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Abstract
The productivity of rapeseed-mustard in India is quite low as compared to the world scenario. It is mainly due to impor-
tant diseases, Alternaria blight, white rust, downy mildew, powdery mildew, and white or Sclerotinia rot. Knowledge of 
epidemiologyand forecasting provide the basic information to developefficient and workable plant disease control models. 
The various weather variableslike temperature (T), relative humidity (RH), rainfall, wind velocity, and direction, leaf wet-
ness duration, and solar radiation influence differentparameters of infection process, and disease development. Interaction 
between these weather variables and disease development pave the way for the development of the prediction models. Pre-
diction models developed for the management of important diseases of rapeseed-mustard revealed that Alternaria blight is 
favoured by Tmax of 20–25 °C, Tmin of 15 °C, RHmor > 90% and RHeve > 50% where as white rust influencedby > 15 °C 
and RH > 65% with intermittent rains. Similarly, for downy mildew, Temprange of 15–20 °C with high RH was considered 
optimal for its progress. Leaf wetness duration of 4–6 h at 20 °C and 6–8 h at 15 °C is essential to initiate the downy mildew 
infection. Stag-head due to mixed infection of downy mildew and white rust is favoured by a Temp 20 °C with high RH and 
reduced period of sunshine (2–6 h/day) with rainfall up to 161 mm. Powdery mildew development is favoured by Temprange 
of 16–28 °C, mean RH < 60% and dry weather during February–March. The Sclerotinia stemrot progression is favoured by 
high RH (> 80%), Tmax up to 25 °C and Tmin of 5–12 °C. Often prediction models developed at one location may not fit 
atother locations. It indicates that data needs to be generated for a longer period and the model be tested atMultilocation. 
The disease-forecasting models must be developed by taking into account the crop variety, the prevalence of a particular 
pathotype and the microclimatic factors.
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Erysiphe · Sclerotinia

Introduction

The severe attack of many diseases not only deteriorates 
the quality of the seed but reduces the oil content con-
siderably in different oil yielding Brassica crops. More 
than 30 diseases are known to occur on Brassica crops in 
India. Amongst these, Alternaria blight (Alternariabras-
sicae (Berk.) Sacc.), white rust (Albugo candida (Pers.) ex. 
Lev.), downy mildew (Hyaloperonosporaparasitica(Pers. 
ex Fr.) Fr.), powdery mildew (ErysiphecruciferarumOpiz 
ex. Junell), and white or Sclerotinia stem rot (Sclerotini

asclerotiorum(Lib.) deBary)are considered economically 
important.Most of the commercially grown varieties are 
susceptible or moderately susceptible to these diseases and 
chemical sprays are only means to manage them. However, 
studies have been conducted to develop a suitable predic-
tion models for adopting timely protection measures. In 
plant pathology, to study disease progress over time, where 
time (t) is modeled as a continuous variable rather than 
as a discrete variable. Many different population growth 
models have been used for modeling disease progress 
curves. Five common growth curve models such as Expo-
nential, Monomolecular, Logistic, Gompertz, and Weibull 
Modelsare being used for the development of prediction 
model along with their assumptions. For the illustration 
of some of these models in R, (Table 1) which compared 
different models for disease progress, based on nonlinear 
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regression analysis. The initial disease incidence is y0 = 1/
(13*45) = 0.0017 (another exp.) s y0 = 1/ (15*67) = 0.001 
are given in Table 1.

A prediction model is a simplificationof reality and 
attempts to summarize the mainprocesses, to put forward 
hypotheses as well as to verify theircoherence and conse-
quences. It also represents a trial todetermine the minimal 
hypotheses which would allowminimal mathematical repre-
sentation of real processes.Epidemiological models can be 
classified in severalways. Kranz and Royle (1978)classified 
them into three types–descriptive, predictiveand concep-
tual—according to their mainobjective. Descriptive mod-
els provide hypotheses orgeneralize experimental results, 
but they do not usuallyreveal the mechanisms underlying 
the processes.Predictive models, which are also descrip-
tive, allowthe prediction of the occurrence and the severity 
ofepidemics. Both descriptive and predictive models use-
mathematical tools, such as simple or complex functions, 
regression and differential equations, or simpledecision 
models. The conceptual models, also knownas explana-
tory or analytical models, allow the identificationof prob-
lems by distinguishing cause fromeffect and quantify the 
effects of specific events onepidemic development. They are 
constructed as representationsof underlying biological and 
ecologicalprocesses. These models may eventually lead to 
thedevelopment of complex simulation models. It shouldbe 
pointed out that models can be disease-specific, butcan also 
be very general. A descriptive model is oftenconcerned 
with understanding and predicting developmentof specific 
diseases, and thus is generally used forassisting growers in 
making tactical decisions in managingdiseases. A conceptual 
model is often concernedwith the theoretical understanding 
of generic featuresof epidemic development and thus is used 
more formaking policy and strategic decisions.The advances 
in computer tools have made mathematical/statistical mod-
eling more accessible and have led to the development of 
more complex modelsfor many diseases.

The importanceof the interactions between pathogen 
and hostpopulation dynamics has long been underestimated 
and is now require due attention. The various observations 
required to develop a prediction models has been discussed 
as under:

Inoculum: Pathogen inoculum is of prime concern; its 
source, densityand type will greatly influence the design of 
theforecasting scheme.The population canbe described by 
the proportion or absolute quantityof individuals at each 
stage, i.e. age structure of the population. For modeling pur-
poses, pathogen may consist ofthree components: (1) spores, 
each potentially capableof infection, (2) mycelia, and (3) 
resting structure. Passage from one stage to the next can be 
veryfast, usually depending on environmental conditions.
Inoculum may also be simply divided into primary andsec-
ondary; which is very usefulin modeling soil-borne patho-
gens. Theimportance of the life-cycle stages in the control 
of fungaldynamics, by adapting a patch-occupancy model.
Fungal populations are difficult to study under fieldcondi-
tions because individual mycelia and spores cannotgener-
ally be easily quantified. Theassessment of the amount of 
the pathogen on and in theleaves is difficult. Visual assess-
ment of the percentage leaf area coveredby lesions can be 
rapid, but is quite subjective, andhence, may not be a reliable 
assessment of inoculum. Numbers of coloniesor pustules can 
be counted accurately on a small scale, but this is also not 
practical on a large scale. A pathogen population is often 
measuredindirectly as disease incidence or severity.

Inoculum dispersal: Inoculum dispersal fulfils essentially 
three functions: (1) population survival, (2) colonization of 
new habitatsand (3) reproduction. Spore dispersalcomprises 
three phases; liberation, which can be passiveor active, trans-
port, anddeposition. The dispersal scale dependson inocu-
lum properties as well as the transport vector, and may range 
from a few meters through rain splash, to 100–10,000 m 
for airborne spores. Often, spore dispersal can bedescribed 
by either an exponential or a power function.Ferrandino 
(1993) derived a functionto account for loss of spores both 
by escape from thecanopy and by deposition. The model 
generated diseasegradients that became shallower as the 
epidemics progressed.Such a pattern has been observed in 
diseasedcrops. Theefficiency of spore dispersal affects the 
density of newinfections. Gourbiereet al. (1999) considered 
dispersal as the main parameterwhich determines the num-
ber of newly colonized units in their model, which has been 
further extended to simulate the distribution and frequency 
of new infections along weather gradients.

Table 1   The comparison of different model curves for disease progression based on nonlinear regression analysis

Growth Curve Models

Model Differential Equation Form Integrated Form Linearized Form

Exponential logy = logy0 + rt y = y0exp(rt) logy = logy0 + rt
Monomolecular ln{1/(1−y)} = ln{1/(1− y0)} + rt y = 1−(1−y0)exp(−rt) ln{1/(1−y)} = ln{1/(1− y0)} + rt
Logistic y = 1/[1 + {−lny0/(1− y0) + rt}] y = 1/[1 + exp{−lny0/(1− y0) + rt}] ln(y/(1−y) = ln{y0/(1− y0) + rt}
Gompertz dy/dt = ry ln(1/y) = ry(−lny) y = exp(lny0exp(−rt)) −ln(−lny) = −ln(−lny0) + rt
Weibull dy/dt = c/b{(t−a)/b}(c−1)exp[−{(t−a)/b}c] y = 1−exp[−{(t−a)/b}^c] ln[ln{1/(1−y)}] = −clnb + ln(t−a)
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Latent and infectious periods: Latent period is the inter-
valbetween the onset of spore germination and the appear-
anceof the next spore generation. The rate of epidemicdevel-
opment is largely influenced by the length oflatent period, 
which determines the number of potentialinfection cycles 
that can be completed during agrowing season. Theshorter 
the latent period, the more reproduction cycles, the path-
ogen can have in a season mostly in polycyclic diseases. 
The monocyclic diseases have only onereproductive cycle 
throughout a single season.Latent periods have beenreported 
to depend on inoculum and lesion density, but are mainly 
influencedby temperature and humidity. They mayalso vary 
with the level of host susceptibility and withhost growth 
stages, features that emphasize the importanceof studying 
both pathogen and host dynamics.Another key factor influ-
encing the development of anepidemic is the length of the 
infectious period as this determines the quantity ofspores 
that a single colony is likely to produce duringits lifetime.

Pathogen dynamics and regulation: The role of preda-
tion andparasitism in pathogen regulation might be greater 
thanpreviously recognized.Another natural regulation comes 
from pathogenpopulation competition. The aspect of micro-
bial communityinteraction (symbiosis or competition) is, 
ingeneral, poorly understood for fungal pathogens; itis now 
becoming gradually more important with thepresent moves 
to more integrated disease managementstrategies.

Host dynamics

The epidemic modeling has emphasized pathogen activity, 
ignoring effects of the host onpathogen development. Par-
ticular interests are changesin susceptibility, and the contri-
bution of resistance, e.g., to the length of the latent period. 
Another reason why host dynamicsshould be included in 
epidemiological models arisesfrom the fact that pathogen 
population dynamics arelinked to host dynamics, and patho-
gens may affectgrowth and reproduction of their hosts. Sim-
ple models can be developed tocapture the essential features 
of host–pathogen interactions, though more complex models 
are usuallynecessary.

Host susceptibility and resistance: Among the host fac-
tors which need to be taken intoaccount are the levels of 
intrinsic host resistanceand age-related resistance associated 
with specifichost tissues. Some cultivars displayincreased 
tolerance or partial resistance. The nature of host resistance-
will affect the rate of disease development and musttherefore 
be taken into consideration in modeling. Theoretical models 
have beendeveloped on the effects of cultivar mixtures or 
cropheterogeneity on epidemic development based onthe 
gene-for-gene relationship. Host resistanceand/or pathogen 
infectivity/aggressiveness mayalso depend on the age of host 
tissues.

Multiple hosts and crop rotation: Paramount among farm 
practices is crop rotation, which has conventionally been 
adopted to reduce thecarry-over of pathogens from one crop 
to another and one season to another as well. However, crop 
rotationsare likely to favour certain pathogens whenmultiple 
hosts are available. Croprotation emphases the importance of 
the infection time length, and as consequence, the survival 
of inoculum.

Environmental factors

It is generally agreed that the environment is the driving-
force in the development of epidemics. This includesmajor 
climatic variables, such as temperatureand humidity. Wind 
and rain are essential for pathogendispersal; rain provides 
free water on host surfacesfor most pathogens to infect and 
sporulate and sunprovides favourable temperatures for dis-
ease development. The duration of each event as wellas its 
timing is also important. Moisture, particularly the dura-
tion of wetness, isthe dominant factor for most pathogens. 
Free water or near saturation moistureon the host surface is 
essential for germination andpenetration of the host for many 
pathogens. Thus, a single parameter indicating water avail-
abilityis used in several forecasting systems. Predictionof 
actual wetness duration is preferable to prediction ofoccur-
rence because majority of pathogens cause more damageas 
the duration of wetness increases.

The role of temperature has been studied for manypatho-
systems, mostly for its influence on initial germination, 
infection, and the length of incubation, latentand infectious 
periods. The relationships between disease development 
andenvironmental factors are the key component and often 
the only component of disease forecasting systems.Both past 
and future weather forecasts can be usedin these systems for 
predicting epidemic development.

Mathematical representation ofepidemic 
development

Overall, modeling can be divided into three steps: model 
development, model analysis and hypothesistesting. When 
developing a model, biological characteristicsof the patho-
system are expressed as mathematicalrelationships. In model 
analysis, epidemicdynamics are investigated in relation to 
the parametersof interest (or variables, which may be for-
mulatedas functions of external factors such as rain and-
temperature). Finally in hypothesis testing, the resultsfrom 
model analysis are used to test or verify whether orunder 
what conditions the hypothesis (i.e. the specifiedproblem/
question) is valid. Mathematical expression ofbiological 
features of the system is critical, since it will, more or less, 
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determine the techniques to be used inmodel analysis and 
hypothesis testing.

Disease progression curves

It is well known that polycyclicdiseases could be described 
by logistic modelsand monocyclic diseases by monomo-
lecular models.Growth models (monomolecular, Gompertz 
and logisticmodels) provide a range of curves that are often-
similar to disease progress curves. These non-linearcurves 
can be easily fitted to experimental data byany standard sta-
tistical package. The important parameters in these models 
arethe initial amount of disease, the apparent rate ofdisease 
increase and the level of maximum disease.These parameters 
can be estimated separately for eachindividual treatment and 
their relationships with treatmentor environmental factors 
can then be investigated.Alternatively, the mathematical 
relationships betweenthe model parameters and treatment/
environmental factorscan be incorporated into the growth 
curve modelsand fitted to the observed data directly. More 
complexmodel fitting procedures are required for the lat-
terapproach.Most analyses of disease progress data rely on 
timeas the independent factor. This may not be appropriate-
when data are collected in different years, seasons, locations, 
etc. A measure of heat-sum or degree-daysprovides an alter-
native method. This assumes that temperatureis the most 
important factor driving growthrate of the host, the pathogen 
and the disease. Many othermodifications to standard growth 
models are possibleto take into account the temporal vari-
abilityof host susceptibility to pathogens.

Area under disease progress curve (AUDPC)

Not all disease progress curves are well or easilydescribed 
by a growth curve model. Alternativemethods to quantify 
epidemic development includethe area under the disease 
progress curve (AUDPC). Vander Plank (1963) related 
area under the stem rustprogress curve to the yield loss in 
wheat. The resulting AUDPC values can be used as ameas-
ure of epidemic development and used in furtheranalysis 
and hypothesis testing, such as regression andin variance 
analyses.

Linked differential equations

One of most commonly used mathematical techniquesin 
modeling epidemics is the linked differential equation 
(LDE), which is usually used to investigatetheoretical ques-
tions concerning the dynamicsof plant disease in relation to 
host, environment andhuman interventions. Vander Plank 

(1963) demonstratedhow analytical models written as dif-
ferentialequations could be integrated and used to quantify 
thevarious parameters associated with disease progress.
The LDE models are of the susceptible, exposed, infectiou-
sand removed (SEIR) type, which is the standardmodeling 
approach in human disease epidemiology,and is also widely 
used in plant disease epidemiology.

In this approach, the host population is usuallydivided 
into several non-overlapping categories, suchas healthy 
susceptible, latently infected, infectious andremoved (post-
infectious). When an individual plantbecomes infected, the 
pathogen moves through thelatent stage to become infectious 
at a rate whichis the inverse of mean latent period. Infected 
plantslose infectiousness and proceed into the removed 
orpost-infectious stage at a rate which is the inverse ofmean 
infectious period. Plant populations may be constant, but 
may also assume increaseor decrease to model host growth 
or senescence processes.Depending on the hypothesis to be 
tested, thenumber of these categories used varies greatly. 
When modeling the effect of induced resistance, an extra 
category, healthy resistant, may also berequired.Linked dif-
ferential equation models are specified foreach defined plant 
category, written generically as

where B(P) and D(P) are functions describing theincrease 
and decrease of the host population of categoryP. B(P) and 
D(P) are jointly determined by hostgrowth functions, patho-
gen attributes, pathogen transmission/dispersal characteris-
tics and disease management.

Linked differential equation models are usually evalu-
atedanalytically to determine the key dynamic featuresof 
the system, and then numerically to explorethe dynamics in 
the important conditions identified.

Computer simulation

Many computer simulation models have been developedin 
the past decades. Computer simulation isin general a nat-
ural extension of LDE modeling.In computer simulation, 
model parameters in LDEare often assumed to be functions 
of external factorssuch as temperature and humidity. These 
functionscan either be of simple linear type or complexnon-
linear type. Computer simulation can be used tostudy both 
theoretical and applied problems. Usinga stochastic simu-
lation model, the relationships ofspatio-temporal statistics 
with underlying biological, physical and biological factors 
have been successfullystudied. Oneof the earliest spatio-
temporal simulation models wasEPIMUL (Kampmeijer 
and Zadoks 1974), which laidthe foundations for further 

dp

dt
= B(P) − D(P),
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developments. However, no such computer simulation 
models in the management of rapeseed mustard have been 
developed.

The model thus developed could explain realistic disease 
intensity using independent natural weather factors. These 
models need to be tested at larger location for its validity, 
accuracy and effectiveness. The information available on 
epidemiology, disease cycle, disease predictionmodels and 
disease management of fivemajor diseases viz., Alternaria 
blight, white rust, downy mildew, powdery mildew and stem 
rotof rapeseed-mustard isbeing summarized.

Alternaria blight

Alternaria blight of rape-seed is one of the most common, 
and destructive disease worldwide.The seed production 
isgreatly reduced by the attack of this disease, which invade 
siliquae and penetrate the seeds besides damaging the assim-
ilatory tissues of the leaves and stem. Under severe infec-
tion results in shriveling of seed, reduction in quantity of oil 
content changes in chemical composition of seed including 
protein, total carbohydrates and ash. In India, yield losses of 
35–45%in case of yellow sarson, 25–45% in brown sarson, 
and 17–48% in rayahave been reported (Saharan et al. 2005).
It is believed thatAlternariasurvives through seed, plant 
debris, soil and weed hosts. However, it has been reported 
thatAlternaria does not survive through seed to cause infec-
tion in the nextseason due to high storagetemperature during 
summer months in north India. Nevertheless, the possibility 
of its survival through seed on hills cannot be ruled out. 
Mehta et al. (2002a) reported that diseased debris placed in 
deep freezer conditions (− 10 °C) were able to cause 100% 
infection in the next crop season when mixed in the soil as 
compared to the debris placed in the field and laboratory 
conditions.

Epidemiology

The primary infection occurs on the cotyledonary leaves 
forming the source of secondary infection for the entire crop. 
For infection, a minimum of 4 h of leaf wetness is required. 
Increased leaf wetness duration at 25 °C increased infection 
and spread of the disease rapidly. Under favourable tem-
perature conditions and presence of dew, the spores infect 
other parts of the plant as well. The infection occurs through 
the stomata and under favourable climatic conditions the 
new lesions arise within 4-6d bearing spores. The pathogen 
penetrates the tissues of the pods and infects the seed.The 
congenial factors for Alternaria spores germination has been 
reported as darkness or low light intensity (< 1000 lx), 25 °C 
temperature and more than 90% RH.

The favourable environmental factors for disease pro-
gression under field conditions have been reported as 
Temp. 12–25 °C, RH > 70% with intermittent winter rains 
or irrigation,wind velocity around 2–5 km/h, closer plant 
spacing (30 × 15 cm) and high doses of nitrogen (80 kg/ha).
The Tmax of 26–29 °C with RHAv > 65% favour the disease 
development (Sangeetha and Siddaramaiah 2007).The raya 
crop sown in the last week of October recorded 52% disease 
while that sown in the third week of November had only 
15.5% disease. Alternaria spores were trapped in a 7-day 
volumetric spore traps about 10–11 days before the disease 
appearance and their concentration increased and reached 
maximum in March. The spore was trapped maximum dur-
ing 10.00 am to 2.00 pm(46% of total spores) and minimum 
during 10.00 pm to 6.00 am, thereafter, its concentration 
decreased and decline sharply after 2.00 pm (Singh 2005). A 
prediction equation developed on the basis of spore trapped 
as:

where ALTn = Expected Alternaria blight; ALTc = Disease 
intensity in current week; ALTp = Disease intensity of previ-
ous week. The R2 value recorded was 0.84.

Meena et  al. (2011) reported that disease severity 
increased with delay in date of sowing. The A value AUDP-
Cand ‘r’ value (apparent infection rate) were more in the vari-
ety ‘Varuna’ with the delayedsowing. The severity of Alter-
naria blight was significantly lower in October sown crop. 
The spread of the disease was more in broadcasting method 
as compared to line sowing (45 cm). The disease intensity 
also decreased when K (40 kg/ha) along with recommended 
dose of fertilizers was applied. Chattopadhyay et al. (2005) 
analyzed the data for Alternaria blight progression and 
development from eight locations using cv ‘Varuna’ sown 
on 10 dates at weekly intervals. The results revealed that 
first appearance of disease on leaves occurred between 42 
and 139 days after sowing (DAS). The disease thenappeared 
on pods between 67 and 142 DAS, being highest at 99 DAS. 
Severity of Alternaria blighton leaves was positively corre-
lated to a daily Tmax of 18–27 °C, daily Tmin of 8–12 °C, 
daily Tmean of > 10 °C, RHmor > 92%, RHeven > 40% and 
RHmean of > 70% in the preceding week. Disease severity 
on podswas favoured by a daily Tmax of 20–30 °C, daily 
Tmean of > 14 °C, RHmor > 90%, daily RHmeanof > 70%, 
sunshine > 9 h and leaf wetness > 10 h. It was concluded 
that temperature and RH conditions favourable to disease 
development recorded in the field matched withlaboratory 
findings. Regional and cultivar-specific models could pre-
dict the crop age at which Alternariablight first appeared 
on leaves and pods, the highest blight severity on leaves 
and podsat least one week ahead of first appearanceof the 

ALTn =21.50 + 1.164ALTc + 0.128ALTp − 0.165(Tmax)

− 0.154(Tmin.) − 0.203(RHmor) − 0.095(RHeven),
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disease. The prediction models for all eight locations were 
developed. In addition to weather factors, the role of varie-
ties in disease development has also been reported. The rate 
of disease development was faster on the varieties belonging 
to B. juncea (RH-30, RH-8113, RH-8695, RH-8546) and B. 
campestris (YSPb-24, BSH-1, Candle, Shiva) compared to 
B. carinata (HC-2, HC-9001), B. napus (GSH-1) and B. alba 
(Mehta et al. 2008a; Saharan et al. 2016).

Disease prediction models

The different models viz., Gompertz, Logistic, Monomo-
lecular and Exponential have been used for the development 
of prediction models for the Alternaria blight. Dang et al. 
(2006) developed prediction equation for the development 
of Alternaria blight using Gompertz model and two factors 
can be explained by the following equation

where DI = Disease Intensity; (A and B are the two param-
eters of the Gompertz model and C and D are the coefficient 
of the sowing day and factor 1). All the varieties are based 
on different genetic makeup, which reacted differentially 
to the natural inoculum and factor 1 may be interpreted as 
weather index and factor 2 as contrast between the heating 
factor and moisture factor. The best-fitted models worked 
out for each variety were as:

where Y = Percent disease intensity.
The above equations revealed that for a given cultivar, if the 

sowing time is known and weather parameters at particular time 
are known, disease incidence can be predicted using the above 
models. Mehta et al. (2008a) developed a prediction model for 
adopting better disease management practices where four varie-
ties each of B. juncea (RH-30, RH-8113, RH-8695, RH-8546), 
B. campestris (YSPb-24, BSH-1, Candle, Shiva), two of B. cari-
nata ( HC-2, HC-9001) one each of B. napus (GSH-1) and B. 
alba (local) were monitored for the development and progression 

DI = Exp[log A Log (−B∗ Time)] + C ∗ Sowing day + D ∗ Factor 1,

RH − 30 ∶ Y = E[Log (0.620)∗ log (4.998∗ Time)] − 0.890 ∗ sowing Day + 0.238 factor 1;
(

R2 = 0.389
)

,

RH − 8113 ∶ Y = E[Log (2.547)∗ log (1.072∗ Time)] − 0.561 ∗ sowing Day + 0.086 factor 1;
(

R2 = 0.482
)

,

YSPb − 24 ∶ Y = E[Log (2.199)∗ log (4.827∗ Time)] − 1.868 ∗ sowing Day + 0.105 factor 1;
(

R2 = 0.539
)

,

BSH − 1 ∶ Y = E[Log (3.008)∗ log (1.335∗ Time)] − 1.260 ∗ sowing Day + 0.166 factor 1; (R2 = 0.482),

of Alternaria blight. Each cultivar was inoculated artificially with 
A.brassicae spores when the crop was about 2-month-old. Stud-
ies conducted revealed that Temp and RH had prominent role in 
disease development in addition to varietal behaviour. The pre-
diction equations so developed wereat par with observed values. 
Regression equations for the development of Alternaria blight on 
different varieties of rapeseed and mustard are:

where X1 = Tmax; X3 = RHmor.
Sangwan et al (2000) demonstrated that Gompertz model 

can be effectively used for prediction of Alternaria blight 
with two factors A and B drawn from the analysis of weather 
parameters and disease progress.

Factor A: 0.091 × Tmax + 0.887 × Tmin + 0.036 × RH 
mor + 0.808 × RHeve-0.644 × Sunshine h.

Factor B: 0.317 ×​ Tmax ​+ 0.317​ × Tmi​n + 0.9​33 × RH​
mor + 0​.​347​ × ​RHe​ve-0.618 × Sunshine h.

These two factors (A and B) explained 60.3 and 24.5% of 
total variation, respectively and together explained 85% of total 

variation among the weather variables. The model for each 
group is as follows:

where a & b are constants of Gompertz model.
The equation for each genotype of Brassicas was devel-

oped as follows:
B. juncea

B. juncea(var. RH − 30) Y1 = −4.3635 + 0.3488 X1

(

R2 = 0.66
)

,

Y1 = 4.4927 + 0.2755 X1− 0.0789 X3

(

R2 = 0.71
)

,

B. campestris(var. YSPb − 24) Y1 = −4.2310 + 0.3420 X1

(

R2 = 0.68
)

,

Y1 = 4.7131 + 0.2680 X1− 0.0797 X3

(

R2 = 0.73
)

,

B. carinata(var.HC − 1) Y1 = −4.8061 + 0.3584 X1

(

R2 = 0.64
)

,

Y1 = 6.4244 + 0.2654 X1− 0.1001 X3

(

R2 = 0.71
)

,

Disease = Exp.
[

log (a) X − log (b) × Time
]

+ c × Factors (1) + d × Factors (2),
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R2 = 0.931 (observed vs predicted).
B. campestris

R2 = 0.974 (observed vs predicted).
B. carinata

R2 = 0.982 (observed vs predicted).
B. napus

R2 = 0.975 (observed vs predicted).
B. alba

R2 = 0.970 (observed vs predicted).
B. oleracea

R2 = 0.984 (observed vs predicted).
Experiments were conducted at two locations for develop-

ment of prediction models for two varieties of different Bras-
sica genotypes viz., B.juncea (RH-30) and B. campestris 
var. yellow sarson (YSPb-24). These were monitored for the 
progression of Alternaria blight—disease progression was 
faster on YSPb-24 compared to RH-30. Maximum lesion 
size 6.31 mm was recorded on YSPb-24 whereas it was 
4.21 mm on variety RH-30. The favourable weather condi-
tions for the progression of the disease were observed to be 
at T (max) of 20 °C with RH > 90%. The stepwise regres-
sion analysis revealed that the T (max) and RH (mor) played 
significant and positive roles in disease progression. The R2 
value recorded was > 0.9 in all the cases, which showed that 
weather variables played major role in disease progression 
in addition to the varietal factors.The prediction equations 
developed for leaves and pods for a variety for two locations 
were as follows (Mehta et al. 2002b; Saharan et al. 2016). 
Similar equations were developed for other varieties as well.

Exp. [log (2.915) × log (−0.430 × Time] − 0.154 × Factors (1) + 0.204 × Factors (2),

Exp. [log (2.722) × log (0.470 x Time] − 0.203 × Factors (1) + 0.167 × Factors (2)

Exp. [log (2.717) × log (0.479 × Time] − 0.202 × Factors (1) + 0.168 × Factors (2)

Exp. [log (2.908) × log (0.424 × Time] − 0.185 × Factors (1) + 0.170 × Factors (2)

Exp. [log (4.312) × log (0.270 x Time] − 0.284 × Factors (1) + 0.212 × Factors (2)

Exp. [log (2.823) × log (0.455 × Time] − 0.196 × Factors (1) + 0.192 × Factors (2)

On Leaves

RH − 30 (location − 1) Y = 1.984 + .196 X1 + .951 X5

(

R2 = 0.92
)

On Pods

where X1 = Tmax; X2 = Tmin: X4 = RHeve.; X5 = Wind 
speed.

Jha et  al. (2013) recorded that Tmax positively cor-
related with disease index. Tmax of 23.2 °C, RHmax 
of 80% and RHmin of 66% with correlation co-efficient 
(r) = 0.73for Tminand r = 0.51 of RHmin favoured the 
disease development. The regression equation devel-
oped for leaves as:Y1 = −  47.388 + 5.114 Tmin-2.371 
Tmax + 1.4s92 RHmin with R2 = 0.7376 whereas for 
siliquaY2 = 31.524 + 4.225 Tmin-1.883 Tmax. with 
R2 = 0.69203.

White rust

White rust affects a number of Brassicaplants of economic 
importance but its incidence and damage is more in mus-
tard (B. juncea) and rapeseed. With increase in area under 

RH − 30 (location − 2)Y = 2.156 + .235 X1−5.49 + 10−2X4

(

R2 = 0.87
)

,

RH − 30 (location − 1)Y = −0.471 + 5.802 + 10−2X1

(

R2 = 0.84
)

RH − 30 (location − 2)Y = − 0.317 + 1.543 + 10−2X4

(

R2 = 0.97
)

,
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mustard cultivation, the intensity of white rust has increased 
throughout the Brassica growing areas in India. Foliar infec-
tion is damages the crop to some extent but floral infection 
may cause complete loss to the crop. Both phases of the dis-
ease viz., local and leaf phase and systemic or floral infection 
can cause yield losses from 23 to 54.5%.The mixed infection 
of white rust and downy mildew in the inflorescence has 
become very common. This type of infection reduces pod 
formation by 37–47% with grain yield reduction of 17–32% 
under Punjab conditions.

The pathogen perpetuates through the oospores formed in 
the hypertrophied tissues lying in the soil in diseased plant 
debris or moving with diseased debris along with the seeds 
as contaminant. The oospores can survive in diseased host 
tissues under dry storage conditions for more than 21 years. 
Oospores germinate at suitable temperature (10–20 °C) and 
RH (> 70%) and cause primary infection in the host leaves 
after penetrating directly or through stomata or natural open-
ings. The secondary spread takes place through sporangia 
and zoospores formed in the diseased pustules. The sporan-
gia readily carried away by air currents after breaking open 
the mature pustules. Moisture on the host surface is essential 
for germination and infection through sporangia and zoo-
spores. Oospores are formed in the hypertrophied tissues 
(leaves, stems, inflorescence, pods, and roots) of infected 
plants. Over summered oospores in infected plant debris in 
soil function as the source of primary inoculum.

Epidemiology

The optimum temperature for sporangial germination is 
about 10 °C at which the rate of germination and the num-
ber of zoospores formed are maximum, and no germina-
tion occurs above 25 °C. For the germination of oospores, 
10–20 °C has been reported to be most favorable. Oospores 
buried at the depth of 7.5 cm in soil cause early infection 
when frequent irrigation is given to maintain soil moisture. 
Deep (15 cm), and shallow (on soil surface) placement of 
oospores delays infection in the host plants. Date of sow-
ing has great bearing on floral infection of white rust. The 

disease intensity increaseswith delayed sowing. When mus-
tard sowing was delayed from first week of October to third 
week of November, the disease intensity increased from 
4.6 to 68.5%and the November sown crop had less stag 
heads as compared to October sown crop (Kaur et al. 2006). 
Anand et al. (2009) also observed that white rust intensity 
increased with delayed sowing. It was also reported thatT-
mean of 13-22°C with RH > 60% were mostcongenial for 
the formation of maximum stag heads (Kaur et al. 2006). 
Epidemic development of the disease under fieldcondi-
tions occurred when temperature around 12 °C, RH > 70% 
(mostly between 60 and 80%), wind velocity from 2.7 to 
3.4 km/h. and winter rains found as most congenial. The 
mixed infection of white rust and downy mildew was 
favoured by temperature between 13.8 and 14.8 °C and rain-
fall > 151.9 mm. The incubation period of the pathogen in 
B. juncea susceptible cultivars was 6–7 days. The severity 
of stag head formation due to white rust and downy mildew 
was reported to be favoured by 2–6 h of sunshine per day 
concomitant with Tminof 6–10 °C, Tmax of 21–25 °C and 
rainfall of 161 mm;temp > 15 °C,RHav > 65% and intermit-
tent rains were conducive on susceptible cultivars. Early 
planting from 15th September to October escapedstag head 
formation and gave higher yield. Hypertrophy in the plant 
has been reported to be directly correlated with the amount 
of oospores formation. The sporangia survived up to 30 °C 
when detached from leaf tissues and at 32 °C when attached 
with leaf tissues. Sporangia germinate at 6–22 °C, with-
maximum germination occurring at12-14°C, dark condi-
tions and 7 h of incubation period. A quadratic equation 
Y = − 103.13 + 26.99–1.01x2 has been proposed to deter-
mine the percent sporangial germination (Y) at any known 
temperature (X). Anand et al. (2009) reported thatTmax and 
Tmin had significant and negative correlation with disease 
intensity whereas RH had significant and positive correla-
tion with disease intensity.

Disease prediction models

Mehta and Saharan (1998) developed the prediction models 
for RH-30 variety as under:

White rust Y = 56.119 + 1.017X1 − 4.086X2 + 8.702X3 − 2.015X4 + 2.723X5 − 0.890X6

(

R2 = 0.66
)

,

Stag head incidence Y = −0.261 + 0.048X1 − 0.323X2 + 1.460X3 − 0.202X4 + 0.342.X5 − 0.123X6

(

R2 = 0.26
)

,

Stag headlength Y = −0.784 + 0.079X1 − 0.271X2 + 1.078X3 − 0.172X4 + 0.257X5 − 0.094X6R
2 = 0.28).
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White rust severity on leaves was positively corre-
lated to > 40% afternoon (minimum) RH (R2: 0.92), > 97% 
morning (maximum) RH (R2:0.89), > 72% daily mean RH 
(R2: 0.8), > 10 °C daily mean temperature (R2: 0.79) and 
16–24 °C maximum daily temperature (R2: 0.83). Stagheads 
formation was significantly and positively correlated to 
20–29°Cmaximum daily temperature (R2: 0.81) and further 
aided by > 12 °C minimum dailytemperature (R2: 0.84), > 97% 
morning (maximum) RH (R2: 0.89) and > 72% dailymean RH 
(R2: 0.85). Empirically, a look at weather data available from 
theautomatic weather station indicated > 10 h of leaf wetness 
during the preceding 3 days and also favoured the progress 
of rust severity on leaves and formation ofstagheads.Crop 
age (d.a.s.) at first appearance of the rust on the crop (Y1), 
crop age (d.a.s.)at peak severity of the rust (Y2) and highest 
disease severity (Y3) were related withweather variables in 
different weeks including pre-sowing week and the interac-
tionswere found significant. Regional and cultivar specific 
models devised using data predicted the crop age at which 
white rust first appears onthe leaves, crop age at highest rust 
severity on leaves and the peakrust severity on leaves, number 
of stagheads. Most of the models saw entry of variable maxi-
mum temperaturewith minimum temperature, morning RH, 
afternoon RH and sunshine hours alsogetting entered in some 
cases. Proper monitoring of disease progress duringrecording 
of observations in experiments can enable devise models for 
providingaccurate forecasts a few weeks after sowing, about 
crop age at first appearance, cropage at highest severity and 
highest level of disease severity. The predictions werepossible 
at least 1 week ahead of first appearance of the disease on the 
crop, thusallowing growers to undertake timely sprays. The 
disease was never found to appearbefore 36 d.a.s. or beginning 
of the sixth week after sowing, while the prediction for crop 
age at first appearance of rust on leaves was possible for most 
of the locations inthe beginning of the fifth week (29d.a.s.) 
(Chattopadhyay et al. 2011).

Downy mildew

The downy mildew disease is caused by Peronospora para-
sitica (Pers. ex Fr.) Fr. (Syn. Hyaloperonospora parasitica).
In the family crucifereae, about 50 genera and more than 
100 different species have been observed to be susceptible 
to infection by the downy mildew pathogen. Downy mildew 
alone or in combination with white rust is responsible for 
causing severe losses in yield of several temperate and tropi-
cal brassicaceous crops particularly rapeseed and mustard. 
Yield losses due to downy mildew infection alone are very 
difficult to estimate, since in most cases, it is always associ-
ated with white rust. Leaf infection is more serious in young 
plants and may cause seedling death but does not progress 
much after the plants have grown up. However, systemic 

infection causes malformation of stem and inflorescence 
resulting in heavy losses in the yield. There may be seedling 
death up to 75% when infection occursatthe cotyledonary.

The pathogen perennates in the soil through oospores that 
are formed in abundance in the malformed tissues of the 
infected plants. Seeds may be contaminated with plant trash 
containing oospores during threshing operation. Infection 
originated when such seeds are sown after getting suitable 
temperature and relative humidity. Oospores formed in mal-
formed and senesced host tissues constitute an important 
means of survival of H. parasitica over periods of unfavour-
able conditions. It is also known to survive through myce-
lium and conidia. In radish and rapeseed-mustard, there is 
abundant production of oospores in infected leaf tissues, on 
the seed surface and pericarp and embryo of seeds. However, 
in rapeseed and mustard, seed transmission is low and may 
be non-systemic, ranging from 0.4 to 0.9% in the seedlings 
grown from infected seeds (Saharan et al. 2005; 2017).

Epidemiology

In epidemics, the pathogen population starts a low level 
of initial inoculum which then increases exponentially 
through successive cycles on the host during the growing 
season. The relationship of host–pathogen-interaction in 
case of downy mildew of crucifers is a complex phenom-
enon, which determines the rate of diseases development. 
Peronospora produces both sexual (oospores) and asexual 
(sporangia) spores, which are helpful in survivaland dis-
semination of the pathogen. The rate of spore germina-
tion and host penetration is affected by temperature vari-
ations. At 15 °C conidia germinate in 4–6 h, appressoria 
form in 12 h and penetration occurs in 18–24 h. It has 
been observed that a temperature of 15 °C seems to be the 
most favourable for epidemic development as this favours 
slower growth of both host and pathogen resulting in less 
drastic damage and hence more profuse disease develop-
ment. Floral infection increases in the late sown crops. 
The disease has been observed to be favoured by damp and 
cool environmental conditions. More infections occurredat 
low temperature (8–16 °C), moist weather and low light 
intensity. Temperature and rainfall have a great impact 
on the appearance of the disease. Its severity was 26% 
at 14.3 °C and 151.90 mm rainfall but declined to 0.52% 
at 17 °C and low rainfall of 50–80 mm in a crop season 
in Punjab. Haustoria development took place atoptimum 
temp of 20–25 °C. Downy mildew developed very fast at 
24 °C. Sporangia exposed to air remainedinfectious for six 
weeks but direct sun light may kill them within 5–6 h. RH 
above 70% helped in rapid development of the disease. In 
a subsequent study, 15–20 °C was the best temperature 
for infection and development of downy mildew. At this 
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temperature regime, infection occurredwithin 24 h of inoc-
ulation. The infection frequency reduced at 25 °C while 
no infection observed at 30 °C. Leaf wetness duration of 
4–6 h at 20 °C and for 6–8 h at 15 °C has been reported to 
be essential for severe infection and disease development 
on mustard. The infection frequency and disease develop-
ment increased significantly with the increase in duration 
of leaf wetness (Mehta et al. 1995). In India, infection of 
mustard foliage starts by the end of October (cotyledon 
stage) and progressedup to November. The crop planted 
after mid November may not contract downy mildew. 
However, downy mildew growth as a mixed infection with 
white rust on floral parts can be seen up to March (Mehta 
and Saharan 1998).

Disease prediction models

Kolte et al. (1986) developed prediction equations for the 
stag head severity in relation to planting dates and associ-
ated weather factors as under:

i. Stag head incidence (%)Y = 16.925 + 0.019X1 − 0.132X2

−0.086X
3
+ 0.158X

4
+ 0.030X

5
− 1.469X

6
.(R2-0.68)

ii. Stag head Severity (%) Y = 86.169 − 1.241X1 − 0.129X2

−0.503X
3
+ 0.054X

4
+ 0.472X

5
− 2.125X

6
.(R2-0.62)

Where X1 = mean max. Temp; X2 = mean min. temp; 
X3 = mean RH; X4 = total rain fall (mm)X5 = total rainy 
days X6 = mean bright sunshine period (h/day).

Mehta and Saharan (1998) developed the prediction 
models for the progression of downy mildew of rapeseed-
mustard as under.

A.	 Lea f  In fec t i on :Y = −32.7 + 0.09 X
1
+ 0.31 X

2
+

1.31 X
3
+ 0.12 X

4
+ 0.22 X

5
− 0.03 X

6
(R2 = 0.36).

B.	 Stag head- i. Incidence:Y = −18.6 − 2.8 X
1
+ 2.5 X

2
+

4.5 X
3
+ 0.6 X

4
− 0.2 X

5
+ 1.0 X

6

(

R
2 = 0.23

)

.

i i .  L e n g t h :Y = −17.4 − 1.5 X
1
+ 1.5 X

2
+ 2.6 X

3
+

0.4 X
4
− 0.1 X

5
− 1.0 X

6
(R2 = 0.26)

Where X1 = Tmax. X2 = Tmin. X3 = Sunshine, 
X4 = RHmor, X5 = RHeve, X6 = RF.

Powdery mildew

Three species of Erysiphe, i.e., E.polygoni, E. com-
munis and E. cruciferarum caused powdery mildew in 
rapeseed–mustard. The disease does not cause much 
damage except during epidemic outbreak on late sown 
crop when especially when it appears at early stage of 
the crop growth. The pods heavily covered with powdery 

mass remained empty or produced few seeds at base with 
twisted sterile tips. It has been observed that average crop 
losses due to this disease varies form 19–29.5% depending 
upon the variety used (Mehta et al. 2008b).

The off-season host plants of Brassica species and 
other weed may carry the fungal mycelium and conidia 
was source of primary inoculum. The pathogen produced 
abundant number of cleistothecia on diseased tissues at the 
maturity stage of the crop. Long distance dissemination of 
the pathogen took place through wind currents under low 
humid conditions. Conidia fallen on the host germinate, 
grow and spread in the form of mycelium, later producing 
conidiophores and conidia in the form of white mildew 
growth (Saharan et al. 2005).

Epidemiology

The optimum temperature for the germination of conidia, 
germ-tube growth and appressorium formation is 20–25 °C. 
Conidia could not germinate below 15 °C and above 30 °C. 
Maximum conidia germinate at 40–50% RH. To initiate the 
spore germination, at-least 30% RH is essential and there is 
no conidial germination above 60% RH. Conidial germina-
tion is not influenced by light and darkness. For onset and 
epidemic development of disease under field conditions, 
moderate temperature, low humidity, minimum rainfall or 
dry season during the months of February and March are 
more favourable in Haryana. Mean temp between 16 and 
28 °C, mean RH below 60% and low or no rainfall are the 
most congenial weather factors for the development of the 
disease under field conditions. It has been observed that 
maximum cleistothecial formation is favoured by alternating 
low and moderate temperature. Heavy sporulation took place 
with low nutrition of the host, low relative humidity, dry soil 
and aging of the host. Dange et al. (2003) reported that early 
planted crop i.e. in the month of October, resultedin less 
severity as compared to late sown conditions.

There are number of environmental factors which are very 
crucial to influence the powdery mildew development of cru-
cifers in to epidemic form after host–pathogen interaction. 
These factors determine the progress of powdery mildew on 
host plants with their influence, and effects on interacting 
partners, host, and pathogen. To cause the infection in sus-
ceptible host after landing of pathogen conidia on host surface 
their germination and formation of appressoria is maximum 
between 15 and 20 °C temperatures. Their germination is 
greatly reduced at > 30 °C temperature. Infection, and disease 
development is faster with the influence of mean temperature 
(16–22 °C), minimum temperature (> 7 °C), maximum tem-
perature (25–28 °C), relative humidity (27–65%), sunshine 
hours (> 9 h/day), wind velocity (2 km/h), and ageing of the 
host plants. Infection rate is positively favoured by host age, 
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and ambient temperature. Infection rate increases with ageing 
host tissues. There is no infection on younger than 37 days 
host, and freshly emerging new leaves. Disease develops at 
fast rate if host and pathogen interact coinciding with favour-
able host age, plant growth stages, and environmental factors. 
Stem infection is maximum with the increase in length of 
time they are exposed to the pathogen, and maturity level of 
the host. Symptoms are visible at anamorph state or asexual 
stage with the development of pathogens mycelium, conidi-
ophores, and conidia on host surface. Date of crop planting 
has significant bearing on disease epidemiology under late 
sown conditions coinciding with congenial and critical fac-
tors at 40–120 days after sowing. Teleomorph or sexual stage 
appears in the form of dark brown spherical bodies of cleis-
tothecia or chasmothecia embedded in powdery mass of host 
leaf, stem, and pods at maturity stage of crop when tempera-
ture is 11–27 °C (19 °C), alternate moderate temperature, 
heavy sporulation, low host nutrition, low relative humidity, 
dry soil, and ageing host tissues. Host resistance, and progres-
sion of disease is measured using parameters like AUDPC, 
disease intensityincubation period, latent period, infection 
rate, number of colony/leaf, number of conidia/ microscopic 
field (sporulation rate), and R2 values (Saharan et al. 2019).

Disease prediction models

Singh et al. (2008) revealed that powdery mildew progres-
sion was maximum during mid of Marchat Tmax 32.5 °C, 
Tmin 12.7 °C, RHmor 49.5% and RHeve 38.5% prevailed. 
The disease intensity and AUDPC increased from 48 to 74% 
and 326–440, respectively, with delayed sowing. The appar-
ent infection rate (r) was also higher during mid of March 
sowing. The regression equation developed for each variety 
in relation to date of sowing was observed as mentioned 
below.

Ist date of sowing (Nov 15)
RH-30 Y = − 19.20 + 0.73X1−0.08X7 R2 = 0.94
RH-8113 Y = −19.47 + 0.74X1−0.09X7 R2 = 0.92
RH-9304 Y = −20.38 + 0.77X1−0.09X7 R2 = 0.94
RH-9801 Y = −20.19 + 0.76X1−0.08X7 R2 = 0.93
IInd date of sowing (Nov22)
RH-30 Y = −19.90 + 0.75X1−0.10X7 R2 = 0.94
RH-8113 Y = −20.96 + 0.80X1−0.09X7 R2 = 0.90
RH-9304 Y = −19.18 + 0.73X1−0.11X7 R2 = 0.94
RH-9801 Y = −21.79 + 0.83X1−0.10X7 R2 = 0.91
IIIrd date of sowing (Dec 2)
RH-30 Y = 11.34 + 0.40X1−2.26X8 R2 = 0.92
RH-8113 Y = 6.46 + 0.48X1−2.01X8 R2 = 0.94
RH-9304 Y = 6.74 + 0.47X1−2.03X8 R2 = 0.94
RH-9801 Y = 10.65 + 0.41X1−2.20X8 R2 = 0.92

Where X1=Tmax.);X2=Tmin.); X3=RHmor); X4=RHeve; 
X5=Ave Evaporation (mor); X6=AveEvaporation (eve); 
X7=Wind Speed; X8=Sunshineh (Singh et al.2008).

The prediction models for the different varieties belong-
ing to various genotypes also revealed that environmental 
factors contributed more than 80% in disease development.
The correlation matrix in relation to weather variables 
revealed that Tmax and RHmor had positive and significant 
role in disease development (Mehta et al. 2009). The regres-
sion equations developed are as follows:

RH-30 Y = −19.38 + 0.74X1–0.10X7 R2 = 0.91
RH-8812 Y = −11.71 + 0.48X1–0.08X7 R2 = 0.83
RH-9304 Y = −14.12 + 0.57X1–0.10X7 R2 = 0.81
RH-9801 Y = −12.74 + 0.52X1–0.11X7 R2 = 0.83
RH-9901 Y = −15.14 + 0.60X1–0.08X7 R2 = 0.86
RC-781 Y = −11.34 + 0.47X1–0.10X7 R2 = 0.81
Purple Mutant Y = −9.67 + 0.40X1–0.07X7 R2 = 0.86
GSH-1 Y = −0.80 + 0.08X1–0.01X7 R2 = 0.47

Where X1 = Tmax; X7 = Wind speed.
The models developed indices were used in developing 

forecast models through regression approach. The form of 
the model was developed as per formula of Agrawal and 
Mehta (2007) as mentioned below:

where Y is variable to forecast; a0, aij, b ii`j are constants; 
Ɛ is error term, and other symbols have same meaning as 
explained earlier. Stepwise regression technique was used 
for selecting important variables to be included in the model.

Multilayer perception (MLP), and Radial basis function 
(RBF) architecture based neural network models (NNM) 
were developedwith different hidden layers, and different 
number of neurons in a hidden layer with hyperbolic func-
tion as an activation function with varying learning rates, 
and RBF architecture, were obtained, and best architecture 
was selected having lowest Mean Absolute Percentage Error 
(MAPE).

The forecasting performance of various Artificial Neural 
Network (ANN) models, and regression models was judged 
by Mean Absolute Percentage Error (MAPE).

where Yt is actual observation, Ftis the forecast from model 
and n is the total number of test data point. Weather Indices 
(WI) based regression models were developed for various 
characters, and models have been validated using data on 
subsequent years not included in developing the models. The 
analysis has been done by using SAS (Statistical Analysis 

Y = a0 +

P
∑

i=1

l
∑

j=0

aij Zif +

P
∑

i#1

l
∑

j=0

biij Zii j + �,

MAPE = 1∕n
∑ Yt − Ft

Yt
× 100,



448	 Indian Phytopathology (2021) 74:437–452

1 3

System) Version 9.2 software package available at Indian 
Agricultural Statistics Research Institute, New Delhi. Neural 
network models using MLP architecture with different hid-
den layers (one and two), and different number of neurons 
(4, 5 and 6) in a hidden layer with hyperbolic function as an 
activation function with varying learning rates (from 0.3 to 
0.8), and RBF architecture, were obtained, and best archi-
tecture was selected having lowest Mean Absolute Percent-
age Error (MAPE). The analysis has been done by using 
Statistical Neural Networks Version 6.1 available at Indian 
Agricultural Statistics Research Institute, New Delhi. The 
Mean Absolute Percent Error (MAPE) for different char-
acters of powdery mildew in mustard crop in two varieties 
for various developed models which reveals that the neural 
network models using MLP have lowest MAPE as compared 
to other developed models in most of the cases. The ANN 
model has non-linear pattern recognition capability which 
is valuable for modeling and forecasting complex non-linear 
problems in practice. Kumar et al. (2013) found that neural 
network model using multilayer perception (MLP) architec-
ture is better than RBF and weather indices based regression 
models in terms of MAPE. Therefore, reliable forewarning 
for maximum severity of disease, crop age at first appearance 
of disease, crop age at peak severity of disease in two differ-
ent varieties of mustard crop for powdery mildew is possible 
well in advance (Kumar et al. 2013; Saharan et al. 2019).

Powdery mildew prediction model based on crop age, and 
weather variables have been devised by Desai et al. (2004). 
Crop age at first appearance of the mildew on the crop (Yx), 
crop age at highest severity of the mildew (Yy), and peak 
disease severity (Yz) were related with weather variables in 
different weeks including pre-sowing week, and the inter-
actions were found significant. The regional and cultivar 
specific models devised using data of initial 4 years thereby 
could predict the crop age at which powdery mildew first 
appears on the crop, crop age at highest mildew severity, and 
the peak disease severity. The predictions were possible at 
least 3 weeks ahead of first appearance of the disease on the 
crop, thus allowing growers to undertake timely fungicidal 
sprays. The disease was never found to appear before 50 d.a.s 
or eighth week after sowing, while the prediction for crop 
age at first appearance of mildew was possible for both the 
locations in the beginning of fifth week (Desai et al. 2004).

Sclerotinia stem rot or white stem rot

This disease is most frequently found in regions tending 
to be cool and moist but it has been reported to occur in 
semi-arid regions where conditions would seem unfavour-
able for disease development. Yield losses due to Sclerotinia 
stem rot in susceptible crops may be as high as 100%. The 
loss estimates have been made as high as 28% in individual 

rapeseed fields in Alberta, Canada. The yield losseshave 
been reported to be 11.1 to 14.9% in Saskatchewan, Canada 
(Saharan and Mehta 2008). The disease is gaining impor-
tance particularly in raya growing areas since it lead to com-
plete crop failure with up to 80% incidence in some parts of 
the Punjab and Haryana.

Sclerotia may survive for 3–5  years in soil assuring 
pathogen availability when a host crop is planted. When 
conditions become favourable, these sclerotia germinate to 
form either a mycelium or apothecia. Large quantities of 
ascospores forcibly get discharged into the air and carried by 
air currents for distances ranging from a few centimeters to 
several kilometers. Once a blossom is colonized, the myce-
lium remainsviable for more than a month. On contact with 
susceptible healthy host tissue, the ascosporic mycelium pro-
duces an appressorium andpenetration occursby mechanical 
rupture of host cuticleand entry may be through the natural 
openings. After entering the host plant, the fungus grows 
through the host tissues causing cell to die in advance of the 
invading hyphae.

Secondary infection results from infected area but no 
secondary infection propagules produced. The mycelium 
producessclerotia externally on affected plant parts and/
or internally in stem pith. During harvesting and threshing 
operations, these sclerotia remain on the fields with the crop 
debris. Some sclerotia get buried in the soil by subsequent 
tillage operations. The sclerotia survive in the soil and in the 
plant debris to complete the life cycle.

The sclerotia have been found to remain viable and viru-
lent for up to 7 years. However, viability of the sclerotia 
depends on the type of sclerotia and several other environ-
mental factors.It has been reported that moist sclerotia die 
rapidly, whereas the dry ones remain viable at 3 °C for 480 
days and at 8 °C upto 300 days. Sclerotia do not survive 
for more than 2 years or more at 20 °C or over 14 months 
at 25 °C, 10–14 months at 30 °C and 3–4 months at 35 °C. 
The pathogen has been reported to survive in the form of 
ascospores to some extent when favourable temperature and 
RH prevail under field as well as greenhouse conditions. Dry 
ascospores survive for a longer period, therefore ascospores 
act as source of inoculum in some specific situations (Saha-
ran and Mehta 2008).

Epidemiology

Species of Sclerotinia can function as either soil borne or 
air borne pathogen. Infection of above ground plant parts 
results from ascosporic inoculum whereas soil borne infec-
tion may result from either ascospores or sclerotia. Below 
ground infection, however, resultsfrom mycelial germina-
tion of soil borne sclerotia. Continuous moisture for about 
10 days is required for apothecial development and even a 
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slight moisture tension prevent apothecial formation. Apo-
thecia of S. sclerotiorumare produced at an optimum tem-
perature of 15 °C and ascospores survive at a wide range 
of conditions but high temperature and humidity reducethe 
viability. No apothecial initials are produced at either 30 
or 5 °C. Approximately 48–72 h of continuous leaf wet-
ness is required for infection by ascospores. The infection 
by S. sclerotiorum on yellow sarson and in B. campestris 
var. toria got aggravated by low temperature, heavy rainfall 
and close spacing in Uttar Pradesh and Bihar (Saxena and 
Rai 1988). The study conducted in Canada revealed that 
increase in seeding rate increased the disease intensity. The 
lodging of plant also increased when seeding rate exceeded 
6.7 kg/ha. This is due to fact that higher seeding rates modify 
the microenvironment and increase the potential of lodging 
and may be responsible for plant-to-plant spread of the dis-
ease.Temperature of 6–10 °C during March and April and 
high soil moisture until the apothecia has developed, with 
subsequent changing weather favours infection. Ascospores 
released and petal fall should occurat the same time (Kruger 
1980). The pattern of petal fall and petal deposit on leaves 
suggests that the crop is most vulnerable to infection towards 
the end of flowering about 25 days after the beginning of 
flowering in the UK (Mc Cartney et al. 2001a, b). The role 
of extrinsically produced ascospores in causing disease in 
rapeseed fields may therefore be of considerable importance 
(Saharan and Mehta 2008).

Accordingly, ascospore concentrations above the crop 
canopy and on plant surfaces might reflect the disease 
potential in a crop better than the density of apothecia in the 
field. Gugel and Morrall (1986) demonstrated a significant 
positive relationship between petal infestation at early bloom 
and disease incidence. Infested petals and disease incidence 
regularly found when apothecia were absent, thereby dem-
onstrating the rate of extrinsically produced ascospores in 
the infestation of crops. Flowers of rapeseed fromthe time 
expand and retained on their petals on an average for 6 days. 
During this period, thepetals"insitu" get contaminated by 
ascospores of Sclerotinia. Infection takes place preferentially 
on senescent petals because young petals are resistant to a 
certain extent. The senescent petals have been reported to 
be most easily colonized and do provide the ascospores with 
a source of carbon, which permits their germination. The 
hyphae, which, develop subsequently, play a very impor-
tant role in the initiation of infection. Dead petals often 
stick to leaves and this allows the disease to become estab-
lished.While studying clonal dispersal and spatial mixing 
of S. sclerotiorum isolates fromrape fields in Canada, it was 
observed thatspatial mixing of ascospore inoculum from-
resident or immigrant sources took place (Kohliet al. 1995).

Disease prediction models

Forecasting systems have been developed for white stem 
rot of mustard that use petal testing, a checklist or other 
tools based on environmental conditions. While no forecast 
system is 100% accurate they do provide practical direc-
tion in making a decision whether a fungicide application is 
warranted.Many factors influence a forecasting system and 
its ability to predict the actual incidence of disease. Most 
predictive models evaluate several environmental and crop 
variables such as: i. field cropping history ii. field disease 
history iii. apothecia and ascospore presence, iv. Rainfall v. 
soilmoisture vi. weather forecast vii. canopy density. Other 
important variables factors affecting the incidence of the 
disease include:changing inoculum levels during flower-
ing, heat units, daily and weather related inoculum fluctua-
tions, light penetration, leaf area index, crop height, and leaf 
wetness.

Field and nearby field cropping and disease history are 
an indirect means of measuring the potential for presence 
of spores. While apothecia produced from sclerotia within 
the field are considered the main source of spores, spores 
produced in nearby fields and blown into the crop are impor-
tant in disease development. Studies have shown that most 
ascospores are deposited within 100 m of the source, and 
therefore adjacent fields can be an important source of 
inoculum. Fields with sclerotia at distances of greater than 
500 m to 2 km would likely represent a minimal source of 
inoculum, as most ascospores would have been deposited 
within 100–400 m of the apothecia from which they were 
produced. The presence of apothecia is a good indicator of 
the potential for spore production.

New tools that can test for the presence of ascospores 
are becoming available. Mustard petal tests that look for the 
presence of S. sclerotiorum DNA are commercially avail-
able, and ascospore samplers too can be installed in fields 
that capture ascospores, which sent to a laboratory, can 
determine the amount of inoculum in the field. Measures of 
ascospores with these technologies will help in determining 
if the risk of the pathogen is significant for a field. But it is 
weather conditions that will determine the risk of the disease 
be significant.Rainfall and soil moisture are necessary for 
sclerotia germination, spore production, and spore germina-
tion and growth. Ideal mustard growing weather is also ideal 
for Sclerotinia. Soil moisture indicates sclerotia germination 
and, therefore, the potential for ascospore production rather 
than infection and disease development. Frequently water 
from heavy dews dripping off the plant is enough moisture 
for sclerotia germination.Weather forecasts can improve the 
reliability of the disease forecast because sudden weather 
changes can cause infestations to occur unexpectedly or 
high-risk fields may show limited disease development. 
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Hot, dry weather can greatly reduce the risk of Sclerotinia 
infection.

The possibility of forecasting stem rot of rapeseed based 
on petal infestation (PI) with the pathogen was first sug-
gested by Gugel and Morrall (1986) and later refined by 
Turkington et al. (1991a). A strong relationship between 
disease incidence and percentage plant infection (PI) at 
early bloom stage has been established. Sampling at 5–6 
sites per crop and plating 40 petals per site is enough to 
estimate percentage PI with standard error of about 5% 
in most fields. Forecasting is done by collecting petals in 
the afternoon and should wait several hours after rainfall 
as precaution against slight under estimation of PI values. 
Canopy density affects stem rot. By altering the micro-
climate in the crop, the relationship between inoculum 
and disease incidence is also affected, andmore disease 
occurred per unit of PI in dense crops (Turkington et al. 
1991b). According to Bom and Boland (2000), the model 
that include petal infestation and soil moisture predicts 
more fields correctly than the model using petal infestation 
alone, but the accuracy of both affected by the timing of 
soil moisture measurements in relation to petal infestation 
and threshold values in discriminating categories of soil 
moisture and petal infestation. Twengstrom et al. (1998a, 
b) suggested a forecasting system of Sclerotinia stem rot in 
spring sown oilseed rape. The disease forecasts are based 
on the following information: (a) accumulated number of 
germinated sclerotia in depots, including the number of 
sclerotiawith active apothecia (turgid, light brown); (b) 
frequency of apotheciumoccurrence in rape fields selected 
at random and in fieldswith previous attack of S. sclero-
tiorum; (c) growth stage of the crop compared with the 
development of the fungus; (d)rainfall (and temperature) 
at localities with depots of sclerotia; and (e) weather prog-
nosis for 5 days at the time of the forecast.

High apothecial development only takes place after a 
rainfall of a minimum of 30 mm within a period of 7–14 
days. On the other hand, this precipitation does not nec-
essarilycause a high germination because of evaporation 
or an unfavourable microclimate. To cause any serious 
damage, the germination of the sclerotia must have started 
7–14 days before initial flowering. Apothecia formed after 
this time will come toolate to do any damage.Preliminary 
experience seems to indicate that there is a risk of attacks 
when the accumulated number of germinating sclerotia in 
the depots is over 30%at the time of the forecast. Besides 
this, the majority must have active apothecia. Ghasolia and 
Shivpuri (2005) observed that Sclerotia at upper surface 
of soil produced more apothecia. The prediction model 
developed for white stem rot as under:

Y = −19.14−4.59 X1 + 2.53 X2 + 1.02 X3− 0.19 X4 − 0. 00 X5 + 0.63 X6,

where X1 = Tmax.; X2 = Tmin.; X3 = RHmor; X4 = RHeve; 
X5 = Sunshine h; X6 = RF.

Aghajani et al. (2010) from Iran reported that Gompertz 
model with a mean R2of 94.69 was selected as most appro-
priate model for determining Sclerotinia stem rot progress 
in the field.Sclerotinia incidence can vary greatly among 
fields and years, making scheduled routine spraying of 
fungicides unprofitable. However, when Sclerotinia risk 
is high, preventative fungicide applications can effectively 
lower disease severity and improve yield.

Conclusion and future strategies

•	 Alternaria blight, white rust, downy mildew, powdery 
mildew and white stem rot are major five diseases occur-
ring in rapeseed-mustard, and are responsible for huge 
losses both quantitatively and qualitatively.

•	 Cultural practices viz., field sanitation, clean cultivation, 
timely sowing, adjusting the date of sowing keeping in 
view occurrence of the disease in the particular area, 
destruction of disease debris after the harvesting, deep 
summer ploughing during May–June, use of proper dose 
of fertilizers, timely and proper irrigation and crop rota-
tion at least for three years with non–cruciferous crops 
play significant role in minimizing and reducing the pri-
mary inoculum, thus cause reduction in the secondary 
inoculum.

•	 Deployment of resistant varietieswherever available has 
amajor role in mitigating the losses due to diseases.

•	 Disease prediction models wherever developed can be of 
great help in the timely deployment of disease manage-
ment practices.

•	 Use of fungicides, bioagents, botanicals, organic amend-
ments etc. as worked out for various diseases needs to 
be adopted atrecommended doses will prove useful for 
containing the disease losses. Their interaction with vari-
ous forecasting models needs to undertaken.

•	 Analysis of host–pathogen-environment interaction for 
developing disease forecasting models. The role of indi-
vidual dependent and independent factors needs to be 
study in details.

•	 Development of simple, functional, reliable, easy to 
understand by the farmers and effective disease forecast-
ing models.

•	 Use of Information Technology (IT) to manage, storage, 
processing, analysis and presentation of data.

•	 Identification of slow white rusting, slow mildewing, 
slow blightening, disease tolerant and partial resistance 
genes.
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