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Abstract
Quantum-dot Cellular Automata (QCA) is a new technology for designing digital circuits in Nanoscale. This technology 
utilizes quantum dots rather than diodes and transistors. QCA supplies a new computation platform, where binary data can 
be represented by polarized cells, which can define by the electron’s configurations inside the cell. This paper explains QCA 
based combinational circuit design; such as half-adder and full-adder, by only one uniform layer of cells. The proposed design 
is accomplished using a novel XOR gate. The proposed XOR gate has a 50% speed improvement and 35% reduction in the 
number of cells needed over the best reported XOR. The results of QCADesigner software show that the proposed designs 
have less complexity and less power consumption than previous designs.
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1 Introduction

CMOS technology will reach the scaling limit in nanoma-
terial progress [1]. Consequently, alternative technology 
became the goal of numerous researchers. QCA is a new 
Nano technique that offers a new strategy for information 
transformation and computation. The main building units in 
QCA circuits are majority gate and inverter; where any QCA 
circuit can be constructed using only these two blocks with 
help of binary wire. Many digital circuits in QCA technology 
have been introduced in the literature, some of them focused 
on combinational circuits such as [2, 3] others focused on 
sequential and memory circuits as in [4–7]. Arithmetic cir-
cuits are considered a crucial tool in digital circuits due to 

their extensive used in many signal processing applications. 
The addition is one of the basic arithmetic operations. A full 
adder is the core of any arithmetic unit and is located on its 
critical path; therefore, its performance directly affects the 
entire system’s performance. Many researchers have stud-
ied full adder by QCA, such as [8–15]. This implies that 
the performance enhancement of Adder will enhance the 
whole system’s performance. Therefore, the design of QCA 
adder circuits with less complexity, shorter delays, and the 
lowest area, will be significantly required in the future [8, 
16]. In this paper, a novel QCA-XOR gate is presented with 
minimum complexity. To demonstrate the operation of the 
proposed gate, it was used to design adder circuits, with the 
results compared to previous designs. Many programs intro-
duced for QCA circuits evaluation such as [17] but QCADe-
signer tool is more common and it will be used for circuit 
simulation and evaluation in this work.

This paper will be arranged as follows: Sect. 2 prelimi-
naries. Section 3 exclusive OR gate. The adder circuit is 
given in Sect. 4. Simulation results with comparisons will 
be detailed in Sect. 5. Finally, the conclusion is in Sect. 6.

2  Preliminaries

This section will give reviews of QCA basics.

Online ISSN 2092-7592
Print ISSN 1229-7607

 * Ali H. Majeed 
 alih.alasady@uokufa.edu.iq

 Mohd Shamian Bin Zainal 
 shamian@uthm.edu.my

 Esam Alkaldy 
 esam.alkaldy@uokufa.edu.iq

 Danial Md Nor 
 danial@uthm.edu.my

1 Faculty of Electrical and Electronic Engineering, UTHM, 
Batu Pahat, Johor, Malaysia

2 Faculty of Engineering, University of Kufa, Kufa, Iraq

http://crossmark.crossref.org/dialog/?doi=10.1007/s42341-019-00166-y&domain=pdf


199Transactions on Electrical and Electronic Materials (2020) 21:198–207 

1 3

2.1  QCA Basics

2.1.1  QCA Cells

The fundamental QCA cell is illustrated in Fig. 1. QCA 
cell has a square shape consisting of four dots; where a 
pair of electrons is occupied within it diagonally, due to 
columbic repulsion. The injected electrons can transport 
through the tunnel between the adjacent dots. However, 
given the high potential between cells, it cannot tunnel 
between adjacent cells. Therefore, there are two arrange-
ments of the QCA cell, depending on its polarization, as 
− 1 (logic “0”) and + 1 (logic 1).

2.1.2  QCA Wire

QCA wire is comprised of fundamental cells that carry the 
input logical value to the output. The electrons interaction 
forces cells to take the same polarization of the neighbour 
cell, in other word each cell consider as a driver cell for the 
next one. This approach is applied in two configurations. 
The first is normal (or direct mode) while the second is 
rotated mode [18]. These two types are shown in Fig. 2.

2.1.3  QCA Gates

Three types of inverter presented in QCA are shown in 
Fig. 3.

Furthermore, a dominant gate in QCA circuits is majority 
gate; which has attracted the attention of many researchers 
[19–21]. Using this gate, the designer can make AND or 
OR gates by applying − 1 or + 1, respectively, on one of the 
majority inputs. Two forms of 3-input majority voters (Maj-
3) are presented in Fig. 4. The Boolean equation of Maj-3 
gate is given by Eq. 1 [22, 23].

The 3-inputs majority gate is expanded to many inputs 
majority voter with different QCA structures and layouts 
as in [8, 24, 25].

2.1.4  QCA Clock

Clocking is an essential part of QCA circuits due to fol-
lowing reasons: synchronization, power compensation, and 
controlling the direction of data flow. Furthermore, it gives 
the power to stimulate the circuit. The clock signal con-
trols the potential barriers between dots inside the cell to 
achieve synchronization. The polarization of the cell is still 
undetermined; as long as the cell has low potential barri-
ers, the electrons will then easily move between points. The 
electrons get them localized whenever the potential barriers 
rise to their highest value. At this point, the polarization of 
the cell will be determined. The clock signal contains four 
clock zones and every zone contains four-phases, starting 

(1)M(A,B,C) = AB + BC + AC

Fig. 1  Primary QCA cell

Fig. 2  QCA wire a direct mode, b rotated mode
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from switch phase then hold, release, and relax (as illustrated 
in Fig. 5) [26].

3  The Exclusive‑OR (XOR) Gate

XOR gate is a logic circuit that gives high at the output when 
the number of high inputs is odd. The Boolean equation of 
XOR is illustrated in Eq. 2.

The XOR logic diagram and its symbol are shown in Fig. 6.

3.1  The Proposed XOR Layout

The XOR gate is the brick unit of many digital circuits, such 
as arithmetic circuits [27] and parity bit generator circuit 
[28]. There are several XOR layouts presented previously 
in QCA technology [29–35] but the goal was to minimize 
the number of majority gate or inverter used by re-forming 
the XOR equation. While some of them were design based 
on the inherent capability of QCA. An example of the con-
ventional XOR structures presented previously is illustrated 
in Fig. 7a, b; while the proposed XOR layout is illustrated 
in Fig. 7c.

(2)XORA,B = A ⋅ B̄ + Ā ⋅ B

3.1.1  Physical Verification

The proposed structure verified physically as illustrated in 
Fig. 11 and Table 1. For the two adjacent cells (i, j), the 
electrostatic energy Ek

i,j
 can be calculated using Eq. 3.

where ɛ0: free space permittivity; ɛr: relative permittivity; q: 
the charge of electron inside dot; |ri − rj|: the space between 
the two dots.

The most stable orientation defined by the configuration 
have lower energy in a certain input.

The electrostatic energy or called “kink energy” Ek 
between two cells can be calculated by letting one cell in 
its original state and switching the other in two contradic-
tory polarization states and then comparing the two results 
and selecting the smaller one. This was done for many 
uncertain polarization cells (c1, c2, c3 and c4) as in Fig. 8 
before calculating the polarization of the output cell for the 
proposed gate and the results were the polarization of 
c1 = 1, c2 = 1, c3 = 0 and c4 = 0. If the input pattern (A, 
B) = (1, 0), the calculation of the total electrostatic energy 
at dot p (named Up) for the output cell is shown 
below:Up =
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Fig. 6  XOR gate a logic circuit diagram, b symbol
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two dots.The proposed XOR is verified by simulating it 
with QCADesigner software and the results are given in 
Sect. 5.

3.1.2  Power Consumption Analysis

The estimation of the dissipated power for the proposed 
gate can be defined using the most common tool called 

QCAPro. This tool has the ability to manipulate large cir-
cuit because it uses fast approximation and it can expect 
the losses of power in non-adiabatic switching.

The analysis of power dissipation at different tunneling 
energy levels (0.5 Ek, 1 Ek and 1.5 Ek) for the proposed 
gate in comparison with previously counterparts is shown 
in Table 2. The power dissipation map for proposed gate 
at 0.5 Ek is illustrated in Fig. 9.

4  Adder Circuits

4.1  Half Adder

Half adder responsible for adding two logical inputs and pro-
vides two outputs sum and carry, if input variables are A and 
B. The sum and carry of these two variables can be calculated 
by Eq. 4.

Half adder logic circuit is illustrated in Fig. 10.

(4)
Sum = A⊕ B

Carry = AB

Fig. 7  2-Input XOR gate a 
presented in [36], b presented in 
[37], c proposed design
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Table 1  The proposed gate 
validation

Cell Up Uq Ur Us Result Stable position (lower energy required) Cell polarization
× 10−20 J

Output 11.7 10.3 9.33 8.5 (q + r) < (p + s) q + r + 1 (Logic 1)

Fig. 8  proposed configuration to analysis the proposed XOR gate
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On the other hand, the full adder adds three logical vari-
ables and provides two outputs, sum and carry. If the input 
variables are A, B, and  Cin, the two outputs can be found using 
Eq. 5.

By following the logic circuit previously given in Fig. 10, 
the half adder can be easily designed with proposed XOR 
gate as illustrated in Fig. 11.

4.2  Full Adder

The full adder logic circuit is illustrated in Fig. 12.
Note: the carry equation is the same as the Maj-3 equa-

tion, as previously mentioned in Eq. 1. Therefore, the full 

(5)
Sum = (A)XOR(B)XOR

(
Cin

)

Carry = (AB) OR
(
B Cin

)
OR

(
CinA

)

adder circuit can be implemented as shown in Fig.  13. 
Another form of full adder logical representation that uti-
lizes multi-input majority function and its reliability is stud-
ied in [42].

The full adder design approach illustrated in Fig. 13b is 
adopted in most of previous literatures because it produces 
more efficient circuit with less complexity (number of cells 
and circuit layout area) and latency (number of required 
clock phases to produce output) as the circuits reported in 
[14, 43, 44] as shown in Fig. 14a, b. On the other hand, the 
design approach shown in Fig. 13a is not commonly used in 
QCA circuitry due to the high complexity of the produced 
circuit and the designs reported in [26, 45]. The proposed 
XOR in this work solve this issue. It was used to design full 
adder circuit with QCA technology as shown in Fig. 14c.

Table 2  Power dissipation 
comparison at 2 K for many 
XOR gates

Circuit presented in Average of leakage energy 
dissipation (meV)

Average of switching 
energy dissipation (meV)

Total energy consumption 
(meV)

0.5 Ek 1 Ek 1.5 Ek 0.5 Ek 1 Ek 1.5 Ek 0.5 Ek 1 Ek 1.5 Ek

[38] 14.82 40.32 68.10 32.17 26.23 21.41 46.99 66.54 89.51
[39] 11.51 31.91 54.69 35.78 30.48 25.66 47.28 62.39 80.34
[40] 11.64 31.85 53.68 27.42 21.78 17.40 39.06 53.63 71.08
[41] 10.78 28.57 48.15 25.43 21.71 18.4 36.20 50.28 66.58
[36] 5.58 13.99 23.90 5.55 5.1 4.56 11.13 19.09 27.46
Proposed 2.69 7.43 12.72 8.16 6.94 5.87 10.85 14.37 18.59

Fig. 9  The power dissipation map for the proposed 2-input XOR gate 
with the level 0.5 Ek tunnelling energy at 2-Kelvin temperature

Fig. 10  Half adder logic diagram

Fig. 11  Proposed QCA-half adder

Fig. 12  Full adder logic diagram
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5  Simulation Results

In this work, QCADesigner tool V 2.0.3 [46] is used to simu-
late the proposed circuits with the simulation parameters 
shown in Fig. 15. The proposed XOR in Fig. 7c produces 
the output waveform shown in Fig. 16 and it is clear from 
the output that the proposed gate shows error-free operation 
for all input possibilities. From noticing the polarization of 
the output waveform, it can be concluded that the proposed 
gate has acceptable robustness. The proposed half adder and 
full adder circuits are simulated under the same conditions 
and produced the output waveforms shown in Figs. 17 and 
18 respectively. In both circuits, the output was correct for 
all input states.

The proposed gate is superior in terms of area, number 
of cells, latency when compared with previous reported 
designs. Table 3 gives the comparison results. Furthermore, 
the proposed gate makes a reduction in delay time to 50% 
compared to best previously reported; where it can be imple-
mented in a ¼ clock cycle of the clock signal defined in 
Fig. 5. The proposed design requires only 9 cells; while the 
best previous design required 14 cells. Another important 
aspect of the proposed design is that it does not require wire 
crossover.

The results of the comparison for the proposed half adder, 
with existing designs, are shown in Table 4. From this table, 
it is obvious that the proposed structure is an optimal design 
in comparison with previously counterparts. The proposed 

Fig. 13  Full adder logic circuit 
a based on Maj-3, b based on 
Maj-5 [24]

Fig. 14  QCA-full adder a 
presented in [44], b presented in 
[14], c proposed structure
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half adder is crossover free, with minimum cell number and 
area. Table 5 details the comparison results of the full adder 
with existing structures. It is clear from this table that the 
proposed full adder is distinguished in terms of complexity; 
where it was implemented using only 39 cells, by improving 
15% from the nearest competitor structure presented in [43].

6  Conclusions

In this paper, a new single layer Exclusive-OR gate design 
is introduced with QCA technology. The proposed design 
has a 50% speed improvement and a 35% reduction in the 
number of cells needed over the best reported XOR. The 
presented gate is used to design superior half and full adders 
with a very noticeable reduction in the circuit layout area 
and number of cells. The proposed XOR gate shows a 
noticeable reduction in the power dissipation compared to 

Fig. 15  QCADesigner simulation parameters

Fig. 16  Proposed XOR simulation result

Fig. 17  Proposed half adder simulation result

Fig. 18  Proposed full adder simulation result
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the previous designs. The reduction in the complexity of the 
proposed designs is very encouraging to adapt it to other 
circuit designs.
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