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Abstract
Yellow rust (YR), caused by Puccinia striiformis f. sp. tritici, is one of the most important diseases of the wheat crop in all 
growing areas of the world. Screening of wheat genotypes for resistance in the frame of multi-environmental trials (METs) 
is a vitally important experiment in the wheat breeding program. The biggest challenge in the analysis of data obtained via 
scoring plant reaction to the disease is that they often do not satisfy the prerequisites of normality and homogeneity in the 
conventional parametric analysis. Even in the cases where non-parametric methods fail to distinguish genotype × environment 
(G × E) interaction, a generalization of PCA to exponential family likelihoods (GLM-PCA) can detect informative locations 
and phenotypically stable resistant genotypes. In this study, 35 elite wheat genotypes were screened for yellow rust resist-
ance during two successive cropping seasons (2015–2016 and 2016–2017) at three hot spot locations in Iran. Based on the 
plots developed following GLM-PCA, two highly informative environments were identified exerting relatively huge disease 
pressure on the wheat genotypes. Moreover, genotypes URBYT(95–98)#4, URBYT(95–98)#7, and URBYT(95–98)#14 were 
visually detected as general resistant genotypes. The statistical method applied in this research to study G × E interaction 
could be proposed as a relevant approach to deal with categorical data obtained from a qualitative response in YR–wheat 
pathosystem under MET conditions.

Keywords  Generalized linear model (GLM) · Multi-environmental trial (MET) · Non-parametric analysis · PCA · Puccinia 
striiformis f. sp. tritici · Wheat

Introduction

Wheat production is threatened by biotic and abiotic stresses, 
and yellow rust is one of the most important biotic stresses 
which is able to cause 100% yield loss under epidemic situ-
ations. A regular regional crop loss due to YR ranges from 
0.1 to 5% and occasionally up to 25% every year, globally 
(Wellings 2011). Puccinia striiformis Westend. f. sp. tritici 
Eriks. & Henn. (PST), the causing agent of the disease is a 
heteroecious macrocyclic fungus and can further be differ-
entiated into the races based on the compatible/incompatible 
pattern on the differential sets. PST evolves rapidly into new 
virulent races by mutation and somatic hybridization which 
result in the breakdown of genetic resistance of wheat cul-
tivars. Temperate-cool seasons along with enough moisture 
in the environment are the most important factors affecting 
the biology of PST (Chen 2020).
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Host plant resistance is considered the most effective, 
reliable, economic, and eco-friendly approach to manage 
the disease (Chen 2020); therefore, breeding for resistance 
is one of the most important stages in wheat breeding pro-
grams. Resistance to YR in wheat conferred by different Yr 
genes. Till date, 83 officially and 69 temporarily designated 
Yr genes have been identified (Yuan et al. 2020). Race-
specific and non-race-specific resistance are the two main 
types of resistance that inherits, respectively, qualitatively 
and quantitatively. Race-specific or seedling resistance genes 
are often conferring protection throughout all stages of the 
plant, usually short-lived, and vulnerable to newly emerged 
virulent PST races while non-race -specific resistance genes 
show susceptibility at the seedling stage, expresses a slow-
rusting type of resistance at the post-seedling and adult plant 
growth stages. It involves multiple genes contributing minor 
to intermediate effects (Wellings 2011; Chen 2013).

METs are in the center of every breeding program 
for selecting new cultivars with maximum stability 
over the years and reliable adaptability for the focused 
environment(s). In classical breeding programs of wheat for 
YR resistance, field-based assessment of post seedling resist-
ance is achieved by measuring of Final Rust Severity (FRS), 
Area Under Disease Progress Curve (AUDPC), Infection 
Rate (IR) and Coefficient of Infection (CI). Customarily, par-
ametric statistical approaches have been applied to evaluate 
genotype and environmental main effects including ANalysis 
Of VAriance (ANOVA), joint-regression, multivariate clus-
tering, Principal Component Analysis (PCA), Additive Main 
effect and Multiplicative Interaction analysis (AMMI), and 
Genotype main effect plus Genotype Environment (GGE) 
which have been frequently applied in YR-wheat pathosys-
tem (Dolores Vasquez et al. 2012; Ahmad Shah et al. 2014; 
El-Amil et al. 2019). On the other hand, handling non-par-
ametric and categorical data, a few approaches have been 
proposed which are mainly based on comparing the ranks 
of genotypes in each environment. These approaches have 
been applied to study plant reactions to the biotic and abiotic 
stresses in the frame of METs (Sabaghnia 2016).

Generalized linear model (GLM) is the other method to 
analyze non-normal data sets that suits to deal with categori-
cal, count, or binary data derived from response variables 
(Davila et al. 2012). This model is essentially an extension 
of classical regression models in a way that makes it appear 
natural and generalize the classical linear models based 
on the normal distribution. On the other hand, PCA is the 
most popular dimension reduction method which has been 
widely used in plant sciences (Nayak et al. 2018). GLM-
PCA (Collins et al. 2002) is a combination of these methods, 
avoids the pitfalls of normalization, and generalizes PCA to 
exponential family likelihoods. Recently, it has been used to 
manipulate the data extracted from row counts of single-cell 
RNA-Seq procedure by Townes et al. (2019).

The objective of this study was to identify phenotypi-
cally stable resistant sources to YR in elite wheat genotypes 
generated through breeding programs using non-parametric 
and GLM-PCA approaches.

Materials and methods

Plant materials and field screening

Thirty-five elite spring wheat genotypes along with a sus-
ceptible check (Bolani) (Table 1) were screened for yellow 
rust resistance at 3 locations Ardebil (38° 15′ N 48° 20′ 
E, 1350 m) in the northwest, Zarghan (29° 46′ N 52° 43′ 
E, 1604 m) in the south, and Mash’had (36° 2′ N 59° 6′ E, 
1050 m) in the northwest of Iran, during 2015–2016 and 
2016–2017 cropping seasons. Agro-ecologically, the climate 
of Zarghan is mild warm while Ardebil and Mash’had are 
cold and mild cold, respectively (Table 2).

About 35–40 g of each accession was sown in top hills of 
double 1-m length rows, with a distance of plant to plant on 
a row about 0.2 cm. The space between rows and plots was 
30 cm and 60 cm, respectively. Susceptible check cultivar 
“Bolani” was planted in double rows, every five plots as 
well as around the experimental field to facilitate the estab-
lishment and spreading of disease inside the field. Regular 
agronomical treatments were conducted during growing sea-
sons. Artificial inoculation was carried out by using patho-
genic isolates collected and multiplied from local samples 
of the disease. Rust severity (percentage of rust infection 
on the plant) (Peterson et al. 1948) and infection type (IT) 
where six major ITs assumed as O = Immune; R = Resistant; 
MR = Moderately Resistant; M = Moderate; MS = Moder-
ately Susceptible; and S = Susceptible (Roelfs et al. 1992) 
were measured after reaching disease severity (DS) > 60% 
on the susceptible check. The final reaction of a plant to the 
disease was recorded as final disease severity (FDS) plus IT.

Race identification

Isolates of the pathogen sampled from naturally infested 
fields of the three locations were artificially multiplied on 
the susceptible check “Bolani” in the greenhouse. Then, the 
harvested uredospores were mixed with talcum powder in 
the ratio of 1:3 and immediately sprayed on wheat seed-
lings at the fully expanded first flag leaf stage. Subsequently, 
inoculated plants were sprayed using tap water and covered 
with plastic bags, incubated in a dark-cold room at 10 °C for 
24 h, then moved to the greenhouse at 18 ± 2 °C under 16 h 
light/8 h dark photoperiod at 300 μmol m−2 s−1 for 20 days. 
Seedlings of the standard differential set were inoculated 
and incubated by this method and evaluated according to 
the scale proposed by McIntosh et al. (1995) where 0 = no 
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Table 1   Details of spring wheat genotypes used in this study

S. no. Origin Genotype/variety Pedigree

1 Iran AFTAB –
2 CIMMYT URBWYT(94–97)#2 KACHU #1/KIRITATI//KACHUCMSS 06Y 00778T-099TOPM-099Y-099ZTM-099NJ-

099NJ-6WGY-0B
3 CIMMYT URBWYT(94–97)#3 BABAX/KS93U76//BABAX/3/2*SOKOLLCMSA06M00008T-024(PINBD1BHET)

Y-040ZTM-026(PINBD1BPOS) ZTY-20ZTM-0Y-0B
4 Iran URBWYT(94–97)#4 LAKHISH/4/NESTOR/3/HE1/3*CNO79//2*SERI IRBWG-2007-010G-0G-0G-0G-12G
5 Iran URBWYT(94–97)#5 PASTOR/4/NESTOR/3/HE1/3*CNO79//2*SERI IRBWG-2007-022G-0G-0G-0G-1G
6 Iran URBWYT(94–97)#6 GHK”S”BOW”S”//90 -ZHONG87/4/ NESTOR/3/ HE1/ 3*CNO79//2*SERI IRBWG-2007-

049G-0G-0G-0G-14G
7 Iran URBWYT(94–97)#7 GHK”S”BOW”S”//90 -ZHONG87/4/ NESTOR /3/ HE1/ 3*CNO79//2*SERI IRBWG-2007-

049G-0G-0G-0G-19G
8 CIMMYT URBWYT(94–97)#8 BERKUT/MUU//DANPHE #1CMSA07M00073T-050Y-040ZTM-040ZTY-31ZTM-010Y-

02B-0Y
9 CIMMYT URBWYT(94–97)#9 TILILA/JUCHI/4/SERI.1B//KAUZ/HEVO/3/AMADCMSS06Y00868T-099TOPM-

099Y-099ZTM-099Y-099M-8WGY-0B
10 CIMMYT URBWYT(94–97)#10 ROLF07*2/5/REH/HARE//2*BCN/3/CROC_1/AE.SQUARROSA (213)//PGO/4/ HUITESC-

MSS 06Y00926T-099TOPM-099Y-099ZTM-099Y-099M-5WGY-0B
11 CIMMYT URBWYT(94–97)#11 SUP152/BLOUK #1CMSS06B00033S-0Y-099ZTM-099NJ-099NJ-3WGY-0B
12 CIMMYT URBWYT(94–97)#12 MUTUS/AKURICMSS06B00451S-0Y-099ZTM-099Y-099M-3WGY-0B
13 CIMMYT URBWYT(94–97)#13 NAC/TH.AC//3*PVN/3/MIRLO/BUC/4/2*PASTOR/5/KACHU/6/KACHUCMSS06B00734T-

099TOPY-099ZTM-099Y-099M-13WGY-0B
14 CIMMYT URBWYT(94–97)#14 KIRITATI/WBLL1//2*BLOUK #1CMSS07Y 00849T-099TOPM-099Y-099M-099Y-17M-

0WGY​
15 CIMMYT URBWYT(94–97)#15 BAJ #1*2/WHEARCMSS07Y01201T-099TOPM-099Y-099M-099Y-15M-0WGY​
16 CIMMYT URBWYT(94–97)#16 FRET2*2/BRAMBLING//BECARD/3/WBLL1*2/BRAMBLINGCMSS07B00560T-

099TOPY-099M-099Y-099M-19WGY-0B
17 CIMMYT URBWYT(94–97)#17 KACHU/BECARD//WBLL1*2/BRAMBLINGCMSS07B00580T-099TOPY-099M-099Y-

099M-10WGY-0B
18 CIMMYT URBWYT(94–97)#18 KA/NAC//TRCH/3/VORB CMSA07M00443S-040M-0NJ-0NJ-10Y-OB
19 CIMMYT URBWYT(95–98)#2 BABAX/LR42//BABAX*2/3/KUKUNA/4/BACEU #1/5/BECARDCMSS07Y00885T-

099TOPM-099Y-099M-099Y-10M-0RGY​
20 CIMMYT URBWYT(95–98)#3 BABAX/LR42//BABAX*2/3/KUKUNA/4/CROSBILL #1/5/BECARDCMSS 07Y01006 

T-099TOPM-099Y-099M-099NJ-099NJ-7RGY-0B
21 CIMMYT URBWYT(95–98)#4 BABAX/LR42//BABAX*2/3/KUKUNA/4/CROSBILL #1/5/BECARD
22 CIMMYT URBWYT(95–98)#5 BLOUK #1/5/FRET2*2/4/SNI/TRAP#1/3/ KAUZ*2/ TRAP//KAUZCMSS06B01047T-

099TOPY-099Y-11M-0Y-5B-0Y
23 CIMMYT URBWYT(95–98)#6 KIRITATI//PRL/2*PASTOR/5/OASIS/SKAUZ//4*BCN/3/PASTOR/4/KAUZ*2/YACO//

KAUZ/6/KIRITATI//PRL/2*PASTORCMSS07Y00718T-099TOPM-099Y-099M-099Y-
22M-0RGY​

24 CIMMYT URBWYT(95–98)#7 BAJ #1/3/KIRITATI//ATTILA*2/PASTOR CMSS07Y 00288S-0B-099Y-099M-099NJ-099NJ-
10WGY-0B

25 CIMMYT URBWYT(95–98)#8 WBLL1*2/VIVITSI//MESIA/3/KIRITATI/WBLL1CMSS07Y00841T-099TOPM-099Y-099M-
099Y-12M-0WGY​

26 CIMMYT URBWYT(95–98)#9 SUP152/BAJ #1CMSS08Y00185S-099Y-099M-099NJ-099NJ-28WGY-0B
27 CIMMYT URBWYT(95–98)#10 MUNAL*2/WESTONIACMSS08Y00871T-099TOPM-099Y-099M-099NJ-099NJ-66WGY-0B
28 CIMMYT URBWYT(95–98)#11 CHEWINK #1/MUTUSCMSS08Y00485S-099Y-099M-099Y-5M-0WGY​
29 CIMMYT URBWYT(95–98)#12 MUNAL*2/WESTONIACMSS08Y00833T-099TOPM-099Y-099M-099NJ-099NJ-8WGY-0B
30 CIMMYT URBWYT(95–98)#13 BABAX/LR42//BABAX*2/3/PAVON 7S3,+LR47/4/ND643/2*WBLL1 /5/BABAX /LR42// 

BABAX*2/3/PAVON 7S3, + LR47CMSS08B00634T-099TOPY-099M-099NJ-099NJ-
24WGY-0B

31 CIMMYT URBWYT(95–98)#14 QUAIU #1/5/KIRITATI/4/2*SERI.1B*2/3/ KAUZ*2/ BOW//KAUZ/6/ BECARD 
CMSS08B00645T-099TOPY-099M-099NJ-099NJ-6WGY-0B

32 CIMMYT URBWYT(95–98)#15 KACHU/BECARD//WBLL1*2/BRAMBLINGCMSS07B00580T-099TOPY-099M-099NJ-
099NJ-10WGY-0B
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visible uredium, ‘;’ = hypersensitive flecks, 1 = small ure-
dium with necrosis, 2 = small to medium-sized uredium 
with green islands surrounded by necrosis or chlorosis, 
3 = medium-sized uredium with or without chlorosis and 
4 = large uredium without chlorosis. Designations of ‘ + ’ 
and ‘−’ were used with the 0–4 scale to indicate larger and 
smaller uredium than normal, respectively. The nomencla-
ture was based on the avirulence/virulence formula on 19 
differential testers for yellow rust (Chen et al. 2009).

Greenhouse screenings

Fresh uredospores obtained from susceptible cultivar 
“Bolani” belonged to two highly virulent isolates of rust 
pathogens, races 134E138+ , A, YR27 and 38E190+ , A, 
YR27 obtained from Mash’had and Zarghan; respectively, 
during 2015–17, were used for inoculation. The method of 
inoculation and scoring was the same mentioned heretofore.

Statistical analysis

All analysis was conducted in R version 4 using appropriate 
packages. To quantify the infection types, CI was calculated 
where O, R, MR, M, MS, and S reactions multiplied by 0, 
0.2, 0.4, 0.6, 0.8, and 1; respectively (Elbasyoni et al. 2019). 
Data normality and homogeneity tests were conducted using 
Shapiro–Wilk and Bartlet’s tests, respectively in car pack-
age. The outliers were identified using Grubbs’ method in 
the package outliers and their significance was tested using 
P-value, then were imputed by the median values using 

dlookr to improve uniformity and normality of the data 
set. Subsequently, the best formula of a transformation of 
the data set (CI values) was identified using rcompanion 
and applied to it to reduce skewness. Two non-parametric 
statistics were applied to detect stable genotypes across 
locations including S(1)

i
 , S(2)

i
 (the mean absolute rank differ-

ence and between-rank variance of a given genotype over 
environments, respectively) (Huehn 1990a, b) using pack-
age agricolae. Based on these statistics a genotype would 
be considered as stable if it showed similar ranking across 
environments. In the next step, the data set of CI values 
were subjected to GLM-PCA with Gaussian distribution of 
extension in glm, then the produced matrices were visual-
ized using ggplot2. In the last step, to separate the genotypes 
with adult plant resistance (APR) from those that exhibit 
resistance in the seedling stage (all-stage resistance), the 
data achieved from greenhouse screening, were compared 
with field data.

Results

The maximum and the minimum temperatures were recorded 
during both the growth seasons at Zarghan and Arde-
bil, respectively. The highest amount of precipitation was 
observed at Mash’had and Zarghan during 2015–2016 and 
2016–2017, respectively; while Ardebil faced with a high 
percentage of relative humidity during both years (Table 2). 
In all environments, during the growing seasons; the optimal 
temperature, humidity, and rainfall were satisfactory for YR 

Table 1   (continued)

S. no. Origin Genotype/variety Pedigree

33 CIMMYT URBWYT(95–98)#16 KIRITATI//2*PRL/2*PASTOR/3/CHONTE/5/PRL/2*PASTOR/4/CHOIX/STAR/3/
HE1/3*CNO79//2*SERICMSS08B00732T-099TOPY-099M-099Y-6M-0WGY​

34 Iran QABOOS –
35 Iran KARIM –
36 Iran Bolani (Susceptible Check) –

Table 2   Climatological identities of environments (combination of location × year) in the growing seasons of trials for multi-environmental 
study

Location Growing season Climatic indices during growing seasons

2015–2016 2016–2017

Max.T (°C) Min.T (°C) Precipita-
tion (mm)

Av. 
Humidity 
(%)

Max.T (°C) Min. T (°C) Precipita-
tion (mm)

Av. 
Humid-
ity (%)

Ardebil Oct–July 26.2 − 4.8 234.2 67.4 26.1 − 8.2 185.6 68.5
Mash’had Oct–July 22.1 9.3 266.3 52.1 21.2 8.3 257.5 49.7
Zarghan Oct–June 28.2 1.5 227.2 49.5 29.2 4.1 302.3 47.7
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incidence and its development in experimental plots; so, a 
high rate of disease severity was observed on the susceptible 
check over the environments.

A wide variation of virulence was observed in the path-
ogen population sampled from environments. Indeed, the 
dynamic of changes in the virulence pattern was notable 
during the years of study, except for Ardebil where the same 
race (6E190+ , A, YR27) was prevalent (Table 3).

Different infection types and rust severities were recorded 
on the wheat genotypes in the combination of environments, 
and the performance of a given genotype was not always 
stable across them which could be assumed as the first sig-
nal of existence interaction between years, locations, and 
genotypes (Table 4). The field data set was tested for normal-
ity of distribution and homogeneity. Box and whisker plots 
of rust severity observed on the wheat genotypes (Fig. 1a) 
and in the different environments (Fig. 1b), showed frequent 
existence of outliers and discrepancies in the data distri-
bution. Grubbs’ test identified CI values of the susceptible 
check “Bolani” in all environments as an outlier, so was 
imputed by the median value. Shapiro–Wilk test of normal-
ity of CI values on the wheat genotypes was W = 0.9197, 
P-value = 1.925 × 10–9, showing the non-normal distribu-
tion of the data. Similarly, the hypothesis of homogenous 
variance was rejected by achieving the value of Bartlett’s 
χ2 = 14.225, df = 2, P-value = 0.00081 and χ2 = 16.981, df = 1, 
P-value = 3.96 × 10–5 for locations and years, respectively.

Comparing the two statistics of stability of Huehn, S(1)
i

 
and S(2)

i
 , with approximate χ2 values of Z(1)

i
 and Z(2)

i
 indi-

cated that neither of these statistics passes the critical values 
(Table 5); so, based on these statistics, the performance of 
the genotypes was phenotypically stable across the environ-
ments and no genotype × environment (G × E) interaction 
was detectable.

The plots of scores and loadings obtained through ana-
lyzing GLM-PCA are shown in Fig. 2a, b; respectively. 
Figure 2a shows that the main environments are distinctly 
distributed across the plot where Mash’had—2017 and Zar-
ghan—2016 are located at long distances from the center 
of the plot. Therefore, they could be considered as more 
informative environments. The cosine of the angle between 

the lines is representative of the correlation between vari-
ables, therefore; these environments could be considered as 
environments with different disease pressure on wheat geno-
types. Contrarily, Ardebil-2016 and 2017 along with Zar-
ghan-2017 were accumulated to each other, and were located 
roughly in the center of the plot; followed by the environ-
ment laid on the bottom of the plot, Mash’had-2016; having 
a small cosine of the angle between the lines. Therefore, 
these environments were roughly similar, had less effect on 
disease screening.

Figure 2b shows the distribution of loadings across the 
plot constructed by two dimensions. Moreover, two hori-
zontal and vertical lines divided it into four sections, where 
positive and negative values indicated a variable and a prin-
cipal component were positively and negatively correlated, 
respectively. Large (either positive or negative) loading 
indicates that a variable has a strong effect on that dimen-
sion or principal component. Furthermore, a regression 
line smoothed to fit the data based on GLM represents the 
main trend of data distribution across the plot. In this plot, 
three genotypes of 24 (URBWYT(95–98)#7), 31 (URB-
WYT(95–98)#14), and 21 (URBWYT(95–98)#5) located 
on the far lowest side of the section four with negative val-
ues for both dimensions were separated clearly from the 
other members of the collection. These genotypes gaining 
the lowest CI values in all environments could be identi-
fied as phenotypic stable resistant entries over the environ-
ments. Although genotypes 4 (URBWYT(94–97)#4) in 
the section one; 6 (URBWYT(94–97)#6) and 30 (URB-
WYT(95–98)#13) in the section two; 34 (Qaboos) in the 
section three; and 14 (URBWYT(94–97)#14), 15 (URB-
WYT(94–97)#15), 19 (URBWYT(95–98)#2) in the section 
four were well separated from the rest as well, but showing 
susceptible reaction at least in one environment, could be 
determined as specific resistant entries for a given environ-
ment. Therefore, according to this result, obtaining a highly 
negative value for both dimensions in GLM-PCA loading 
plot, is necessary for a given genotype to be considered as 
general resistant.

The seedling tests conducted under controlled con-
ditions in the greenhouse using two different races of 

Table 3   Avirulence/virulence patterns of races of Puccinia striiformis f.sp. tritici identified in different combinations of location × year (envi-
ronments)

Location Year Avir/vir pattern Race

Ardebil 2015–2016 1, 3, 4, 5, 10, 15, 24, SD, SU, SP /2, 6, 7, 8, 9, 17, 25, 26, 27, 32, A, ND 6E190 + ,A,Yr27
2016–2017 1, 3, 4, 5, 10, 15, 24, SD, SU, SP /2, 6, 7, 8, 9, 17, 25, 26, 27, 32, A, ND 6E190 + ,A,Yr27

Mash’had 2015–2016 1, 3, 4, 5, 8, 10, 15, 27, 32, SD, SU, SP /2, 6, 7, 9, 17, 24, 25, A, ND 134E138 + ,A
2016–2017 1, 3, 4, 5, 10, 15, 24, 26, SU, SP/2, 6, 7, 8, 9, 17, 25, 27, 32, A, SD, ND 38E158 + ,A,Yr27

Zarghan 2015–2016 3, 4, 5, 8, 10, 15, 24, 25, 26, 27, SD, SU, ND, SP /1, 2, 6, 7, 9, 19, 32, A 7E2 + ,A
2016–2017 1, 3, 4, 5, 8, 10, 15, 24, 26, SU, ND, SP /2, 6, 7, 9, 17, 25, 27, 32, A, SD 6E2 + ,A,Yr27
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yellow rust produced similar patterns of distribution of 
susceptibility/resistance, where 30 genotypes (83.33%) 
and 6 (16.67%) showed susceptibility and resistance reac-
tion to both the races, respectively (Table 2). Genotypes 
number 34 (Qaboos), 32 (URBWYT(95–98)#15), 30 
(URBWYT(95–98)#13), 3 (URBWYT(94–97)#3), and 

4 (URBWYT(94–97)#4) showed highly resistant reac-
tions at the seedling stage, but owing to Fig. 2b; only 
genotypes numbers 4 (URBWYT(94–97)#4), 30 (URB-
WYT(95–98)#13), and 34 (Qaboos) could be identified 
as all stage resistant (See Table 4).

Table 4   Reaction and coefficient of infection (CI) of advanced dryland wheat accessions to yellow rust in different combinations of loca-
tion × year (environments)

† S = Susceptible, M = Moderate, R = Resistance, T = Trace

S. no. Field experiments Glasshouse

2015–2016 2016–2017 134E138 + , 
A,YR27

38E190 + , 
A,YR27

Zarghan Ardebil Mash’had Zarghan Ardebil Mash’had

Reaction CI Reaction CI Reaction CI Reaction CI Reaction CI Reaction CI

1 80S 80 40MS 32 30M 18 30MR 12 20MR 8 30M 18 3 3
2 30M 18 20MR 8 20M 12 10MR 4 30MR 12 30MR 18 3 3
3 40MR 16 20MR 8 25M 15 30MR 12 20MR 8 40MS 24 0 0
4 50MS-S 50 TMR 0.4 0 0 10R 2 10MR 4 0 0 0 0
5 50M 30 30MR 12 50MS 40 10R 2 20MR 8 30M 18 3 3
6 80MS-S 80 20MR 8 0 0 10R 2 R 0.2 30M 18 3 3
7 70MS 56 20MR 8 0 0 30MR 12 20MR 8 20MR 8 2 2
8 30MR 12 20MR 8 20MR 8 10MR 4 20MR 8 10MR 4 3 3
9 40M 24 10MR 4 10MR 4 5R 1 10MR 4 40MS 24 3 3
10 20M 12 20MR 8 0 0 30MR 12 30MR 12 30MS 24 3 3
11 5R 10 10MR 4 10MR 4 50MR 20 30MR 12 30MR 24 3 3
12 10MR 4 10MR 4 0 0 40MR 16 30MR 12 30MR 12 3 3
13 5R 1 10MR 4 10MR 4 20MR 16 10MR 4 20MS 16 3 3
14 80MS 64 20MR 8 50M 30 5R 1 10MR 4 0 0 3 3
15 80MS-S 80 30MR 12 20MR 8 10MR 4 10MR 4 0 0 3 3
16 60M 36 30MR 12 0 0 30MR 12 10MR 4 30M 18 3 3
17 50MS 40 20MR 8 0 0 10MR 4 10MR 4 0 0 3 3
18 10R 2 40MR 16 20MR 8 30MR 12 40M 24 40MS 32 3 3
19 50M 30 30MR 12 10MR 4 5R 1 10MR 4 0 0 3 3
20 20M 12 20MR 8 0 0 20MR 8 20MR 8 0 0 3 3
21 10MR 4 20MR 8 0 0 10MR 4 10MR 4 0 0 3 3
22 5R 1 10MR 4 0 0 30MR 12 10MR 4 30M 18 3 3
23 10R 2 20MR 8 20MR 8 10MR 4 10MR 4 20M 12 3 3
24 5R 1 10MR 4 10MR 4 10MR 4 10MR 4 0 0 3 3
25 5R 1 10MR 4 10MR 4 5R 1 10MR 4 40MS 32 3 3
26 30R 6 TMR 4 10MR 4 10MR 4 R 0.2 30MR 2 3 3
27 40R 8 10MR 4 0 0 50MR 2 20MR 8 30M 18 3 3
28 20MS 16 20MR 8 0 0 5R 1 10MR 4 20MR 8 3 3
29 30M 18 10MR 4 0 0 50MR 20 20MR 8 30M 18 3 3
30 60MS 48 TMR 4 0 0 5R 1 10MR 4 20M 12 0 0
31 5R 1 10MR 4 0 0 5R 1 10MR 4 0 0 3 3
32 30MS 24 10MR 4 40MS 32 10MR 4 10MR 4 50M 30 0 0
33 5R 1 30MR 12 0 0 40MR 4 30MR 12 30M 18 3 3
34 0 0 50MSS 50 10MR 4 20MR 8 10MR 4 20M 12 0 0
35 0 0 30MSS 30 0 0 5R 1 20MR 8 10MR 4 3 3
36 100S 100 80S 80 80S 80 80S 80 100S 100 70S 70 3 3
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Discussions

Availability of YR resistant cultivars is highly demanded 
in the wheat-producing industry around the world. Regu-
larly, an advanced wheat genotype before releasing as a 
new commercial cultivar, at different stages of a breeding 
program is screened to the disease in the field (hot spots) 
under METs frame, as well as under controlled conditions 
using specific races of PST. Furthermore, identifying 
sources of resistance is a vitally important procedure in 
wheat breeding for disease resistance. Adult plant resist-
ance (APR) in wheat against the disease being effective 
to a broad range of YR races and maintaining adequate 
levels of resistance even in favorable conditions for rust 
epidemics (durable resistance); is an ideal option for 
plant pathologists to manage the disease (Li et al. 2020). 
The robustness of APR can be evaluated in terms of time 
and space which mainly could be gained through geno-
type × environment (G × E) trials. In this study, we evalu-
ated 35 wheat genotypes for quantitative resistance to YR 
in 6 environments in the field conditions. Phenotypic reac-
tions of wheat genotypes were different among environ-
ments, a phenomenon which frequently has been reported 
in the previous studies (Ali et al. 2009; Randhawa et al. 
2012).

The data set achieved through CI calculation did not fol-
low a normal distribution, a feature which is common in bio-
science studies such as ecology, evolution, plant pathology, 
and plant breeding (Bolker et al. 2009). CI values, derived 
from multiplying of IT and DS; inherently, could be sup-
posed as a corrected value of an ordinal data set, despite 
quantifying the infection type fraction which is regarded as 
an absolute qualitative factor. Assessing the severity of many 
diseases in plant pathology falls in the same situation where 
ordinal scale is applied for measurement and is interpretable 
only in terms of their arrangement in a given order, although 
continuous scales, widely are in use (Shah and Madden 
2004; Sabaghnia 2016). In the next step, we subjected the 
transformed data set of CI values into two non-parametric 
statistics proposed by Huehn (1990a, b) which has already 
been used to detect phenotypic stability of resistance in vari-
ous pathosystems (Haynes et al. 1998; Forbes et al. 2005; 
Lillemo et al. 2010).

Predicting a genotype behavior in different environments 
and establishing a cut-off point to distinguish overall suscep-
tible/resistance patterns is very difficult in METs because the 
genotype performance is dominantly regulated by three dif-
ferent fractions of total (G × E) interaction variance, between 
host genotype and biotypes of the biotic agent; and a three-
fold interaction of host genotype × environment × biotypes 

Fig. 1   Box plots of rust severity on wheat genotypes (a) and in 
environments (b). For each genotype or environment, the box rep-
resents the interquartile range, the heavy horizontal line represents 

the median, and the fine horizontal lines represent the minimum and 
maximum values excluding outliers (the circles)
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(Rubiales et al. 2012). Proper identification and characteri-
zation of resistance, its efficient use in the breeding pro-
gram, and disease management strategy are facilitated by 
relating its phenotypic expression to these three factors 
(Mukherjee et al. 2013). The non-parametric approaches of 
Huehn (1990a, b), indicated no significant G × E interaction. 

According to Forbes et al. (2005) when these statistics do 
not show significant interaction, the data set would not have 
the feasibility to be subjected to neither GGE nor AMMI 
analysis. Under these circumstances, a simple way to com-
pare disease pressure between environments is via compar-
ing the disease severity observed on the susceptible check 

Table 5   Mean of the coefficient 
of infection (CI) of wheat 
genotypes against yellow rust 
and non-parametric statistics 
* of their stability across the 
experimental locations

* S. no. (See Table 1); CI mean: the average of Coefficient of Infection of rust severity and infection type 
observed in three locations during two successive years of study; Rank: Absolute rank of a genotype 
according to the CI value after transformation; S(1)

i
 and Z(1)

i
 : mean of the absolute rank of a genotype and its 

approximate test of significance, respectively; S(2)
i

 and Z(2)

i
 : common variance of the ranks and its approxi-

mate test of significance, respectively. The Z-statistics are measures of stability and the tests for signifi-
cance of the individual and sum. Z(1)

i
 and Z(2)

i
 individuals are compared to a χ2 value of 10.22 while Z(1)

i
 

and Z(2)

i
 sums are compared with 50.99

S. no. CI mean Rank S
(1)

i
Z
(1)

i
S
(2)

i
Z
(2)

i

1 28.00 36 16.00 1.86 178.40 2.14
2 12.00 34 11.53 0.02 86.70 0.19
3 13.83 35 12.53 0.03 105.07 0.00
4 9.40 6 14.20 0.57 132.30 0.26
5 18.33 31 9.40 0.78 71.77 0.56
6 18.03 25 16.40 2.25 187.47 2.72
7 15.33 32 12.27 0.01 101.87 0.02
8 7.33 21 9.80 0.56 64.57 0.81
9 10.17 23 14.40 0.67 137.60 0.38
10 11.33 26 12.27 0.01 108.27 0.00
11 12.33 33 13.93 0.44 128.57 0.18
12 8.00 17 14.73 0.87 154.97 0.95
13 7.50 18 14.47 0.71 137.10 0.37
14 17.83 20 15.27 1.24 155.50 0.97
15 18.00 29 16.40 2.25 178.27 2.13
16 13.67 28 12.20 0.01 113.90 0.02
17 9.33 11 11.80 0.00 93.37 0.09
18 15.67 30 16.27 2.12 189.20 2.84
19 8.50 14 15.20 1.19 154.67 0.94
20 6.00 7 13.20 0.17 126.27 0.14
21 3.33 3 12.93 0.10 115.20 0.02
22 6.50 9 13.40 0.23 119.90 0.06
23 6.33 16 11.40 0.04 86.97 0.19
24 2.83 4 13.80 0.38 137.90 0.39
25 7.67 13 14.33 0.64 138.57 0.40
26 3.37 5 13.60 0.30 121.47 0.08
27 6.67 12 11.07 0.10 91.60 0.11
28 6.17 8 9.27 0.86 57.37 1.10
29 11.33 24 14.20 0.57 140.97 0.47
30 11.50 19 11.47 0.03 99.20 0.03
31 1.67 1 12.47 0.03 103.10 0.01
32 16.33 27 13.73 0.35 126.27 0.14
33 7.83 15 15.73 1.62 169.47 1.63
34 13.00 10 11.67 0.01 120.57 0.07
35 7.17 2 15.07 1.10 167.07 1.50
36 85.00 22 5.33 5.13 20.27 3.30
SUM 27.24 25.22
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over the environments (Ali et al. 2009) which does not give 
more information about relationships between environments 
and the degree of stability of resistance within genotypes. 
Instead, in the current study; we used GLM-PCA (Collins 
et al. 2002), a statistical technique where a specified family 
link expands its type of distribution. Using this technique, 
two separate scatterplots based on two separate matrices 
were produced (Fig. 2a, b). According to Fig. 2a, the two 
most informative environments were detected. Furthermore, 
similar races were identified during 2 years of study in Arde-
bil. Co-ordinarily; these environments were located at a 
short distance from each other and Zarghan-2017; meaning 

that similar pressure by the pathogenic races exposed on the 
wheat genotypes in these environments.

In this study, we showed that when the data set cannot be 
subjected to parametric analysis because of its non-normal 
distribution and heterogeneous nature of variances, and 
even more when non-parametric approaches were not effi-
cient to distinguish G × E interaction; GLM-PCA can detect 
phenotypically stable resistant genotypes as well as more 
informative environments in METs. Using facilities embed-
ded in ggplot2, visually detection of relationships between 
features of G × E interaction became possible. The useful-
ness of PCA to detect samples with different behavior from 

Fig. 2   Plots of scores (a) and loadings (b) based on GLM-PCA of corrected CI values of yellow rust on wheat genotypes observed in different 
environments. The solid line below indicates the best fit-regression line. The selected genotypes were confined by the circle
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the main population has already been reported (Reyna et al. 
2017), although the application of conventional PCA analy-
sis gave different patterns of distribution of genotypes and 
variables (data not shown). The plots illustrated in Fig. 2a, b, 
in composition; could be considered as homologous to GGE 
biplot which has been devised to facilitate visual cultivar 
evaluation and mega-environment identification.

The reaction of wheat genotypes in the field scale is not 
only regulated by environmental factors (Millus et al. 2009; 
Grabow et al. 2016); but also, by the race profile of the 
region (Liu et al. 2017). The absence of significant G × E 
interaction along with roughly similar meteorological situ-
ations among the environments means that the main reason 
for the different response to yellow rust observed in wheat 
genotypes mainly is due to the presence of different viru-
lence factors of PST races and coincident Yr genes in the 
host; which is in harmony with previous studies on PST 
race profile of a region (Safavi et al. 2013). Nevertheless, 
the effect of different environmental conditions is not being 
completely rejected and needs complementary studies.
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