 
(CONAB 2018). Brazil’s production is forecast down by 4.7 
million tons to 34.2 million based on the expectation that 
more sugarcane will be diverted towards ethanol production 
due to weak prices resulting from burdensome global sup-
plies (USDA 2017). N is one of the nutrients with the lowest 
rate of utilization by sugarcane, and approximately 50% of 
all fertilizer applied is lost by leaching in the form of nitrate 
 (NO3-) (Spatzal 2015). The development of technologies to 
increase crop productivity is strategic for the sustainability 
of the sugarcane production system in terms of production 
costs and environmental damages associated with its use 
(Siqueira Neto et al. 2016).

Some alternatives have been sought to reduce the environ-
mental impact of nitrogen fertilizer (e.g., rotation of crops, 
alternating nitrogen-fixing plants with others that do not 
have this natural capacity, green manure and use of inocu-
lants), and one of them is biological nitrogen fixation (BNF), 
which is a major pathway of external N input to unmanaged 
terrestrial ecosystems (Houlton and Morford 2015). This 
process is mediated by microorganisms called diazotrophs. 
These microorganisms are able to grow in medium free of 
combined nitrogen, using the gaseous form  (N2) as a nitro-
gen source, which is reduced to ammonia  (NH3) through the 
enzymatic complex nitrogenase and assimilated as amino 
acids by plants (Franche et al. 2009).

Some research institutions have conducted studies with 
the purpose of developing inoculants for grasses with the 
ability to stimulate increased productivity and/or dry matter 
and N accumulation by the plant. There are reports in the 
literature that inoculants with diazotrophic bacteria promote 
an increase in plant development, including productivity, in 
sugarcane varieties RB867515 and RB72454 showing simi-
larity to the addition of 120 kg ha−1 N (Schultz et al. 2012). 
The stimulation of plant development by some species of 
bacteria can be realized through synthesis of phytohormones 
and secondary metabolites and through the availability of 
nutrients such as phosphorus by its solubilization, and nitro-
gen by the biological fixation of atmospheric nitrogen (Com-
pant et al. 2010; Gamalero and Glick 2015).

To test this hypothesis, we used the inoculation of endo-
phytic diazotrophic bacteria isolated from northeast Brazil, 
originating from the same variety, RB867515 (homologous), 
which shows high potential for biological nitrogen fixation. 
This hypothesis was tested using different bacteria that were 
inoculated alone and mixed onto sugarcane to supply the 
N necessary for the development of the crop as well as to 
promote growth.

Materials and methods

Location of the experiment

The experiments were conducted at the Plant Tissue Culture 
Laboratory (LCTP) and in a greenhouse at the Itapirema 
Experimental Station (7°38′33.33″S and 34°56′50.80″ W at 
an altitude of 13 m), located in the city of Goiana, Zona da 
Mata Norte of Pernambuco (Brazil), both belonging to the 
Agronomic Institute of Pernambuco (IPA).

Plant material

The plant material used was the commercial variety 
RB867515, the most cultivated in Brazil. This variety has 
fast growth, better performance in soils of light texture 
and medium fertility, in addition to a medium tillering 
ability, good sprouting in cane plants and first ratoons, a 
high sucrose content, good productivity and erect growth 
(RIDESA 2010), and is widespread in northeastern Brazil.

In vitro micropropagation of sugarcane

The micropropagated sugarcane seedlings were provided by 
the Santa Tereza Power Plant at the initial stage of propaga-
tion. Sugarcane seedlings were micropropagated according 
to a method described by Hendre et al. (1983) using the 
apical meristem. This methodology uses Murashige and 
Skoog (MS) medium (Murashige and Skoog 1962) modified 
in relation to the hormonal concentration to promote callus 
multiplication (phase I), shoot multiplication (phase II) and 
root multiplication (phase III) for 80 to 90 days.

The plants micropropagated in the rooting phase were 
transferred to flasks individually with 20 mL of MS medium, 
modified by Reis et al. (1999). 48 h after transfer of the 
plants, the flasks that did not show contamination were 
selected to receive bacterial inoculum.

Isolation and identification of endophytic bacteria

The isolation of endophytic bacteria from plant samples 
(stem and roots) was done according to the method described 
by Döbereiner et al. (1995).

Bacterial DNA extraction was done as per Sambrook 
et al. (2001). After quantification, the DNA amplification 
of each isolate was performed by PCR (Polymerase Chain 
Reaction) with primers fD1 (5′AGA GTT TGA T CCT GGC 
TCAG 3′) and rD1 (5′AAG GAG GTG ATC  CAGCC 3′) 
(Weisburg et al. 1991). The amplified PCR products were 
sequenced and analyzed on the CLUSTALW software using 
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the GenBank database. Phylogenetic trees were designed on 
the MEGA software (Tamura et al. 2013) v. 6 integrated with 
the Clustral W software.

Preparation of the inoculum

The solubilization of inorganic phosphate was tested by the 
bacterial isolates in insoluble phosphate medium according 
to the method described by Verma et al. (2001) and Rodri-
guez et al. (2000). The solubilization halo diameter (trans-
lucent area around the colony) was observed after 7 days 
of incubation and indicated positive response of the isolate 
to solubilization of calcium phosphate. Data were used to 
calculate the solubilization index (SI) by the ratio between 
the halo diameter and the colony diameter.

IAA quantification was performed according to Kuss et al. 
(2007). The isolates that formed a red color in the period of 
30 min were evaluated under spectrophotometer at 520 nm 
wavelength. The concentration of indole compounds was 
estimated according to the equation Y = 0.0121X − 0.0075 
 (R2 = 0.9995) by a standard curve previously prepared with 
non-inoculated sterile culture medium and the IAA concen-
trations of: 0.5, 10, 30, 50, 70, 90 and 100 μg mL.

The nitrogen-reducing activity by the nitrogenase com-
plex was measured according to the method described by 
Boddey et al. (1990). The amount of ethylene produced in 
the samples was analyzed by gas chromatograph with flame 
ionization detector. The acetylene reduction activity is given 
by the nmol of ethylene produced per hour of incubation.

Evaluation of micropropagated sugarcane seedlings 
at 45 days after inoculation (DAI)

The first experiment was conducted in a greenhouse at the 
Agronomic Institute of Pernambuco (IPA) in tubes filled 
with sterilized commercial substrate  Basaplant®. In this trial, 
individual and mixed inoculations were evaluated with the 
following treatments:

Four types of inoculation: individual inoculation (Rhz), 
individual inoculation (Ps1), individual inoculation (Ps2) 
and mixed inoculation (Ps1, Ps2 and Rhz) without nitrogen 
fertilization. The inoculation of in vitro micropropagated 
seedlings was according to the method described by Reis 
(2004). Each vial containing five seedlings was inoculated 
with 0.1 mL of bacterial suspension in the final rooting 

phase and maintained for up to 7 days at 25 °C under artifi-
cial light and 12 h photoperiod.

Control treatment was without inoculation and without 
nitrogen fertilization.

The experimental design was a randomized complete 
block design with 15 replicates. The plants were kept in 
tubes (acclimatized) for 45 days. The root system and the 
shoots were separated, dried in an oven at 65 °C until reach-
ing constant mass, and weighed in a semi-analytical balance 
to determine the dry weight (g) of root (DWR) and shoot 
(DWS) for evaluation of the effect of inoculation.

Samples of the shoot dry weight were passed through a 
Wiley mill (2 mm) to determine the total nitrogen accumu-
lated in the plant tissues by the method of Kjeldahl (Alves 
et al. 1994).

Evaluation of sugarcane seedlings at 150 days 
after inoculation (DAI)

The second experiment with 150 DAI was conducted in 
greenhouse with the same seedlings transferred and used in 
the 45DAI experiment. This experiment was carried out in 
pots containing 8 kg of non-sterile soil.

The site chosen for soil collection was an area of sugar-
cane cultivation at the Itapirema Experimental Station, IPA 
(Goiânia/PE—Brazil). The attributes of the soil used in the 
experiment are mentioned in Table 1. The soil received NK 
fertilization according to the recommendation of the crop 
and based on the chemical analysis thereof. Fertilization 
was carried out with the equivalent of 80 kg of N ha−1 urea 
for nitrogen treatment, in addition to 1 mL of Hoagland’s 
micronutrient solution (Sarruge 1975) per pot.

Three bacterial isolates were selected based on their per-
formance presented in a previous work under controlled con-
ditions and for having positive characteristics presented dur-
ing in vitro evaluation, such as capacity to grow in medium 
free of a nitrogen source, to produce IAA and to solubilize 
inorganic phosphate.

The experiment was conducted in a factorial scheme 
(5X1), composed of Ps1, Ps2 and Rhz alone and in a mix-
ture (Ps1, Ps2 and Rhz) (inoculated in the in vitro phase of 
the plant) without nitrogen fertilization, and a control treat-
ment with ten replicates per treatment. The control treat-
ment received nitrogen fertilization without inoculation with 
diazotrophic bacteria.

Table 1  Chemical analysis 
of the soil and substrate 
 (Basaplant®) used in 
experiments

CTC  cation exchange capacity, S.B. base sum

mg/dm3 pH cmolc/dm3

Fe Cu Zn Mn P K Na Al Ca Mg H S.B. CTC 

Substrate – – – – 82.1 5.76 11.0 – 0.3 10.0 6.8 9.2 16.90 20.99
Soil 44.20 0.60 8.30 7.10 154 6.3 0.9 0.06 0.0 2.00 0.60 2.60 5.55 8.15
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The inoculation efficiency was evaluated at 150 days after 
inoculation. The root dry weight, shoot and the number of 
tillers were evaluated, and the total nitrogen accumulated 
in the plant tissues was determined by the Kjeldahl method 
(Alves et al. 1994).

Statistical analysis

The design was completely randomized. Data were subjected 
to analysis of variance (ANOVA) by Tukey’s test (p < 0.05) 
through the SASM-Agro program.

Results

Identification and PGP characters of endophytes

The consensus sequences of each isolate were compared 
to sequences from the GenBank public database through 
the BLAST program (NCBI—www.ncbi.nih.gov). The 16S 
rRNA phylogenetic tree was dominated by families Entero-
bacteriaceae, Pseudomonadaceae and Rhizobiaceae. This 
analysis showed identity rates ranging from 77 to 99%.

Three endophytic bacterial isolates from sugarcane varie-
ties RB867515, collected from three regions of northeastern 
Brazil (Paraiba-PB, Pernambuco-PE e Alagoas-AL), Rhizo-
bium etli (Rhz), Pseudomonas sp. (Ps1) and Pseudomonas 
sp. (Ps2), in addition to the ability to fix  N2 in vitro, showed 
good indole acetic acid (IAA) production (Rhz = 117.75 µg 
mL; Ps1 = 148.69 µg mL; Ps2 = 138.89 µg mL), inorganic 
phosphate solubilization (Rhz = solubilization index 3.18; 
Ps1 = solubilization index 2.73; solubilization index 2.50) 
and acetylene reduction activity (Rhz = 4.37 nmol  C2H4 
 h−1;Ps1 = 2.15 nmol  C2H4  h−1; Ps2 = 2.67 nmol  C2H4  h−1). 
This corroborates postulated information that many diazo-
trophic bacteria are ubiquitous, performing, in addition to 
BNF, solubilization of insoluble phosphates and IAA pro-
duction (Zaidi et al. 2009).

Evaluation of micropropagated sugarcane seedlings 
at 45 days after inoculation (DAI)

The results observed in this first evaluation showed no sig-
nificant difference between the treatments inoculated with 
the three strains of diazotrophic bacteria (Ps1, Ps2 and Rhz), 
alone and mixed, and the uninoculated control by Tukey’s 
test (p < 0.05).

Table  2 presents a summary of the different growth 
parameters evaluated in the sugarcane plants subjected to 
the five different treatments. The bacterial inoculation did 
not promote an increase in shoot dry weight compared with 
the control (Table 2).

Regarding root dry weight, the treatments inoculated with 
Pseudomonas (Ps1 and Ps2) were statistically inferior to the 
uninoculated control and the Rhizobium sp. (Rhz) treatment 
(Table 2).

As for the number of tillers, there was no significant dif-
ference between the treatments by Tukey’s test (p < 0.05), 
although plants that received the mixed inoculation did not 
present tillering (Table 2). The tillering of sugarcane begins 
approximately 40 days after planting, which may justify the 
result.

The results of the evaluation of the N content in shoots 
showed that the bacteria did not promote a significant dif-
ference between the treatments with and without inoculation 
(p < 0.05).

Evaluation of sugarcane seedlings at 150 days 
after inoculation (DAI)

In the second experiment, conducted in pots with nonsteri-
lized soil, the N treatment (nitrogen control) showed a sig-
nificant difference on the basis of Tukey’s test (p < 0.05) in 
the four parameters evaluated: shoot and root dry weight, 
tillering and N content. The plants inoculated with Ps1, Ps2, 
Rhz and (Ps1, Ps2 and Rhz) did not differ statistically from 
the plants with nitrogen fertilization in the shoot dry weights 
(Table 3). This shows that the inoculation had a positive 
effect on the development of plants.

Table 2  Mean values of the different treatments for shoots and roots dry weight, number of tillers and N content, evaluated in plants of sugar-
cane variety RB867515 at 45 Days After Inoculation (DAI)

Means followed by the same letter do not differ by Tukey test (p˂0.05)
DWS shoots dry weight, DWR root dry weight, Ps1 and Ps2 Pseudomonas sp., Rhz Rhizobium sp

Control Ps1 Ps2 Rhz Ps1,Ps2andRhz C.V. (%)

DWS (g) 0.72a 0.76a 0.77a 0.77a 0.80a 17.35
DWR (g) 0.30a 0.23b 0.22b 0.29a 0.27ab 24.39
No.Tillers 0.13a 0.13a 0.06a 0.06a 0.00a 12.25
N content (mg/g) 10.06a 12.20a 11.50a 11.16a 10.96a 9.11

http://www.ncbi.nih.gov
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A lower accumulation of root dry weight was observed with 
the inoculation treatment, especially in the (Ps1, Ps2 and Rhz) 
mixture, which promoted a negative effect on root biomass 
(Table 3).

Regarding the number of tillers, the plants treated with 
Rhz and the Ps1 + Ps2 + Rhz mixture did not show tillering 
(Table 3); however, treatments Ps1 and Ps2 favored tillering 
but did not differ significantly in relation to the nitrogen con-
trol. The tillering observed in these treatments may have been 
caused by ethylene.

Regarding the nitrogen content in the shoots of plants, the 
results showed that inoculation with Rhz did not present a 
significant difference in relation to the nitrogen treatment. 
Notwithstanding, the inoculation with the mixture of strains 
Ps1, Ps2 and Rhz showed a significant difference on the basis 
of Tukey’s test (p < 0.05), presenting a slight increase in N 
accumulation in the shoots compared to that in the nitrogen 
treatment (Table 3).

The results regarding the nitrogen content in shoots can 
show the photosynthetic capacity gained by the crop through 
the treatments.

These results show a different behavior for BNF in the dif-
ferent strains tested in the sugarcane variety RB867515. Inocu-
lation with Rhz was equivalent to the nitrogen control, favor-
ing a greater accumulation of shoot dry weight and a greater 
accumulation of N in the plants (Table 3).

On the other hand, due to factors intrinsic to the bacterium, 
we observed that tillering was satisfactory in the plants treated 
with Ps1 and Ps2. These results are probably related to the 
complexity of the biological  N2 fixation process in sugarcane 
plants, which involves a range of factors, such as the genetic 
characteristics of the cultivars and the bacteria associated with 
them.

All tested isolates have potential mechanisms for promot-
ing plant growth, and one or more of the mechanisms may 
be responsible for the higher growth of sugarcane under the 
conditions tested.

Discussion

Sugarcane is able to associate with a great diversity of 
diazotrophic plant growth-promoting bacteria and reap 
benefits that are directly or indirectly linked to the nitro-
genated nutrition of the plant. These effects are related to 
greater root growth, higher N absorption and BNF and 
protection of plants by induction in the phytohormones 
and indoleacetic acid production (Fukami et  al. 2018; 
Oliveira et al. 2016; Patel and Archana 2017).

The effect of bacterial inoculation is highly dependent 
on the plant genotype, on soil characteristics, and on many 
other biotic and abiotic factors (Da Silva et al. 2012). The 
strains used in this study are homologous because they 
were isolated from the same crop into which they were 
subsequently inoculated, and successfully colonized the 
roots (Boddey and Dobereiner 1982).

Positive results in the initial development of the sugar-
cane variety RB867515 were also observed by Gírio et al. 
(2015) with the inoculation of diazotrophic bacteria. The 
variety RB867515 is more demanding on soil fertility 
(RIDESA 2010), which justifies its response to nitrogen 
fertilizer and inoculation. Schultz et al. (2012), Pereira 
et al. (2013) and Gírio et al. (2015) observed that the geno-
type of this variety is more responsive to the inoculation 
of growth-promoting bacterial strains.

Since N is directly related to plant growth and devel-
opment (Sengupta and Gunri 2015), the observed bio-
mass gain, in addition to the efficiency in the process of 
assimilation of this element, is a possible contribution of 
biological fixation in some sugarcane varieties (Donato 
et al. 2003), which would explain the fact that the higher 
accumulation of shoot dry weight in the inoculated treat-
ments did not differ statistically from the nitrogen control.

The experiment with micropropagated seedlings of sug-
arcane variety SP 70-1143 (evaluated at 65 days) did not 

Table 3  Effect of the different 
treatments on the growth 
parameters evaluated in plants 
of sugarcane variety RB867515 
at 150 days after inoculation 
(DAI)

Means followed by the same letter do not differ by Tukey test (p˂0.05)
DWS shoots dry weight, DWR root dry weight, Ps1 and Ps2 Pseudomonas sp., Rhz Rhizobium sp, C.V.(%) 
coefficient of variation

Nitrogen control Ps1 Ps2 Rhz Ps1, Ps2 and Rhz C.V. (%)

DWS (g) 16.04a 9.98a 9.00a 11.25a 8.65a 22.61
DWR (g) 4.98a 3.66b 3.30bc 3.55bc 2.43c 26.17
No. tillers 0.10a 0.80a 0.90a 0.00b 0.00b 19.97
N content (mg/g) 12.94a 8.82bc 8.8bc 10.44ab 7.78c 14.00
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show significant differences between the treatments with 
inoculation of diazotrophic bacteria and the uninoculated 
control according to Canuto et al. (2003). According to 
the author the difficulty in selecting seedlings of the same 
size among the micropropagated seedlings obtained for the 
study, hinders the comparison of the tested treatments and 
their possible effects in a short period of time, especially 
for long-cycle plants such as sugarcane.

Lesser root development in sugarcane plants of the 
variety SP813250 that received inoculation with two bac-
terial strains under greenhouse conditions was observed 
by Lima et al. (2011); however, Gírio et al. (2015), when 
using a bacterial inoculant in presprouted seedlings in vari-
ety RB867515, observed that the root dry weight did not 
increase, but there was an increase in root length.

Although the mass of the root system was not favored 
by the inoculation, it is possible to infer that the growth-
promoting bacteria modified the root system architecture 
(Gosal et al. 2012). However increases in shoot biomass 
attributed to the effect of rhizobia on nonleguminous plants 
have been reported by several authors, citing increases in 
shoot and leaf biomass, height and/or photosynthetic activity 
(Chi et al. 2005; Singh et al. 2005).

The photosynthetic capacity is strongly influenced by the 
amount of nitrogen in the leaf (Chapin et al. 1987). Knowing 
that Rhizobium sp. (Rhz) has the nifH gene, we can assume 
that there were adequate conditions inside the plant for the 
nitrogenase to be active and that the nitrogen was supplied 
to the plant by biological fixation. Similar results were 
obtained in rice plants when the RI-530 strain of R. legumi-
nosarum significantly increased the percentage of nitrogen 
in the leaves (Chi et al. 2005).

The beneficial effect of the inoculation of diazotrophic 
bacteria on plants in early stages has already been observed 
in tomato and red pepper inoculated with bacteria of the 
genera Pseudomonas and Serratia, which mainly promoted 
increased plant vigor (Islam et al. 2013).

The interaction of plants with beneficial microorganisms 
at the beginning of plant development is of great importance, 
as reported by several authors (Gírio et al. 2015; Vargas 
et al. 2012; Santoyo et al. 2016). For plants that go through 
the nursery stage, for example, the association with growth-
promoting bacteria is of great importance since it prepares 
the plants for transplanting to the field, stimulating the early 
growth of the seedling and, consequently, reducing its time 
of acclimatization, which increases productivity, the turno-
ver in the occupation of infrastructure and the efficiency 
of the use of specialized labor (Gouda et al. 2018; Silveira 
et al. 2003).

The present work offers a technological package, lead-
ing to micropropagated plants inoculated with bacteria that 
have the capacity and efficiency to fix atmospheric nitrogen, 
reducing the use of nitrogen fertilizer and helping supply 

nitrogen to increase and sustain the production of sugarcane 
without damaging the environment. This is especially impor-
tant because the inadequate use of nitrogen fertilizers con-
tributes to the intensification of climate change and causes 
direct damage to plants. These are among researchable pri-
orities for consolidating the great potential of sugarcane for 
increasing soil C stocks, offsetting anthropogenic  CO2, and 
effectively mitigating global climate change.

Conclusion

The inoculation of nitrogen-fixing bacteria in micropropa-
gated seedlings of sugarcane variety RB867515 promoted 
plant development and presented similar performance to the 
nitrogen treatment. When used individually, the bacterial 
genus Pseudomonas (Ps1 and Ps2) promoted better tiller-
ing, while the genus Rhizobium (Rhz) presented higher dry 
biomass of shoots and N content in relation to the those in 
treatment with nitrogen fertilization, promoting the growth 
of sugarcane plants. The isolated bacteria Ps1, Ps2 and Rhz 
are capable of and efficient in fixing atmospheric nitrogen, 
while the mixture of the strains (Ps1, Ps2 and Rhz) did not 
show a good synergism.
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