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Abstract
Calcofluor white is a fluorochrome used for detecting β-glucans in cell walls of plant pathogenic fungi. The aim of this study 
was to detect β-glucans in oospores of the heterothallic Phytophthora palmivora by crossing two compatible A1 and A2 mat-
ing types on carrot agar plates with or without a supplement of aqueous French bean extract. Lack of calcofluor white induced 
fluorescence, in yellow to deep brown oospores, suggests a change in the type of β-glucans in the outer oospore-oogonium 
cell wall. This staining method is an easy, quick and visual way to monitor changes in β-glucans during oospore development.
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The plant pathogenic oomycete, Phytophthora palmivora 
(Butler), causes black pod disease of cocoa and is also capa-
ble of infecting a wide host plant range (Erwin and Ribeiro 
1996; Guest 2007; Perrine-Walker 2020a, b). Apart from 
asexual sporangium/zoospore development as a means of 
rapid reproduction, this heterothallic species requires two 
compatible mating types (A1 and A2) for sexual reproduc-
tion (Ko 1978; 1988). In heterothallic species, the production 
of the oospores occurs through the fusion of the oogonium 
and antheridium (maternal and paternal gametangia, respec-
tively) compared to homothallic ones which produce oogo-
nia and antheridia in single cultures (Martin et al. 2012). 
Oospores serve as resting structures which act as inoculum 
for disease if viable between growing seasons (Judelson and 
Blanco 2005). Previous cytological and ultrastructure stud-
ies in gametangial development, oospore formation, germi-
nation and dormancy have contributed to the morphologi-
cal identification of various heterothallic and homothallic 
species (Beakes and Bartnicki-Garcia 1989; Duncan 1988; 
Hüberli et al. 1997). Other morphological features of Phy-
tophthora sexual organs are the antheridia being either 
paragynous or amphigynous and the ornamented oogonial 

walls (Martin et al. 2012). In this case, P. palmivora forms 
amphigynous antheridium where the oogonial hyphae grows 
through the antheridial hyphae forming a kind of collar that 
surrounds the antheridial stalk (Ho 1979) and non-orna-
mented oogonial walls (Martin et al. 2012).

β-glucans are polymers of β-D-glucose found in the cell 
walls of plants, fungi, yeast, and bacteria (Novak and Vet-
vicka 2008; Rebaque et al. 2021; Robinson and Bostock 
2015). The most abundant form of β-glucans in the cell walls 
of plant fungal pathogens, β-1,3-glucans, have been shown 
to act as MAMPs (microbe-associated molecular patterns) 
and play a role in plant immune responses (Fesel and Zuc-
caro 2016; Klarzynski et al. 2000; Oliveira-Garcia and Deis-
ing 2013; Mélida et al 2018; Wanke et al. 2020). In addi-
tion, these β-1,3-glucans can be modified with β-1,6-linked 
glucose and in fungal cell walls, be covalently linked to 
another MAMP, chitin, a linear polysaccharide composed of 
β-1,4-linked N-acetylglucosamine residues (β-1,4-GlcNAc; 
Sánchez-Vallet et al. 2015; Rebaque et al. 2021; Wanke et al. 
2021).

Phytophthora is known to have different types of 
β-glucans within its cell walls (Mélinda et al. 2013; Wang 
and Bartnicki-Garcia 1982). According to Mélinda et al. 
(2013), the cell wall analyses of two plant pathogenic spe-
cies, Phytophthora infestans and Phytophthora parasitica 
were identified as Type I. Type I cell walls consisted 85.6% 
β-glucans where 32 to 35% was made up of cellulose (1,4-β 
linked glucose; β-1,4-Glc) and about 19.7% of β-1,3-glucans 
(Mélinda et al. 2013). In the case of P. palmivora cell walls, 
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Tokunaga and Bartnicki-Garcia (1971) demonstrated that 
walls of cysts, hyphae and sporangia of P. palmivora con-
sisted of β-glucans with 1,3-, 1,4- and 1,6- linkages. Later 
work by Lippmann et al. (1974) demonstrated that chemi-
cal composition of oospore-oogonium walls (oow) of Phy-
tophthora megasperma var. sojae was made up of insoluble 
glucans (approximately up to 80%) where the majority was 
highly insoluble non-cellulosic glucan with β-1,3-linkages. 
Furthermore, less than 10% of the oow was cellulose (Lipp-
mann et al. 1974).

In microscopy, calcofluor white (CFW) has been used to 
detect β-glucans in the cell walls of pathogenic fungi and 
yeast (Nicholas et al. 1994). It interacts with β-1,4-glucans 
such as chitin and cellulose (Nicholas et al. 1994) and other 
β-glucans such as callose (Hughes and McCully 1975; 
Maeda and Ishida 1967; Wood 1980). Previous work by 
Perrine-Walker et al. (2019), Perrine-Walker (2020b) used 
CFW to detect β-glucans in the cell walls of Phytophthora 
cinnamomi and P. palmivora hyphae and sporangia respec-
tively. For this study, the aim was to use CFW to localise 
β-glucans during P. palmivora oospore development under 
fluorescence microscopy.

Two mating types of P. palmivora cultures were used: 
UQ3694 (A1) isolated from Syagrus romanzoffiana (cocos 
palm) and UQ3746 (A2) isolated from Lupinus angustifolius 
(NZ Blue Lupin). Pure cultures were maintained on Potato 
Dextrose Agar (PDA; CM0139B, Oxoid Ltd) and Carrot 
Agar (CA) (Erselius and Shaw 1982).

For mating, agar blocks (0.5 cm × 0.5 cm in size) from 
the edge of 7-d old Phytophthora mating type were places 
on opposite end of either fresh CA or CA supplemented 
with dwarf French bean extract plates (Fig. S1). The dwarf 
French bean extract was used according to the method of 
Duncan (1988) where 10 mL of the autoclaved extract was 
added to 100 mL of the CA molten agar media. Phytoph-
thora sp. forms hyaline hyphae, sporangia and zoospores 
however oospores are coloured (yellow to brown) in agar 
and when grown in agar medium supplemented with dwarf 
French bean extract appear golden to deep brown (Duncan 
1988). For the controls, same mating types were inoculated 
together. All cultures were incubated at 26 °C in the dark 
using BINDER BD 115 incubator (GmBH, Germany).

For light and fluorescence microscopy, images were cap-
tured using an Olympus BX51 microscope equipped with 
an Olympus digital colour and monochrome CMOS DP74 
camera and the Olympus CellSens Standard software Ver-
sion 2.2. Bright field was used for light microscopy and 1 × 
PBS (pH 7.4) or sterile water was used.

Under bright field microscopy, a P. palmivora oospore 
development map was generated over a 25  day-period. 
Duplicate plates were observed post 7, 14, 21 and 25 days. 
P. palmivora isolates UQ3694 (A1) and UQ3746 (A2) were 
grown in CA in the presence and absence of French bean 

extract following the method by Duncan (1988) for 25 days 
(Fig. 1). The total number of oospores at various stages of 
development observed were 133 and 175 on CA agar plates 
only and CA agar plates supplemented with French bean 
extract respectively. Oospore development appeared not to 
be affected in CA agar plates in the absence and presence 
of French bean extract (Fig. 1). In the absence and pres-
ence of French bean extract, no pigment or colour reaction 
were observed in the early stages of oospore formation i.e., 
from contact of A1 and A2 gametangial initials to oosphere 
formation, appearing hyaline (Fig. 1a–e) post 7, 14 and 
21 days. No colour was observed after fertilization tube 
formation and during oosphere formation (Fig. 1f) in CA 
supplemented with French bean extract. In the late stages of 
oospore formation i.e., at oospore wall formation, a yellow 
to yellow–brown colour could be observed and appeared to 
be also associated with the oogonial envelope of putative 
aborted/germinated oospores in CA plates post 14 and 25 
days (Fig. 1g, i). In the presence of French bean extract, an 
orange colour was observed in mature oospores (Fig. 1h) and 
was associated to the oogonial envelope of putative aborted/
germinated oospores (Fig. 1k). In addition, empty oogonia 
were observed in CA with and without French bean extract 
post 7, 14 and 25 days and oogonial walls were hyaline 
(Fig. 1j).

For staining/fluorescence studies, triplicate plates were 
done for each testing condition and the experiments were 
replicated twice. The agar plates were removed from the 
incubator for microscopic observations after 25 days. Six 
to eight agar blocks (1 cm × 1 cm in size) within the mat-
ing zone i.e., containing oospores, were placed inverted on 
microscope slides as it was observed that oospores formed 
within or near the base of the agar medium. The total number 
of oospores which also included putative aborted/germinated 
oospores were recorded for each agar block. They ranged 
from 0 to 517 oospores per 1 cm2 on CA agar block (n = 20 
agar blocks) and 0 to 438 oospores per 1 cm2 on CA sup-
plemented with French Bean extract agar block (n = 19 agar 
blocks). Calcofluor white (CFW; Sigma-Aldrich PTY Ltd., 
no. 18909) was used following the manufacturer’s protocol 
for fluorescence staining. One to two drops of CFW followed 
by 10% KOH solution were applied to the agar blocks before 
placing coverslips for viewing under UV fluorescence. To 
capture CFW-stained P. palmivora oospores in agar blocks, 
the U-MWU2 filter cube (excitation BP 330–385 nm) was 
used.

CFW fluorescence was observed in the oogonial wall 
and the antheridial wall at the oosphere formation stage 
(Fig. 2a, b). In empty oogonia with hyaline wall (n = 16), 
the remaining oogonial wall and the antheridial wall fluo-
resced with CFW (Fig. 2c, d). In yellow–brown oospores 
(n = 28) in carrot agar (with no French bean extract), CFW 
fluorescence was observed only in the antheridial wall at the 
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base of the oogonia-oospore structure (Fig. 2e, f). In puta-
tive aborted/germinated oospores where the oogonial wall 
appeared yellow, there was weak or no CFW fluorescence 
in the oogonial wall but there was a strong fluorescence sig-
nal in the antheridial wall (Fig. 2g, h). Similar results were 
observed in CFW fluorescence when grown in carrot agar 
supplemented with French Bean extract (Fig. 2i, j). Oospores 
(n = 54) which accumulated colour due to the presence of 
French bean extract displayed localised CFW fluorescence 
only in the antheridial walls (Fig. 2i, j). Both compatible 
mating types A1 and A2 non-mating hyphal walls displayed 
CFW fluorescence (Fig. 2).

The use of CFW to detect β-glucans confirmed the pres-
ence of cellulose and other forms of β-glucans in the oogo-
nium walls of immature or putative aborted/germinated 
oospores, the antheridium walls as well as non-mating 
hyphal walls. Interestingly, it appeared that prior to the 
oospore wall formation, CFW fluorescence was observed 
in the oogonial walls including oogonia which were empty. 
Mature oospores which appeared yellow–brown in carrot 
agar, lacked CFW fluorescence suggesting a change in the 
chemical composition of the oogonial walls surrounding 
such oospores. Similarly, orange-coloured oospores in CA 
plates supplemented with French Bean Extract in carrot 

agar lacked CFW fluorescence in the oogonial walls. In 
both cases, only the antheridium walls had a CFW fluores-
cence signal. Lack of CFW fluorescence in mature oospores 
suggests a reduction in cellulose/β-glucans content local-
ized in the outer cell walls of the oospore-oogonium walls 
(oow) and the presence of cellulose/β-glucans within the 
antheridia. Work by Helbert et al. (1997) demonstrated the 
presence of cellulose in Oomycota and Grenville-Briggs 
et al. (2008) and McLeod et al. (2002) demonstrated the 
role of cellulose synthase genes, 1,3-β-glucanase and 
1,3;1,4-β-glucanases genes in P. infestans mycelia, spo-
rangia and zoospore/cysts in vitro as well as during infec-
tion of potatoes respectively. Nui et al. (2018) found seven 
proteins linked to glucan breakdown in oospores and non-
mating hyphae of P. infestans. In vitro work by Antelo et al. 
(1998) and Wang and Bartnicki-Garcia (1976) demonstrated 
1,3-β-glucan synthase activity in P. sojae and Phytophthora 
cinnamomi respectively. In addition, recent studies in Phy-
tophthora spp. have identified a putative chitin synthase gene 
and it has been shown to be involved in asexual reproduction 
and pathogenesis (Cheng et al. 2019; Hinkel and Ospina-
Giraldo 2017). A keyword search for chitin synthase and 
1,3-β-glucan synthase identified, one putative chitin syn-
thase gene (PHPALM_3836), four callose synthase genes 

Fig. 1   Sexual morphogenesis in Phytophthora palmivora UQ3694 
(A1) and UQ3746 (A2) under bright field microscopy. a contact post 
14  days; b penetration or invagination of the proximal end of the 
antheridium by the oogonial initial post 7 days (black arrow); c oogo-
nial expansion phase post 7 days; d later stage of c with two ooplasts 
post 21  days; e developing gametangium post 7  days; f oospore 
spore wall formation with the presence of a fertilization tube (black 
arrow) post 21 days; g mature, slightly aplerotic yellow oospore post 
14 days; h mature, slightly aplerotic orange oospore with one central 

ooplast; i putative aborting or germinating oospore post 21  days; j 
putative aborted oogonia post 14 d. Note lack of yellow colour in the 
aborted gametangium in the oogonial expansion phase (red arrow), 
the elongated shape of the antheridium (black arrow) and a puta-
tive aborted empty yellow-walled oogonium (blue arrow); k aborted 
oogonium with orange coloured cell walls post 21 d. Images in a–c, 
e, g and h were captured on CA and in d, f, h, i and k on CA supple-
mented with French Bean extract medium plates respectively. Scale 
bars are 20 μm in a, g and j and 10 μm in b–h and k 
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(PHPALM_5465, PHPALM_1260, PHPALM_1878 and 
PHPALM_8937), one putative glycosyl transferase family 
48 protein (PHPALM_29850) and one glycosyl transferase 

(PHPALM_10597) in P. palmivora var. palmivora str. 
sbr112.9 (GCA_002911725.1) ASM291172v1 database 
(https://​proti​sts.​ensem​bl.​org/​index.​html; Howe et al. 2020).

Fig. 2   CFW fluorescence 
during P. palmivora oospore 
development in carrot agar 
with or without French Bean 
extract post 25 d. a Early 
stage of oosphere formation; b 
same as a highlighting CFW 
fluorescence in the oogonial 
wall and the antheridial wall 
(white arrowhead); c empty 
oogonia with hyaline walls i.e., 
putative aborted oospores; d 
same as c under UV fluores-
cence; e Yellow–brown oospore 
(white asterisk) and an empty 
oogonium; f same as e under 
UV fluorescence. Note the lack 
of CFW fluorescence in the 
yellow–brown oospore (white 
asterisk) and the CFW fluo-
rescence signal in the anther-
idial wall (white arrowhead); 
g putative aborted/germinated 
oospore with weak or no CFW 
fluorescence in the oogonial 
wall (white asterisk) and a 
strong fluorescence signal in the 
antheridial wall (white arrow-
head); h same as g under bright 
field; i Oospore and oogonia 
at different stages under bright 
field; j CFW fluorescence pro-
file of same oospore and oogo-
nia shown in i. Note the lack of 
CFW fluorescence in orange-
brown oospore (white asterisks) 
and CFW fluorescence in the 
oogonial and the antheridial 
walls of both putative aborted/
germinated oospores. Images 
a–h were obtained on CA plates 
and images i and j were on CA 
plates supplemented French 
Bean extract. Images are rep-
resentative of hyaline aborted 
oogonia (n = 16) and yellow-
coloured oospores (n = 28) in 
CA plates and hyaline aborted 
oogonia (n = 9) and brown-
coloured oospores (n = 54) in 
CA plates supplemented with 
French bean extract captured 
with the Olympus BX51 fluo-
rescence microscope
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Changes in CFW fluorescence signals in oospores at 
different stages may be due to the changes in cellulose/β-
glucans content within the oospore-oogonium walls (oow). 
The presence of different types of β-glucans in plant patho-
genic Phytophthora and fungi is important due to its role 
in plant immunity (Fesel and Zuccaro 2016; Robinson and 
Bostock 2015; Mélida et al. 2018; Wawra et al. 2016). Future 
approaches using specific dyes such as Aniline Blue to detect 
β-1,3-glucans or the tagging of proteins linked to β-glucan 
synthesis and degradation with high resolution micros-
copy may contribute to our understanding of β-glucans in 
oospores and help in the control of plant disease.
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