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Abstract
An indigenous microbial consortium was developed in order to combat late blight disease of tomato. For obtaining better 
insight in the antagonistic potential of native bioagents, 33 isolates of bioagents were isolated and evaluated against Phytoph-
thora infestans causing late blight of tomato. Upon in-vitro screening of the varied isolates, the highest growth inhibition of 
the pathogen was recorded in Pseudomonas isolates; Pf-2 (81.33%) and Pf-3 (73.33%) followed by Trichoderma isolates; 
T-11 (73.73%) and T-14 (66.67%). All potent native microbial isolates showed consistent ability to produce siderophore, 
ammonia, IAA, HCN, volatile metabolites and also able to release inorganic phosphorus from tri-calcium phosphate. The 
potential isolates were identified as T. asperellum and P. fluorescens based on the molecular characterization. In-vitro 
compatibility analysis of microbial consortia showed positive interaction. The potent biocontrol consortial sets of Tricho-
derma and Pseudomonas were tested in-vitro and highest inhibition of the pathogen was recorded in the combination of 
Pf-2 + Pf-3 + T-11 + T-14 (83.33%) followed by Pf-2 + Pf-3 + T-11 (78.38%). Liquid bio-formulations were prepared using 
the best two microbial consortia (MC) which were utilized for the management of late blight through seed treatment (1%), 
soil application (1%) and foliar spray (1%) under natural epiphytotic conditions. The highest reduction of late blight sever-
ity was recorded in chemical control treatment (91.92%) followed by MC-1 (84.38%) and MC-2 (77.20%). The MC-1 also 
significantly promoted the tomato plant height (101.20%), number of leaves per plant (116.48%), number of branches per 
plant (146.57%), number of fruits per plant (185.52%), fresh weight of fruit (42.59%), root length (67.28%) and marketable 
fruit yield (313.02%) over control treatment whereas chemical treatment showed non-significant with all above parameters. 
Among the tested microbial consortia, outstanding results were obtained in MC-1 indicating better plant growth promoting 
potential and disease reduction potential and thus exhibiting tremendous potential for its commercial exploitation.
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Introduction

Tomato is an indispensable vegetable crop which is the 
major source of nutrients and medicinal values, hence known 
as ‘Nutraceutical vegetable’ (Singh et al. 2019). Tomato is 
highly adaptive to warm season and can be grown success-
fully in plains as well as in hills. Cultivation of tomato in 

rainy season is assuming a great importance in the north-
eastern region of India in general and Nagaland in particular 
owing to its high prices of produce obtained from other parts 
of the country during this period (Babu 2006).

Though tomato crop occupies a very important place 
among the vegetable crops cultivated in India, the average 
yield of this crop on farmers’ fields is reasonably poor. One 
of the constrain for poor yield is the devastating effect of 
certain diseases. Among the diseases, late blight of tomato 
caused by Phytophthora infestans is destructive and wide 
spread in nature (Son et al. 2008). Worldwide losses were 
estimated is about $170 billion annually and thus this patho-
gen was considered as a major threat for global food security 
(Latijnhouwers et al. 2004; Wu et al. 2012). Yield losses 
up to 79% from late blight damage in tomato have been 
recorded in India (Arora et al. 2014; Chowdappa et al. 2015).
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Although, several management components viz., cultural 
practices, biological agents, host resistance and fungicides 
are available, but fungicides hold promise in managing the 
late blight disease of tomato. Use of fungicides is costly, 
may lead to environmental pollution and less effective due 
to increasing resistance of the pathogen. Under such condi-
tions, the most effective method is the biological control 
(Harish et al. 2008). In recent years, emerging strategy is 
integrated biological control as microbial consortia. Under 
field conditions microbial consortia are much more efficient 
than single strain of organisms with diverse metabolic capa-
bilities (Yan et al. 2002).

Hence, looking into the aforesaid realities, the use of 
native biological agents as a consortium and also not much 
systematic research work has been carried out on late blight 
disease of tomato under Nagaland condition. Hence, in the 
present study attempts were made to explore native isolates 
of BCAs and developing an indigenous microbial consor-
tium package for developing a biointensive management 
strategy against late blight disease of tomato along with 
yield enhancement.

Materials and methods

Identification of the pathogen

The causal agent of late blight disease of tomato was isolated 
by standard tissue isolation technique on rye-A agar medium 
(Hollomon 1965). The purified isolate was subjected to 
pathogenicity test. For this purpose, isolated pathogen was 
inoculated on 4 weeks old susceptible tomato cv. Pusa Ruby 
(Loliam et al. 2012).

Morphological characters of the pathogen was studied on 
host as well as in pure culture on rye-B agar medium. The 
isolated pathogen was identified on the basis of morphologi-
cal characters as documented by Waterhouse (1963).

Isolation and identification of bioagents

A field survey was undertaken for the collection of rhizos-
pheric soil samples from different cropping areas in Naga-
land, India (Table 1). Soil samples were taken from the 
rhizosphere of healthy plants and kept in polyethylene bags. 
The individual sample was mixed thoroughly after air dry-
ing. Thirty three isolates were obtained from the collected 
samples by soil dilution plate technique (Waksman 1927).

Initially isolated microbes were identified as Tricho-
derma spp. and Pseudomonas spp. based on morphologi-
cal characteristics by use of selective media viz., Tricho-
derma selective medium (TSM) (Elad and Chet 1983) and 
King’s B medium (King et al. 1954) respectively. Further, 
the potential isolates were identified as T. asperellum (T-11; 

Acc. No MK928414 and T-14; Acc. No MK928417) and P. 
fluorescens (Pf-2; Acc. No MN783298 and Pf-3; Acc. No 
MN783297) based on the molecular characterization (Singh 
et al. 2020).

In‑vitro antagonistic tests

The antagonistic effect of Trichoderma and Pseudomonas 
isolates were evaluated against Phytophthora infestans by 
dual culture plate technique as per Sivakumar et al. (2000) 
and Georgakopoulos et al. (2002) respectively. Linear myce-
lial growth of the pathogen was recorded in Petri plate after 
full growth of pathogen attained in control treatment. The 
per cent inhibition of the growth of pathogen by antagonists 
over control was calculated (Vincent 1927).

Investigation on the biocontrol mechanisms 
of antagonists

The effects of volatile metabolites and mycoparasitism activ-
ity of isolated BCAs were assessed against P. infestans by 
adopting the technique given by Dennis and Webster (1971) 
and Rodrigues (2010), respectively. The production of 
Ammonia, IAA and HCN by Trichoderma and Pseudomonas 
isolates were also determined in the qualitative assay tech-
nique given by Cappuccino and Sherman (1992), Gordon 
and Weber (1951) and Miller and Higgins (1970), respec-
tively. Phosphate solubilization and siderophore produc-
tion test was also conducted qualitatively by inoculation of 
Trichoderma and Pseudomonas isolates on National Botani-
cal Research Institute’s phosphate (NBRIP) agar medium 
(Nautiyal 1999) and chrome azurol sulfonate (CAS) agar 
medium (Milagres et al. 1999), respectively.

Selection of potential isolates and their 
compatibility study in‑vitro

Based on in-vitro antagonistic capabilities of Trichoderma 
and Pseudomonas isolates against P. infestans and eluci-
dation of their various biocontrol mechanisms, the potent 
isolates were selected for further studies. In-vitro compat-
ibility test amongst microbial consortia of potent isolates 
of Trichoderma and Pseudomonas were evaluated by dual 
culture plate method (Siddiqui and Shaukat 2003) in order 
to determine the compatibility among different combination 
of consortia.

Antagonistic efficacy of microbial consortia 
against P. infestans

The in-vitro bioassay technique was used for the testing of 
microbial consortia against P. infestans. The mycelial disc 
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(10 mm diameter) of the pathogen (9 days old) was placed 
at centre of Petri plate containing rye-B agar medium 
(20 ml). Simultaneously, 10 mm diameter disc of potent 
Trichoderma (T-11 and T-14) isolates (9 days old) and 
20 µl of an overnight culture of potent Pseudomonas (Pf-2 
and Pf-3) isolates were poured in wells (5 mm diameter) 
at different corner of Petri plate. Linear mycelial growth 
of the pathogen was recorded in Petri plate when myce-
lium of test pathogen touched any antagonists in any treat-
ment. The per cent inhibition of the growth of pathogen by 
antagonists over control was calculated (Vincent 1927).

Preparation of liquid based bio‑formulation 
of microbial consortia

The conidial suspension of each selected isolates of T. 
asperellum (T-11 and T-14) was prepared from 9 days old 
PDA plates. The plates were rinsed with sterile distilled 
water and the mycelia were carefully scraped off with a bent 
glass rod. This suspension was filtered through filter paper 
(Whatman No.1) to separate the spores from the mycelia. 
The spore concentration was adjusted to 3.7 × 108 spores/
ml (Dubos 1987) with the help of haemocytometer. Simi-
larly, selected P. fluorescens isolates (Pf-2 and Pf-3) cell 

Table 1   Native biocontrol agents (BCAs) and their collection locations

Isolate code Isolation from Location

Pseudomonas isolates
 Pf-1 Tomato rhizosphere Polyhouse-I, CIH, Medziphema, Dimapur, Nagaland
 Pf-2 Tomato rhizosphere Tomato field-I, Horticulture farm, SASRD, Medziphema, Dimapur
 Pf-3 Tomato rhizosphere Farmers’ field-I, Merema, Kohima, Nagaland
 Pf-4 Tomato rhizosphere Farmers’ field-I, Tsiesema, Kohima, Nagaland
 Pf-5 Tomato rhizosphere Polyhouse-II, CIH, Medziphema, Dimapur, Nagaland
 Pf-6 Tomato rhizosphere Tomato field-II, Horticulture farm, SASRD, Medziphema, Dimapur
 Pf-7 Tomato rhizosphere Farmers’ field-II, Merema, Kohima, Nagaland
 Pf-8 Tomato rhizosphere Farmers’ field-II, Tsiesema, Kohima, Nagaland

Trichoderma isolates
 T-1 Virgin forest soils Dziilakie forest, Dimapur, Nagaland
 T-2 Virgin forest soils Dziilakie forest, Dimapur, Nagaland
 T-3 Virgin forest soils Dziilakie forest, Dimapur, Nagaland
 T-4 Tomato rhizosphere Polyhouse-I, CIH, Medziphema, Dimapur, Nagaland
 T-5 Tomato rhizosphere Tomato field-I, Horticulture farm, SASRD, Medziphema, Dimapur
 T-6 Tomato rhizosphere Farmers’ field-I, Merema, Kohima, Nagaland
 T-7 Tomato rhizosphere Farmers’ field-I, Tsiesema, Kohima, Nagaland
 T-8 Tomato rhizosphere Polyhouse-II, CIH, Medziphema, Dimapur, Nagaland
 T-9 Tomato rhizosphere Tomato field-II, Horticulture farm, SASRD, Medziphema, Dimapur
 T-10 Tomato rhizosphere Farmers’ field-II, Merema, Kohima, Nagaland
 T-11 Tomato rhizosphere Farmers’ field-II, Tsiesema, Kohima, Nagaland
 T-12 Rice rhizosphere Rice field-I, Agronomy farm, SASRD, Medziphema, Dimapur
 T-13 Rice rhizosphere Rice field-II, Agronomy farm, SASRD, Medziphema, Dimapur
 T-14 Rice rhizosphere Rice field-III, Agronomy farm, SASRD, Medziphema, Dimapur
 T-15 Rice rhizosphere Rice field-IV, Agronomy farm, SASRD, Medziphema, Dimapur
 T-16 Rice rhizosphere Rice field-V, Agronomy farm, SASRD, Medziphema, Dimapur
 T-17 Soils Fallow land, Agronomy farm, SASRD, Medziphema, Dimapur
 T-18 Soils Rice field-I, Agronomy farm, SASRD, Medziphema, Dimapur
 T-19 Black gram rhizosphere Agronomy farm, SASRD, Medziphema, Dimapur
 T-20 Cauliflower rhizosphere Horticulture farm, SASRD, Medziphema, Dimapur
 T-21 Soils Fallow land, Horticulture farm, SASRD, Medziphema, Dimapur
 T-22 Soils Rice field-II, Agronomy farm, SASRD, Medziphema, Dimapur
 T-23 Soils Rice field-III, Agronomy farm, SASRD, Medziphema, Dimapur
 T-24 Soils Rice field-IV, Agronomy farm, SASRD, Medziphema, Dimapur
 T-25 Soybean rhizosphere Agronomy farm, SASRD, Medziphema, Dimapur
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suspension was prepared by inoculating into King’s B 
broth followed by shaking for 48 h (150 rpm) at 28 °C. The 
bacterial suspension was adjusted optically at 1 × 109 cfu/
ml (Mulya et al. 1996). Liquid based bio-formulations of 
consortia were prepared by mixing equal volume of each 
selected isolate just before use for field experiment (Srini-
vasan and Mathivanan 2009).

Field evaluation of liquid bio‑formulation 
of microbial consortia against late blight of tomato 
under natural epiphytotic conditions

The field trials were conducted during the tomato growing 
seasons (Sept.–Jan.) of 2017–2018 and 2018–2019. The 
research field site is located in the foothills of Nagaland 
(India) and situated at 25° 45′ 45″ North latitude and 93° 
51′ 45″ East longitudes at an elevation of 310 m above mean 
sea level.

The bio-formulation of microbial consortia (MC) and 
chemical treated seeds (400 seeds/treatment) of tomato 
were sown in nursery beds (8 × 1 cm at 1 cm depth) after 
15 days of formalin (2%) treated soil. The tomato cv. Pusa 
Ruby was used in the field experiment, which is known to be 
highly susceptible to P. infestans in India (Singh et al. 2019). 
The 28 days old seedlings were transplanted (60 × 45 cm) 
in main field during second week of October in raised plot 
(1.8 m × 1.8 m). The each plot was framed at 50 cm distance 
apart. All the recommended standard cultural operations 
were followed.

The field experiment was laid out in a randomized block 
design (RBD) with six replications (72 plants per treatment). 
A total of four treatments viz., T1 (MC-1; seed treatment 
(1%) + soil application (1%) + foliar sprays (1%) at 15, 30 
and 45 DAT), T2 (MC-2; seed treatment (1%) + soil appli-
cation (1%) + foliar sprays (1%) at 15, 30 and 45 DAT), T3 
(Chemical control; seed dressing with 0.3% Captan 50% 
WP + soil application of Mancozeb 75% WP (0.2%) + foliar 
sprays of Ridomil MZ 72% WP (0.25%) at 15, 30 and 45 
DAT) and T4 (Control, sterile distilled water) were used.

Application methods of liquid microbial consortia

Seed treatment

The surface sterilized (1.0% sodium hypochlorite for 2 min) 
seeds were soaked in conidial suspension of microbial con-
sortia at 1%, chemical control treatment (0.3% of captan 
50% WP) and control treatment (soaked in sterile distilled 
water). All the treated seeds were dried by keeping under 
aseptic condition in laminar air flow for 5 h (Srinivasan and 
Mathivanan 2009).

Soil application

The soil application treatment was done with 1% of MC 
inoculated in FYM, Mancozeb 75% WP at 0.2% and sterile 
distilled water for control treatment at 10 days before trans-
planting (Srinivasan and Mathivanan 2011).

Foliar spray

Three foliar sprays were done with 1% of MC, Manco-
zeb + Metalaxyl-72% WP at 0.25% and sterile distilled water 
for control treatment at 15, 30 and 45 DAT. The total spray 
solution of 150 ml was used in each plot (12 plants) (Srini-
vasan et al. 2009).

Observations

The late blight disease severity was assessed visually on 
leaves, stems and fruits of all plants in each replication fol-
lowing rating scale as per Irzhansky and Cohen (2006), 
when all plants in control treatment infested with late blight 
disease under natural epiphytotic conditions. The severity 
grades were converted into percentage disease index (PDI) 
for analysis as per the formula given by Wheeler (1969).

Plant growth promoting attributes like plant height, 
number of leaves, number of branches, number of fruits per 
plant, fresh weight of fruit, marketable fruit yield and root 
length were recorded.

Statistical analysis

The data were analyzed using WASP 2.0 software developed 
by the Central Coastal Agricultural Research Institute, Goa 
(India).

Results

Identification of the pathogen

The pure culture was obtained from the diseased specimens 
were identified as P. infestans based on macroscopic and 
microscopic characters. The phenotypic characteristics of 
isolate were observed fluffy cottony mycelium and slow 
growth rate on the rye-B agar medium. Microscopic obser-
vation revealed that the fungal hyphae were hyaline, mod-
erately thick hyphae, coenocytic and profusely branched. 
Sporangiosphores were sympodial with a small swelling at 
the base of each branch. Sporangia were terminal or lateral, 
ellipsoid, ovoid or limoniform, semipapillate, deciduous 
and pedicelless and they comparatively more frequently 
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observed on the tomato plants than in pure culture. Chla-
mydospores of the pathogen were also recorded in diseased 
specimens (Fig. 1).

In‑vitro antagonistic tests

Altogether 25 isolates of Trichoderma were screened for 
their inhibitory action on the radial growth of P. infestans. 
It was found that the growth of the pathogen in dual culture 
plates progressed until they come in contact with the leading 
edges of the antagonist. The per cent inhibition over control 
was calculated and it was observed that T-11 was the most 
promising isolate against P. infestans with 73.73 per cent 
inhibition. Next best isolate was T-14 (66.67%) followed by 
T-5 (64.93%), T-25 (64.00%) and the least antagonistic effect 
was observed in T-17 (51.07%) at 8 days after incubation at 
18 ± 1 °C (Table 2).

The antagonistic effects of Pseudomonas isolates were 
evaluated against P. infestans which significantly inhibited 

the growth of the pathogen as compared to control treatment. 
Among the Pseudomonas isolates, maximum per cent inhi-
bition was observed in Pf-2 (81.33%) which is significantly 
superior to all other treatments followed by Pf-3 (73.33%), 
Pf-1 (69.33%), Pf-7 (66.67%) and Pf-4 (65.33%) at 8 days 
after incubation at 18 ± 1 °C (Table 2). The clear zone of 
inhibition was also observed in the dual culture plate of Pf-2 
and Pf-3.

Investigation on the biocontrol mechanisms 
of antagonists

The effects of volatile metabolites of Trichoderma and 
Pseudomonas isolates were assessed against P. infestans. 
Among the tested isolates, the per cent inhibition over con-
trol was calculated and it was recorded that Trichoderma 
(T-11) and Pseudomonas (Pf-3) was found to be most 
promising in production of volatile compounds against P. 
infestans with 45.55 and 53.67 per cent inhibition (Table 2). 

(A) Fluffy cottony mycelium 
(B) Sympodial with nodal swellings of sporangiophore under 45 x
(C) Microscopic view of a hyaline, limoniform, an apical papilla on sporangium under100 x
(D) Microscopic view of chlamydospore under 45 x

C D

A B

Fig. 1   Characterization of the pathogen (P. infestans)
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The mycoparasitism activity of 25 isolates of Trichoderma 
were also assessed against P. infestans and they showed the 
presence of coiling as hyphal interactions between them 
(Table 2).

The production of Ammonia by Trichoderma and Pseu-
domonas isolates were also determined in the qualitative 
assay. Among the tested isolates, Pseudomonas isolates (Pf-
3, Pf-4, Pf-7 and Pf-8) and Trichoderma isolates (T-1, T-2, 
T-11, T-14 and T-25) exhibited strong ammonia production 

by turning initial peptone water broth from yellow to dark 
brown colour (Table 2). The results of qualitative assay 
of IAA production by different native BCAs revealed that 
Pseudomonas isolates (Pf-2 and Pf-3) and Trichoderma iso-
lates (T-11 and T-14) exhibited strong IAA production. The 
moderate production of HCN was observed in Pseudomonas 
isolates (Pf-2, Pf-3 and Pf-8) (Table 2).

The results of qualitative assay of phosphate solubiliza-
tion by different native BCAs revealed that Pseudomonas 

Table 2   In-vitro screening of native biocontrol agents (BCAs) against P. infestans and their mechanisms

Whereas, − = negative, +  = positive/low production, ++  = moderate production, +++ = strong production and * = not tested

BCAs Per cent inhibition of 
pathogen growth in dual 
culture

Biocontrol mechanisms

Per cent inhibition of pathogen 
growth by volatile metabolites

Ammonia 
produc-
tion

IAA production Phosphate 
solubility

Sidero-
phore 
production

HCN 
produc-
tion

Myco-
parasit-
ism

Pseudomonas isolates
 Pf-1 69.33 44.78 +++ − ++ ++ − *
 Pf-2 81.33 53.67 +++ +++ +++ ++ ++ *
 Pf-3 73.33 48.11 ++++ +++ +++ +++ ++ *
 Pf-4 65.33 25.22 ++++ − − ++ − *
 Pf-5 60.44 29.22 +++ − − + − *
 Pf-6 60.00 35.89 +++ − − ++ − *
 Pf-7 66.67 24.78 ++++ − + ++ − *
 Pf-8 64.00 25.56 ++++ + +++ +++ ++ *

Trichoderma isolates
 T-1 60.40 34.78 ++++ − − + * +
 T-2 54.27 26.33 ++++ + − + * +
 T-3 52.93 19.67 +++ − + +++ * +
 T-4 56.00 32.22 ++ − − +++ * +
 T-5 64.93 14.11 ++ − + +++ * +
 T-6 57.33 21.89 +++ + − ++ * +
 T-7 52.00 14.44 +++ + − +++ * +
 T-8 61.33 18.11 ++ + − +++ * +
 T-9 57.73 31.11 +++ + − +++ * +
 T-10 53.33 28.11 +++ − + +++ * +
 T-11 73.73 45.55 ++++ +++ +++ +++ * +
 T-12 53.73 16.67 + − − ++ * +
 T-13 60.00 25.89 + − − ++ * +
 T-14 66.67 35.55 +++ +++ +++ +++ * +
 T-15 55.60 30.00 +++ + − +++ * +
 T-16 52.40 27.00 + + + + * +
 T-17 51.07 15.22 + + − ++ * +
 T-18 59.60 12.22 +++ − − +++ * +
 T-19 62.67 25.55 +++ + + ++ * +
 T-20 60.93 23.67 +++ − − ++ * +
 T-21 56.93 35.22 ++ − − +++ * +
 T-22 58.67 25.89 ++ − − + * +
 T-23 56.00 13.00 +++ − − ++ * +
 T-24 57.73 16.67 +++ − − + * +
 T-25 64.00 32.55 ++++ + + ++ * +
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isolates (Pf-2, Pf-3 and Pf-8) and Trichoderma isolates 
(T-11 and T-14) elucidated strong phosphate solubility 
activity (Table 2). The siderophore production test was also 
conducted qualitatively by inoculation of Trichoderma and 
Pseudomonas isolates on chrome azurol sulfonate (CAS) 
agar medium. All 33 isolates showed positive results for 
siderophore production. Among the tested isolates, Pseu-
domonas isolates (Pf-3 and Pf-8) and Trichoderma isolates 
(T-3, T-4, T-5, T-7, T-8, T-9, T-10, T-11, T-14, T-15, T-18 
and T-21) exhibited strong siderophore production by pink 
and orange halo colour development (Table 2).

Selection of potential isolates and their 
compatibility study in‑vitro

Based on in-vitro antagonistic capabilities of Trichoderma 
and Pseudomonas isolates against P. infestans and eluci-
dation of their various biocontrol mechanisms, the potent 
isolates of Pseudomonas (Pf-2 and Pf-3) and Trichoderma 
(T-11 and T-14) were used for further studies. Selected 
native microbial isolates were showed consistent ability to 
produce siderophore, ammonia, IAA, volatile metabolites 
and also able to release inorganic phosphorus from tri-cal-
cium phosphate (Table 2).

In-vitro experiment was carried out in all permuta-
tions and combination amongst the potent isolates of 
Trichoderma and Pseudomonas. Altogether 11 treatment 
combinations were tested and compared with growth of 
Pf-2 (Control-1), Pf-3 (Control-2), T-11 (Control-3) and 
T-14 (Control-4). The microorganisms showing positive 
compatibility among them was recorded, tabulated and 

selected for further study. The data showed compatibility 
among all the treatment combinations of the four bioac-
tive microorganisms in-vitro. No clear inhibition zone was 
recorded between the tested microbial consortia. Absence 
of inhibition zone indicated that the potential isolates of 
Trichoderma and Pseudomonas were compatible with each 
other.

Antagonistic efficacy of microbial consortia 
against P. infestans

A total of 12 treatment combinations were compared. 
Eleven consortia produced varying inhibitions (%) in-vitro 
against P. infestans (Table 3 and Fig. 2). All consortia 
tested against P. infestans were significantly superior over 
control. Among the different consortial sets tested in-vitro 
the significant highest inhibition of pathogen was recorded 
in the combination of Pf-2 + Pf-3 + T-11 + T-14 (83.33%) 
followed by Pf-2 + Pf-3 + T-11 (78.38%), Pf-2 + Pf-3 
(77.43%) and Pf-2 + T-14 (76.54%) respectively at 5 days 
after incubation at 18 ± 1 °C.

An in-vitro study was taken up to select the two best 
microbial consortia (MC) against the test pathogen. 
The MC-1 (P. fluorescens Pf-2 + P. fluorescens Pf-3 + T. 
asperellum T-11 + T. asperellum T-14) and MC-2 (P. fluo-
rescens Pf-2 + P. fluorescens Pf-3 + T. asperellum T-11) 
inhibited the pathogen significantly and were found to be 
the most effective consortia. Hence, they were selected 
for field study.

Table 3   In-vitro antagonistic effect of microbial consortia on radial growth and per cent inhibition of P. infestans 

Values in parentheses are angular transformed values
a Means of three replications

Treatment Treatment combination Inhibition of P. infestans growtha

Radial growth (cm) Radial growth (cm) inhibited Individual’s Inhibition (%) Combines inhibition (%)

T0 Control P. infestans 3.90 00.00 00.00 00.00 (4.05)
T1 Pf-2 + Pf-3 0.83 + 0.93 3.07 + 2.97 78.72 + 76.15 77.43 (61.66)
T2 Pf-3 + T-11 1.30 + 0.93 2.60 + 2.97 66.67 + 76.15 71.41 (57.67)
T3 Pf-3 + T-14 0.90 + 1.00 3.00 + 2.90 76.92 + 74.36 75.64 (60.43)
T4 Pf-2 + T-11 0.93 + 1.07 2.97 + 2.83 76.15 + 72.56 74.36 (59.58)
T5 Pf-2 + T-14 0.87 + 0.96 3.03 + 2.94 77.69 + 75.38 76.54 (61.05)
T6 T-11 + T-14 0.90 + 1.20 3.00 + 2.70 76.92 + 69.23 73.08 (58.76)
T7 Pf-2 + Pf-3 + T-11 0.70 + 0.90 + 0.93 3.20 + 3.00 + 2.97 82.05 + 76.92 + 76.15 78.38 (62.29)
T8 Pf-2 + Pf-3 + T-14 1.03 + 1.23 + 1.30 2.87 + 2.67 + 2.60 73.59 + 68.46 + 66.67 69.57 (56.33)
T9 Pf-3 + T-11 + T-14 1.03 + 1.07 + 1.27 2.87 + 2.83 + 2.63 73.59 + 72.56 + 67.44 71.20 (57.56)
T10 Pf-2 + T-11 + T-14 0.97 + 0.87 + 1.10 2.93 + 3.03 + 2.80 75.13 + 77.69 + 71.79 74.87 (59.91)
T11 Pf-2 + Pf-3 + T-11 + T-14 0.63 + 0.67 + 0.60 + 0.70 3.27 + 3.23 + 3.30 + 3.20 83.85 + 82.82 + 84.61 + 82.05 83.33 (65.90)
SEm ±  0.91 (0.60)
C.V. (%) 2.29 (1.86)
CD (p = 0.01) 3.60 (2.36)
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Field evaluation of liquid bio‑formulation 
of microbial consortia against late blight of tomato 
under natural epiphytotic conditions

Among different treatments, liquid microbial consortia 
(MC)-1 significantly decreased the late blight severity 
(12.08 PDI) compared to all other treatments. This was 
comparable with the chemical treatment (6.25 PDI). In 
case of untreated control, high severity of 77.36 PDI was 
recorded at 45 DAT (Table 4). These results revealed that 

the chemical control significantly decreased late blight 
severity (91.92%) over control treatment. Next in order of 
merit was MC-1 (84.38%) and MC-2 (77.20%). The mor-
tality per cent significantly decreased in all the treatment 
(100%) over control treatment (Table 4). Simultaneously, 
liquid bio-formulation of MC-1 significantly increased 
the tomato plant height (101.20% and Fig. 3), number 
of leaves per plant (116.48%), number of branches per 
plant (146.57%), number of fruits per plant (185.52%), 
fresh weight of fruit (42.59%), root length (67.28%) and 

Whereas; T0 (Control, P. infestans alone); T1 (Pf-2 + Pf-3); T2 (Pf-3 + T-11); T3 (Pf-3 + T-14); T4 (Pf-2 + T-11); T5
(Pf-2 + T-14); T6 (T-11 +T-14); T7 (Pf-2 + Pf-3 + T-11); T8 (Pf-2 + Pf-3 +T-14); T9 (Pf-3+ T-11 +T-14); T10 (Pf-2 + T-
11+T-14) and T11 (Pf-2 + Pf-3 + T-11 +T-14).

Fig. 2   In-vitro antagonistic effect of microbial consortia (MC) on radial growth of P. infestans
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marketable fruit yield (313.02%) over untreated control 
(Tables 5 and 6).

Discussions

The pathogen was identified as P. infestans based on the 
nature of disease observed, morphological and cultural char-
acters seen under the microscope. These characters were fur-
ther compared with the characters reported by Waterhouse 
(1963) and description given by Agrios (1997) and Zent-
myer (1983). The present observations corroborates with the 
descriptions and findings of earlier workers.

The development of native bio-formulation is more effi-
cient antagonistic player in plant disease management and 
growth promotion. Antagonistic effect of Trichoderma and 
Pseudomonas isolates against P. infestans has already been 
reported by several research workers (Kabir et al. 2013; 
Kumar et al. 2015; Lamsal et al. 2013; Patel and Mukadam 
2011; Zegeye et al. 2011). In this study, the probable reasons 
of high inhibitory activity of the antagonists observed on P. 
infestans in dual cultures may be due to production of anti-
fungal metabolites such as mycoparasitic activities, volatile 
gases, cell-wall degrading enzymes, HCN, siderophores, 
pyoluteorin, pyrrolnitrin and 2-4 diacetyl phloroglucinol.

Many secondary metabolites have been recorded to be 
involved in microbial interactions (Dennis and Webster 
1971; Kapri and Tewari 2010; Vespermann et al. 2007). 
These reports are commensurate with result of the present 
investigation, which suggests that the production of second-
ary metabolites by both Trichoderma and Pseudomonas iso-
lates have definite influence on the high degree of inhibition 
of P. infestans.

The mycoparasitic potential of Trichoderma spp. against 
P. infestans is well documented in previous findings (Ezzi-
yyani et al. 2007; Pugeg and Ian 2006; Zegeye et al. 2011). 
However, in the present investigation, working with the 
native isolates, the mycoparasitic potential was further mani-
fested by characteristic envelopment and coiling around the 
hyphae by all isolates of Trichoderma spp. The hyphae of 
Trichoderma spp. was also observed to grow in close prox-
imity to the hyphae of P. infestans before coagulation and 
disintegration occurred.

Dixit et  al. (2015) evaluated 11 isolates of fluores-
cent Pseudomonas for ammonia production. All iso-
lates showed positive result for ammonia production. 
Lalngaihawmi and Bhattacharyya (2019) also evaluated 
Trichoderma spp. for ammonia production and results 
revealed that all the Trichoderma spp. showed positive 
result. These reports are in agreement with the result of 

Fig. 3   Effect of microbial consortia (MC) on tomato plant height, number of leaves, fruits and branches; T1 (MC-1), T2 (MC-2), T3 (Chemical 
control) and T4 (Control)
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the present investigation, which suggests that the produc-
tion of ammonia by both Trichoderma and Pseudomonas 
isolates have positive impact on the plant growth.

Dixit et  al. (2015) further evaluated 20 isolates of 
Trichoderma for IAA production. All Trichoderma spp. 
isolates elucidated positive results for IAA production. 
Prasad et al. (2017) also evaluated 24 isolates of Tricho-
derma spp. and 12 isolates of B. subtilis and P. fluores-
cens for IAA production. In the present investigation, 3 
isolate of Pseudomonas and 12 isolates of Trichoderma 
were observed to produce IAA at varying intensity. This 
occurrence may be ascribed to the heterogeneous nature 
of the source and the strains of the antagonists.

Corbett (1974) described that HCN inhibits proper 
functioning of enzymes and natural receptors reversible 
mechanism of inhibition in the pathogens. This report 
is in agreement with the result of the present investiga-
tion, which suggests that the production of HCN by Pseu-
domonas isolates have absolute influence on the high 
degree of inhibition of P. infestans.

It has been observed by many investigators (Bhak-
thavatchalu et al. 2013; Gangwar et al. 2012; Kapri and 
Tewari 2010; Prasad et al. 2017; Rai 2017) that a high pro-
portion of phosphate solubilizing microorganisms (PSMs) 
reside in the rhizosphere of plants and play an important 
role in solubilization of bound phosphates, making them 
available to the plants. This report is in agreement with 
the result of the present investigation, which suggests that 
the phosphate solubilization by both Trichoderma and 
Pseudomonas isolates have obvious influence on the plant 
growth.

In this present study, the strong and positive siderophore 
production exhibited by Pseudomonas isolates (Pf-3 and 
Pf-8) and Trichoderma isolates (T-3, T-4, T-5, T-7, T-8, T-9, 
T-10, T-11, T-14, T-15, T-18 and T-21) explicate the corre-
sponding inhibited radial growth and high per cent inhibition 
of P. infestans.

Microbial consortia are known to enhance plant growth, 
which can result in development of various plant parts and 
higher growth leads to significant enhancement of vegetative 
growth attributes through plant growth promotion, whereas 
growth promotion was absent in chemical control in addi-
tion to disease suppression. Presence of consortia in the 
rhizoshphere increases the availability of nutrients through 
solubilization of insoluble sparingly soluble minerals have 
better nutrient uptake thereby enhancing plant growth (Biam 
and Majumder 2019; Harish et al. 2008; Idris et al. 2007; 
Raupach and Kloepper 1998; Yan et al. 2002).

Based on activities of biological control mechanism and 
plant growth promotion studies, the best microbial consor-
tium was identified as MC-1. This promising indigenous 
liquid consortium has promoted the tomato plant growth 
and reduced the losses due to late blight disease in an 

eco-friendly manner exhibiting tremendous potential for its 
commercial exploitation.
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